File size: 39,790 Bytes
877e000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38d6cf7
 
877e000
6e3dbdb
877e000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38d6cf7
877e000
 
 
38d6cf7
877e000
6e3dbdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
877e000
38d6cf7
877e000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38d6cf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
877e000
 
 
 
 
 
 
 
 
38d6cf7
 
 
 
 
 
ebb3d5e
38d6cf7
 
 
 
 
 
 
 
 
 
 
 
 
ebb3d5e
0e5c14c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb3d5e
38d6cf7
 
 
877e000
38d6cf7
ebb3d5e
 
 
 
 
38d6cf7
ebb3d5e
38d6cf7
ebb3d5e
0e5c14c
ebb3d5e
 
0e5c14c
38d6cf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb3d5e
0e5c14c
ebb3d5e
0e5c14c
38d6cf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb3d5e
38d6cf7
ebb3d5e
 
 
 
 
 
 
 
38d6cf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb3d5e
38d6cf7
0e5c14c
ebb3d5e
38d6cf7
ebb3d5e
38d6cf7
ebb3d5e
0e5c14c
ebb3d5e
877e000
38d6cf7
877e000
38d6cf7
 
ebb3d5e
0e5c14c
ebb3d5e
0e5c14c
ebb3d5e
38d6cf7
ebb3d5e
 
0e5c14c
 
ebb3d5e
38d6cf7
 
ebb3d5e
38d6cf7
 
ebb3d5e
38d6cf7
 
ebb3d5e
38d6cf7
 
ebb3d5e
38d6cf7
 
 
 
 
 
 
 
877e000
0e5c14c
 
 
 
 
 
ebb3d5e
38d6cf7
877e000
ebb3d5e
38d6cf7
877e000
ebb3d5e
38d6cf7
877e000
ebb3d5e
38d6cf7
877e000
ebb3d5e
38d6cf7
877e000
ebb3d5e
38d6cf7
877e000
38d6cf7
 
877e000
38d6cf7
 
877e000
38d6cf7
 
 
 
877e000
38d6cf7
 
 
 
 
 
ebb3d5e
0e5c14c
ebb3d5e
0e5c14c
ebb3d5e
38d6cf7
ebb3d5e
0e5c14c
ebb3d5e
0e5c14c
ebb3d5e
38d6cf7
ebb3d5e
38d6cf7
ebb3d5e
38d6cf7
877e000
 
38d6cf7
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5c14c
 
 
 
 
 
38d6cf7
877e000
38d6cf7
877e000
 
 
38d6cf7
 
 
 
ebb3d5e
877e000
 
 
 
 
38d6cf7
 
877e000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38d6cf7
877e000
 
6e3dbdb
 
877e000
38d6cf7
877e000
 
38d6cf7
 
 
 
 
 
 
 
6e3dbdb
 
 
 
38d6cf7
 
6e3dbdb
 
 
 
01dfef8
 
 
 
 
38d6cf7
877e000
 
6e3dbdb
877e000
38d6cf7
877e000
 
38d6cf7
 
 
 
 
 
877e000
38d6cf7
 
877e000
38d6cf7
6e3dbdb
 
38d6cf7
 
6e3dbdb
 
01dfef8
 
 
 
877e000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01dfef8
 
 
 
 
 
 
 
 
 
877e000
 
 
 
 
 
 
 
 
 
 
38d6cf7
 
 
 
877e000
 
38d6cf7
 
 
 
 
 
 
 
 
 
877e000
6e3dbdb
 
 
877e000
38d6cf7
 
6e3dbdb
38d6cf7
 
 
 
 
 
 
 
 
6e3dbdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38d6cf7
 
 
 
 
877e000
 
 
 
 
6e3dbdb
 
877e000
6e3dbdb
 
877e000
 
6e3dbdb
 
 
877e000
6e3dbdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
877e000
 
 
 
 
 
 
 
6e3dbdb
877e000
6e3dbdb
877e000
 
 
 
 
 
 
 
 
 
 
6e3dbdb
877e000
 
 
 
38d6cf7
 
 
 
 
877e000
 
 
 
 
 
