Divrey-Yoel-RAG / file_processor.py
sivan22's picture
Upload 16 files
7f683f9 verified
raw
history blame
14.6 kB
import os
import openai
import json
import uuid
import re
import asyncio
import time
import argparse
from typing import List, Dict, Optional, Tuple
from dotenv import load_dotenv
# --- Required Libraries ---
try:
from docx import Document
except ImportError:
print("Requirement Missing: Please install 'python-docx' (`pip install python-docx`)")
exit()
# PDF library (PyPDF2) import removed
try:
from langdetect import detect, DetectorFactory, LangDetectException
DetectorFactory.seed = 0
except ImportError:
print("Requirement Missing: Please install 'langdetect' (`pip install langdetect`)")
exit()
# --- Configuration ---
load_dotenv()
API_KEY = os.environ.get("OPENAI_API_KEY")
if not API_KEY:
print("🛑 ERROR: OpenAI API key not found. Set OPENAI_API_KEY in your .env file.")
exit()
OUTPUT_DIR = "data"
TRANSLATION_MODEL = "gpt-4o-mini"
MAX_CONCURRENT_TRANSLATIONS = 10
TARGET_LANGUAGE = "en"
# --- Chunking Configuration ---
PARAGRAPH_CHUNK_THRESHOLD = 2000 # Characters
CHUNK_SIZE = 800 # Characters
CHUNK_OVERLAP = 100 # Characters
# Validate chunking config
if CHUNK_OVERLAP >= CHUNK_SIZE:
print(f"🛑 ERROR: CHUNK_OVERLAP ({CHUNK_OVERLAP}) must be less than CHUNK_SIZE ({CHUNK_SIZE}).")
exit()
# --- Setup OpenAI Client ---
try:
client = openai.AsyncOpenAI(api_key=API_KEY)
print("✅ OpenAI Async Client Initialized.")
except Exception as e:
print(f"🛑 ERROR: Failed to initialize OpenAI client: {e}")
exit()
# --- Text Extraction Functions ---
def extract_text_from_docx(file_path: str) -> Optional[str]:
"""Extracts all text from a DOCX file."""
try:
doc = Document(file_path)
full_text = [para.text for para in doc.paragraphs if para.text.strip()]
print(f" 📄 Extracted {len(full_text)} paragraphs from DOCX: {os.path.basename(file_path)}")
return "\n\n".join(full_text) # Use double newline join as a base
except Exception as e:
print(f" ❌ ERROR reading DOCX file '{os.path.basename(file_path)}': {e}")
return None
# --- PDF Extraction Function Removed ---
def extract_text_from_txt(file_path: str) -> Optional[str]:
"""Reads text from a TXT file."""
try:
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
print(f" 📄 Read TXT file: {os.path.basename(file_path)} (length: {len(text)} chars)")
return text
except Exception as e:
print(f" ❌ ERROR reading TXT file '{os.path.basename(file_path)}': {e}")
return None
# --- Text Processing Functions (segment, chunk, detect, translate - No changes needed here) ---
def _chunk_text(text: str, size: int, overlap: int) -> List[str]:
"""Helper function to chunk a single block of text."""
# (Implementation remains the same as previous version)
if not text: return []
chunks = []
start_index = 0
text_len = len(text)
while start_index < text_len:
end_index = start_index + size
chunk = text[start_index:end_index]
chunks.append(chunk.strip())
next_start = start_index + size - overlap
if next_start <= start_index: next_start = start_index + 1
start_index = next_start
if start_index >= text_len: break
return [c for c in chunks if c]
def segment_into_paragraphs_or_chunks(text: str) -> List[str]:
"""
Segments text into paragraphs based on newlines.
If a resulting paragraph exceeds PARAGRAPH_CHUNK_THRESHOLD,
it chunks that specific paragraph instead.
"""
# (Implementation remains the same as previous version)
if not text: return []
normalized_text = text.replace('\r\n', '\n').replace('\r', '\n')
initial_segments = re.split(r'\n\s*\n+', normalized_text)
initial_segments = [s.strip() for s in initial_segments if s.strip()]
if len(initial_segments) <= 1 and '\n' in normalized_text:
print(" Parsing: Double newline split yielded few segments, trying single newline split.")
initial_segments = [s.strip() for s in normalized_text.split('\n') if s.strip()]
if not initial_segments:
print(" Parsing: No segments found after initial splitting.")
return []
print(f" Parsing: Initial segmentation yielded {len(initial_segments)} segments.")
final_segments = []
long_segment_count = 0
for segment in initial_segments:
if len(segment) > PARAGRAPH_CHUNK_THRESHOLD:
long_segment_count += 1
print(f" ❗ Segment ({len(segment)} chars > {PARAGRAPH_CHUNK_THRESHOLD}) is too long. Applying chunking (Size: {CHUNK_SIZE}, Overlap: {CHUNK_OVERLAP})...")
