File size: 8,770 Bytes
778b054
 
 
 
 
 
 
 
 
 
 
 
 
 
4e3f30e
 
 
 
778b054
 
 
 
fbdfc08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
778b054
 
fbdfc08
 
 
 
 
 
 
 
778b054
 
 
 
fbdfc08
 
778b054
fbdfc08
 
 
 
 
 
 
 
778b054
fbdfc08
778b054
fbdfc08
778b054
 
fbdfc08
 
 
 
778b054
fbdfc08
 
 
 
 
778b054
 
fbdfc08
49dc33c
fbdfc08
778b054
fbdfc08
 
 
778b054
fbdfc08
 
 
778b054
 
fbdfc08
 
ed45dad
fbdfc08
 
 
 
 
 
 
 
 
 
 
 
 
f15757c
fbdfc08
 
 
 
59ce1e2
fbdfc08
 
 
 
49dc33c
 
68f04c4
fbdfc08
 
 
 
 
778b054
 
fbdfc08
 
f15757c
fbdfc08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
778b054
a548eed
ce2945b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587def4
ce2945b
 
587def4
ce2945b
587def4
 
 
ce2945b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
778b054
 
 
 
 
2c9eadb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
778b054
d5b2219
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import numpy as np
import os, sys
import pandas as pd
import pickle
import cv2
import random

from glob import glob
from tqdm import tqdm

from sklearn import svm

import torch

# from IPython.display import Video
# from IPython.display import HTML
# from ipywidgets import Output, GridspecLayout
# from IPython import display

import gradio as gr

def load_feats(fpath):
	
	with open(fpath, 'rb') as f:
		features = pickle.load(f)

	print("Features: ", features.shape)
	
	x_raw = features[:,[0]]
	x=[]
	for feat in x_raw:
		x.append(feat[0])
	x = np.array(x).astype(float)

	y_raw = features[:, [1]]
	y = []
	for label in y_raw:
		y.append(int(label[0]))
	y = np.array(y)
	
	files_raw = features[:, [2]]
	files = []
	for f in files_raw:
		files.append(f[0])
	files = np.array(files)
	
	data_raw = features[:, [-1]]
	data = []
	for d in data_raw:
		data.append(d[0])

	return x, y, files, data

def get_binary_labels_exemplar(labels, target_label=0):
	
	y = []
	for lab in labels:
		if lab==target_label:
			y.append(1)
		else:
			y.append(-1)
	return np.array(y)


def find_ind(target_word, labels, word_map):

	# print("Target word: ", target_word)
	# print("Labels: ", labels)

	indices = []
	target_label = word_map[target_word]
	# print("Target label: ", target_label)
	for i in range(len(labels)):
		label = int(labels[i])
		# print("Curr label: ", label)
		if label == target_label:
			indices.append(i)

	# print("All label indices: ", indices)

	return indices

def get_scores_sklearn(x, clf):
	
	w=clf.coef_
	scores=[]
	for i in range(len(x)):

		feat = x[i].astype(float).reshape(len(x[i]),1)
		sc = np.dot(w, np.array(feat, dtype=float))[0][0]
		scores.append(sc)
		
	return scores

def get_top_labels(scores, labels, files):
	
	# Sort scores by decreasing scores
	_, perm = torch.sort(scores, descending=True)

	all_classes = labels.astype(int)
	all_files = files
	
#     ranked_classes = [all_classes[i][0] for i in perm]
	ranked_files = [(all_files[i], all_classes[i]) for i in perm]
	
	return ranked_files

def plot_ranked_videos(all_labels, scores, data, key_list, val_list, row=2, col=3, data_path="videos/", fps=15, target_label=0):
	
	_, perm = torch.sort(scores, descending=True)
	perm=perm.numpy()
	
	html = """<div>
				<b> <font size=5> Top retrieved files: </font> </b> <br>
				<table>
			"""
	
	idx=0

	for r in range(row):
		html+="<tr>"
		for c in range(col):
			label = all_labels[perm[idx]]
			word = key_list[val_list[label]]
			vid_file = os.path.join("/file="+data_path, data[perm[idx]].speaker, data[perm[idx]].file+".mp4")
			start_frame, end_frame = data[perm[idx]].start_frame, data[perm[idx]].end_frame
			start_time, end_time = start_frame/fps, end_frame/fps
			vid_src = "{}#t={},{}".format(vid_file, start_time-1, end_time+1)
			color="green" if label==target_label else "red"
			fname = data[perm[idx]].file			
			html += ("""<td><center> <b><font color=%s size=5>%s</font></b> (%.1f - %.1f seconds)</center>
						<video width="320" height="240" controls>
						  <source src="%s" type="video/mp4">
						</video>
						<center> (%s - %s) </center>
						</td>""" % (color, word, start_time, end_time, vid_src, perm[idx], fname))
			idx+=1
			if c==col-1:
				html+="</tr>"
	html+="""</table>
				</div>"""
	return html

def plot_query(query_idx, data, key_list, val_list, data_path="videos/", fps=15, target_label=0):
	