38d6cf7
 
 
877e000
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
# app.py

from flask import Flask, render_template, request, jsonify
from flask_cors import CORS
import base64
import io
import re
import json
import uuid
import time
import asyncio
from geopy.geocoders import Nominatim
from datetime import datetime
# from langdetect import detect
# from deep_translator import GoogleTranslator
from models.logging_config import logger
from models.model_loader import load_model, clear_model_cache
from models.parallel_processor import parallel_processor
from models.performance_optimizer import performance_optimizer, optimize_model_loading, timed_function
from models.image_analysis import analyze_image
from models.pdf_analysis import extract_text_from_pdf, analyze_pdf_content
from models.property_summary import generate_property_summary
from models.fraud_classification import classify_fraud
from models.trust_score import generate_trust_score
from models.suggestions import generate_suggestions
from models.text_quality import assess_text_quality
from models.address_verification import verify_address
from models.cross_validation import perform_cross_validation
from models.location_analysis import analyze_location
from models.price_analysis import analyze_price
from models.legal_analysis import analyze_legal_details
from models.property_specs import verify_property_specs
from models.market_value import analyze_market_value
from models.image_quality import assess_image_quality
from models.property_relation import check_if_property_related
import torch
import numpy as np
import concurrent.futures
from PIL import Image

app = Flask(__name__)
CORS(app)  # Enable CORS for frontend

# Initialize geocoder
geocoder = Nominatim(user_agent="indian_property_verifier", timeout=10)

# Pre-load models to avoid loading delays during requests
@timed_function
def preload_models():
    """Pre-load essential models to improve response times."""
    try:
        logger.info("Pre-loading essential models with performance optimization...")
        
        # Only preload the most essential models to avoid disconnections
        essential_models = [
            "zero-shot-classification",  # For fraud, legal, suggestions
            "summarization"  # For property summary
        ]
        
        for model_task in essential_models:
            try:
                logger.info(f"Pre-loading {model_task} model...")
                model = load_model(model_task)
                if hasattr(model, 'fallback_used') and model.fallback_used:
                    logger.info(f"Using fallback for {model_task}: {getattr(model, 'fallback_model', 'unknown')}")
                else:
                    logger.info(f"Successfully pre-loaded {model_task} model")
            except Exception as e:
                logger.warning(f"Failed to pre-load {model_task}: {str(e)}")
        
        logger.info("Model pre-loading completed with optimization")
    except Exception as e:
        logger.error(f"Error during model pre-loading: {str(e)}")

# Pre-load models on startup
preload_models()

def make_json_serializable(obj):
    try:
        if isinstance(obj, (bool, int, float, str, type(None))):
            return obj
        elif isinstance(obj, (list, tuple)):
            return [make_json_serializable(item) for item in obj]
        elif isinstance(obj, dict):
            return {str(key): make_json_serializable(value) for key, value in obj.items()}
        elif torch.is_tensor(obj):
            return obj.item() if obj.numel() == 1 else obj.tolist()
        elif np.isscalar(obj):
            return obj.item() if hasattr(obj, 'item') else float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        else:
            return str(obj)
    except Exception as e:
        logger.error(f"Error serializing object: {str(e)}")
        return str(obj)

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/get-location', methods=['POST'])
def get_location():
    try:
        data = request.json or {}
        latitude = data.get('latitude')
        longitude = data.get('longitude')

        if not latitude or not longitude:
            logger.warning("Missing latitude or longitude")
            return jsonify({
                'status': 'error',
                'message': 'Latitude and longitude are required'
            }), 400

        # Validate coordinates are within India
        try:
            lat, lng = float(latitude), float(longitude)
            if not (6.5 <= lat <= 37.5 and 68.0 <= lng <= 97.5):
                return jsonify({
                    'status': 'error',
                    'message': 'Coordinates are outside India'
                }), 400
        except ValueError:
            return jsonify({
                'status': 'error',
                'message': 'Invalid coordinates format'
            }), 400

        # Retry geocoding up to 3 times
        for attempt in range(3):
            try:
                location = geocoder.reverse((latitude, longitude), exactly_one=True)
                if location:
                    address_components = location.raw.get('address', {})

                    # Extract Indian-specific address components
                    city = address_components.get('city', '')
                    if not city:
                        city = address_components.get('town', '')
                    if not city:
                        city = address_components.get('village', '')
                    if not city:
                        city = address_components.get('suburb', '')

                    state = address_components.get('state', '')
                    if not state:
                        state = address_components.get('state_district', '')

                    # Get postal code and validate Indian format
                    postal_code = address_components.get('postcode', '')
                    if postal_code and not re.match(r'^\d{6}$', postal_code):
                        postal_code = ''

                    # Get road/street name
                    road = address_components.get('road', '')
                    if not road:
                        road = address_components.get('street', '')