chunks = _chunk_text(segment, CHUNK_SIZE, CHUNK_OVERLAP)
print(f" -> Chunked into {len(chunks)} pieces.")
final_segments.extend(chunks)
elif segment:
final_segments.append(segment)
if long_segment_count > 0:
print(f" Parsing: Chunking applied to {long_segment_count} long segments.")
print(f" 🔪 Final segmentation/chunking resulted in {len(final_segments)} pieces.")
return final_segments
def detect_language_safe(text: str, default_lang: str = "unknown") -> str:
"""Detects language, handling short text and errors."""
# (Implementation remains the same as previous version)
clean_text = text.strip()
if not clean_text or len(clean_text) < 10: return default_lang
try: return detect(clean_text)
except LangDetectException: return default_lang
except Exception as e:
print(f" ❌ Unexpected error during language detection: {e}")
return "error"
async def translate_paragraph(text: str, target_lang: str, semaphore: asyncio.Semaphore) -> Tuple[str, Optional[str]]:
"""Translates a single paragraph/chunk using OpenAI, with rate limiting."""
# (Implementation remains the same as previous version)
async with semaphore:
detected_lang = detect_language_safe(text)
if detected_lang != 'he': return text, None
print(f" 🌍 Translating Hebrew segment to {target_lang.upper()}: '{text[:60]}...'")
prompt = f"Translate the following Hebrew text accurately to {target_lang}. Provide only the translation, without any introductory phrases.\nHebrew Text:\n```heb\n{text}\n```\nTranslation:"
retries = 1
for attempt in range(retries + 1):
try:
response = await client.chat.completions.create(
model=TRANSLATION_MODEL, messages=[ {"role": "system", "content": f"You are an expert translator specializing in Hebrew to {target_lang} translation. Provide only the translated text."}, {"role": "user", "content": prompt} ],
max_tokens=int(len(text.split()) * 2.5) + 50, temperature=0.1, n=1, stop=None, )
translation = response.choices[0].message.content.strip()
if translation:
if translation.strip() == text.strip():
print(f" ⚠️ Translation attempt returned original text for: '{text[:60]}...'")
return text, "Translation Failed: Model returned original text"
return text, translation
else:
print(f" ❌ Translation attempt returned empty response for: '{text[:60]}...'")
if attempt == retries: return text, "Translation Failed: Empty Response"
except openai.RateLimitError as e:
wait_time = 5 * (attempt + 1)
print(f" ⏳ Rate limit hit during translation. Waiting {wait_time}s... ({e})")
await asyncio.sleep(wait_time)
if attempt == retries: return text, "Translation Failed: Rate Limited"
except openai.APIError as e:
print(f" ❌ OpenAI API Error during translation: {e}")
wait_time = 3 * (attempt + 1); await asyncio.sleep(wait_time)
if attempt == retries: return text, f"Translation Failed: API Error ({e.code})"
except Exception as e:
print(f" ❌ Unexpected error during translation: {e}")
if attempt == retries: return text, f"Translation Failed: Unexpected Error ({type(e).__name__})"
if attempt < retries: await asyncio.sleep(2 * (attempt + 1))
return text, "Translation Failed: Max Retries"
# --- Main Processing Function ---
async def process_file(input_path: str, output_dir: str):
"""Processes a single DOCX or TXT file: extracts, segments/chunks, translates, saves JSON."""
print(f"\n--- Processing file: {os.path.basename(input_path)} ---")
start_time = time.time()
file_ext = os.path.splitext(input_path)[1].lower()
extracted_text: Optional[str] = None
# 1. Extract Text (Only DOCX and TXT)
if file_ext == ".docx":
extracted_text = extract_text_from_docx(input_path)
elif file_ext == ".txt":
extracted_text = extract_text_from_txt(input_path)
else:
# This case should ideally not be hit if input is pre-filtered, but acts as safeguard
print(f" ⚠️ Internal Skip: Unsupported extension '{file_ext}' passed to process_file.")
return
if not extracted_text or not extracted_text.strip():
print(" ❌ Text extraction failed or returned empty. Skipping.")
return
# 2. Segment into Paragraphs or Chunks
segments = segment_into_paragraphs_or_chunks(extracted_text)
if not segments:
print(" ❌ No paragraphs or chunks found after segmentation. Skipping.")
return
# 3. Translate Hebrew Segments (Asynchronously)
output_data = []
translation_semaphore = asyncio.Semaphore(MAX_CONCURRENT_TRANSLATIONS)
tasks = []
print(f" 🗣️ Preparing to translate {len(segments)} segments (max concurrent: {MAX_CONCURRENT_TRANSLATIONS})...")