	word = key_list[val_list[target_label]]
	vid_file = os.path.join("/file="+data_path, data[query_idx].speaker, data[query_idx].file+".mp4")
	start_frame, end_frame = data[query_idx].start_frame, data[query_idx].end_frame
	start_time, end_time = start_frame/fps, end_frame/fps
	vid_src = "{}#t={},{}".format(vid_file, start_time-1, end_time+1)
	color="green" 
	fname = data[query_idx].file


	plot = (""" <b> <font size=5> Positive sample used to train Exemplar-SVM: </font> </b> <br> Query index in the data: %d <br>
					<b><font color=%s size=5>%s</font></b> (%.1f - %.1f seconds) <br>
					<video width="320" height="240" controls>
					  <source src="%s" type="video/mp4"> 
					</video> <br>
					(%s)
					""" % (query_idx, color, word, start_time, end_time, vid_src, fname))
	
	return plot

def retrieve(file_choice, target_word, query_idx, rows=5, cols=4):

    print(file_choice)

    if file_choice=="big_little":
        file="features/gestsync_feats_biglittle_train.pkl"
        word_map={"big":0, "little":1}
        print("Target word: ", target_word)
        if target_word not in list(word_map.keys()):
            msg="The selected target word is not present in the word classes. For '{}' word classes, please select the target word from the following list: {}".format(file_choice, list(word_map.keys()))
            return msg, ""
        target_label=word_map[target_word]
    elif file_choice=="5_words":
        file="features/gestsync_feats_5words_balanced_train.pkl"
        word_map = {'big': 0, 'little': 1, 'next': 2, 'i': 3, 'you': 4}
        print("Target word: ", target_word)
        if target_word not in list(word_map.keys()):
            msg="The selected target word is not present in the word classes. For '{}' word classes, please select the target word from the following list: {}".format(file_choice, list(word_map.keys()))
            return msg, ""
        target_label=word_map[target_word]

    print("Target label: ", target_label)
    key_list = list(word_map.keys())
    val_list = list(word_map.values())

    x_train, y_train_actual, files_train, data_rows = load_feats(file)
    print("X train: {} | Y train: {} | Files train: {} | Data rows test: {}".format(x_train.shape, y_train_actual.shape, files_train.shape, len(data_rows)))

    print("Query idx orig: ", query_idx)
    pos_indices = find_ind(target_word, y_train_actual, word_map)
    if query_idx=="Random":
        query_idx = random.choice(pos_indices)
    elif str(query_idx).isnumeric():
        query_idx = int(query_idx)
        if query_idx not in pos_indices:
            msg = "The input query index selected ({}) is not the right index! Please select an index of the positive sample to include in Exemplar-SVM training OR type 'Random' to randomly chose an index. <br> For the selected target word '{}', the following are the positive indices in the dataset that can be selected: <br> {}".format(query_idx, target_word, pos_indices)
            return msg, ""
    else:
        msg = "The input query index selected ({}) is not the right index! Please select an index of the positive sample to include in Exemplar-SVM training OR type 'Random' to randomly chose an index. <br> For the selected target word '{}', the following are the positive indices in the dataset that can be selected: <br> {}".format(query_idx, target_word, pos_indices)
        return msg, ""

    print("Query idx: ", query_idx)

    y_train = get_binary_labels_exemplar(y_train_actual, target_label)

    svm_x_train = []
    svm_y_train = []
    svm_data_rows = []

    for i in range(len(x_train)):
        if y_train[i]==-1:
            svm_x_train.append(x_train[i])
            svm_y_train.append(y_train[i])
            svm_data_rows.append(data_rows[i])
        if i==query_idx:
            print(query_idx, y_train[i])
            svm_x_train.append(x_train[i])
            svm_y_train.append(y_train[i])
            svm_data_rows.append(data_rows[i])

    svm_x_train = np.array(svm_x_train).astype(float)
    svm_y_train = np.array(svm_y_train).astype(float)
    print("SVM dataset - X: {} | Y: {}".format(svm_x_train.shape,svm_y_train.shape))

    clf = svm.SVC(C=1, kernel="linear")
    clf.fit(svm_x_train, svm_y_train)

    scores = get_scores_sklearn(x_train, clf)
    #     print(scores)

    query_plot = plot_query(query_idx, data_rows, key_list, val_list, target_label=target_label)
    retrieved_plots = plot_ranked_videos(y_train_actual, torch.tensor(scores), data_rows, key_list, val_list, row=rows, col=cols, target_label=target_label)

    return query_plot, retrieved_plots


if __name__ == "__main__":

	with gr.Blocks() as demo:
		with gr.Row():
			gr.HTML("<b> <font size=5> <center> Welcome to Exemplar-SVM Training and Visualization of top-k videos </center> </font> </b>")
	
		with gr.Row():
			features = gr.Dropdown(["big_little", "5_words"], label="Word classes", value="big_little")
			word = gr.Radio(["big", "little", "i", "you", "next"], label="Target word", value="big")
			query_idx = gr.Textbox(value="Random", label="Positive sample index to train Exemplar-SVM (Type 'Random' to randomly select the index)")
	
		with gr.Row():
			submit = gr.Button("Retrieve")
	
		with gr.Row():
			query = gr.HTML()
	
		with gr.Row():
			ret_videos = gr.HTML()
	
		submit.click(retrieve, inputs=[features, word, query_idx], outputs=[query, ret_videos])

	demo.launch(allowed_paths=["."])