for i, seg_text in enumerate(segments):
task = asyncio.create_task(translate_paragraph(seg_text, TARGET_LANGUAGE, translation_semaphore))
tasks.append(task)
translation_results = await asyncio.gather(*tasks)
# 4. Format into JSON Structure
print(" 📝 Formatting results into JSON...")
translation_failures = 0
for i, (original_he, translation_en) in enumerate(translation_results):
failure_msg = "Translation Failed"
is_failure = isinstance(translation_en, str) and failure_msg in translation_en
if is_failure:
translation_failures += 1
english_text = translation_en # Store the error message
else:
english_text = translation_en if translation_en else ""
output_data.append({ "id": str(uuid.uuid4()), "hebrew": original_he, "english": english_text })
if translation_failures > 0:
print(f" ⚠️ Encountered {translation_failures} translation failures out of {len(segments)} segments.")
# 5. Save to JSON File
base_filename = os.path.splitext(os.path.basename(input_path))[0]
output_filename = f"{base_filename}.json"
output_path = os.path.join(output_dir, output_filename)
try:
os.makedirs(output_dir, exist_ok=True)
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(output_data, f, ensure_ascii=False, indent=2)
end_time = time.time()
print(f"✅ Successfully saved {len(output_data)} segments to: {output_path}")
print(f"⏱️ File processing time: {end_time - start_time:.2f} seconds")
except Exception as e:
print(f" ❌ ERROR saving JSON file '{output_path}': {e}")
# --- Script Execution ---
if __name__ == "__main__":
# Update description to remove PDF mention
parser = argparse.ArgumentParser(description="Process DOCX and TXT files into paragraph/chunk-based JSON with Hebrew-to-English translation.")
parser.add_argument("input_paths", nargs='+', help="Path(s) to input file(s) or directory(ies) containing DOCX/TXT files.")
parser.add_argument("-o", "--output_dir", default=OUTPUT_DIR, help=f"Directory to save output JSON files (default: '{OUTPUT_DIR}')")
parser.add_argument("--chunk_threshold", type=int, default=PARAGRAPH_CHUNK_THRESHOLD, help="Max chars per paragraph before chunking.")
parser.add_argument("--chunk_size", type=int, default=CHUNK_SIZE, help="Target chunk size in chars.")
parser.add_argument("--chunk_overlap", type=int, default=CHUNK_OVERLAP, help="Chunk overlap in chars.")
args = parser.parse_args()
OUTPUT_DIR = args.output_dir
PARAGRAPH_CHUNK_THRESHOLD = args.chunk_threshold
CHUNK_SIZE = args.chunk_size
CHUNK_OVERLAP = args.chunk_overlap
if CHUNK_OVERLAP >= CHUNK_SIZE:
print(f"🛑 ERROR: Chunk overlap ({CHUNK_OVERLAP}) must be less than chunk size ({CHUNK_SIZE}). Adjust --chunk_overlap or --chunk_size.")
exit()
print(f"🚀 Starting File Processor (DOCX & TXT only)...") # Updated startup message
print(f"📂 Output Directory: {os.path.abspath(OUTPUT_DIR)}")
print(f"🔪 Paragraph/Chunking Settings: Threshold={PARAGRAPH_CHUNK_THRESHOLD}, Size={CHUNK_SIZE}, Overlap={CHUNK_OVERLAP}")
files_to_process = []
for path in args.input_paths:
if os.path.isfile(path):
files_to_process.append(path)
elif os.path.isdir(path):
print(f"📁 Scanning directory: {path}")
for filename in os.listdir(path):
full_path = os.path.join(path, filename)
if os.path.isfile(full_path):
files_to_process.append(full_path)
else:
print(f"⚠️ Warning: Input path not found or not a file/directory: {path}")
# Update supported extensions list
supported_extensions = ('.docx', '.txt')
valid_files = [f for f in files_to_process if f.lower().endswith(supported_extensions)]
if not valid_files:
# Update message for no supported files found
print(f"\n🛑 No supported files ({', '.join(supported_extensions)}) found in the specified paths. Exiting.")
else:
print(f"\nFound {len(valid_files)} supported files to process:")
for f in valid_files:
print(f" - {os.path.basename(f)}")
async def main():
process_tasks = [process_file(f, OUTPUT_DIR) for f in valid_files]
await asyncio.gather(*process_tasks)
script_start_time = time.time()
asyncio.run(main())
script_end_time = time.time()
print(f"\n🏁 File processing complete. Total script time: {script_end_time - script_start_time:.2f} seconds.")