                    # Get area/locality
                    area = address_components.get('suburb', '')
                    if not area:
                        area = address_components.get('neighbourhood', '')

                    return jsonify({
                        'status': 'success',
                        'address': location.address,
                        'street': road,
                        'area': area,
                        'city': city,
                        'state': state,
                        'country': 'India',
                        'postal_code': postal_code,
                        'latitude': latitude,
                        'longitude': longitude,
                        'formatted_address': f"{road}, {area}, {city}, {state}, India - {postal_code}"
                    })
                logger.warning(f"Geocoding failed on attempt {attempt + 1}")
                time.sleep(1)  # Wait before retry
            except Exception as e:
                logger.error(f"Geocoding error on attempt {attempt + 1}: {str(e)}")
                time.sleep(1)

        return jsonify({
            'status': 'error',
            'message': 'Could not determine location after retries'
        }), 500

    except Exception as e:
        logger.error(f"Error in get_location: {str(e)}")
        return jsonify({
            'status': 'error',
            'message': str(e)
        }), 500

@app.route('/performance', methods=['GET'])
def get_performance_metrics():
    """Get system performance metrics and cache statistics"""
    try:
        from models.performance_optimizer import get_performance_metrics
        
        metrics = get_performance_metrics()
        
        return jsonify({
            'status': 'success',
            'metrics': metrics,
            'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
        })
    except Exception as e:
        logger.error(f"Error getting performance metrics: {str(e)}")
        return jsonify({
            'status': 'error',
            'message': str(e)
        }), 500

@app.route('/clear-cache', methods=['POST'])
def clear_cache():
    """Clear all cached results"""
    try:
        performance_optimizer.clear_cache()
        return jsonify({
            'status': 'success',
            'message': 'Cache cleared successfully'
        })
    except Exception as e:
        logger.error(f"Error clearing cache: {str(e)}")
        return jsonify({
            'status': 'error',
            'message': str(e)
        }), 500

def calculate_final_verdict(results):
    """
    Calculate a comprehensive final verdict based on all analysis results.
    This function combines all verification scores, fraud indicators, and quality assessments
    to determine if a property listing is legitimate, suspicious, or fraudulent.
    """
    try:
        # Defensive: ensure results is a dict
        if not isinstance(results, dict):
            logger.warning(f"Results is not a dict: {type(results)}")
            return {
                'verdict': 'VERIFICATION REQUIRED',
                'confidence': 0.0,
                'reasoning': 'Insufficient data for verification',
                'risk_level': 'medium',
                'overall_score': 50  # Increased from 25
            }

        # Extract key metrics with defensive programming
        fraud_classification = results.get('fraud_classification', {})
        trust_score_data = results.get('trust_score', {})
        address_verification = results.get('address_verification', {})
        cross_validation = results.get('cross_validation', [])
        location_analysis = results.get('location_analysis', {})
        price_analysis = results.get('price_analysis', {})
        legal_analysis = results.get('legal_analysis', {})
        specs_verification = results.get('specs_verification', {})
        quality_assessment = results.get('quality_assessment', {})

        # CRITICAL: Check for fake data patterns in cross validation - Much more lenient
        fake_data_detected = False
        fraudulent_issues = 0
        high_severity_issues = 0
        medium_severity_issues = 0
        low_severity_issues = 0
        
        if isinstance(cross_validation, list):
            for issue in cross_validation:
                if isinstance(issue, dict):
                    status = issue.get('status', '')
                    severity = issue.get('severity', 'low')
                    
                    if status == 'fraudulent':
                        fraudulent_issues += 1
                        fake_data_detected = True
                    elif severity == 'high':
                        high_severity_issues += 1
                    elif severity == 'medium':
                        medium_severity_issues += 1
                    elif severity == 'low':
                        low_severity_issues += 1

        # Calculate fraud risk score - Much more lenient
        fraud_score = 0.0
        fraud_level = fraud_classification.get('alert_level', 'minimal')
        fraud_alert_score = fraud_classification.get('alert_score', 0.0)
        
        fraud_score_mapping = {
            'critical': 0.8,  # Reduced from 1.0
            'high': 0.6,      # Reduced from 0.8
            'medium': 0.4,    # Reduced from 0.6
            'low': 0.2,       # Reduced from 0.4
            'minimal': 0.05   # Reduced from 0.1
        }
        fraud_score = fraud_score_mapping.get(fraud_level, 0.05) * fraud_alert_score

        # CRITICAL: Much more lenient penalty for fake data
        if fake_data_detected:
            fraud_score = max(fraud_score, 0.4)  # Reduced from 0.8 to 0.4
            fraud_level = 'medium'  # Changed from 'high' to 'medium'

        # Calculate trust score
        trust_score = 0.0
        if isinstance(trust_score_data, dict):
            trust_score = trust_score_data.get('score', 0.0)
            # Convert percentage to decimal if needed
            if trust_score > 1.0:
                trust_score = trust_score / 100.0
        elif isinstance(trust_score_data, tuple) and len(trust_score_data) > 0:
            trust_score = trust_score_data[0]
            # Convert percentage to decimal if needed
            if trust_score > 1.0:
                trust_score = trust_score / 100.0
        else:
            trust_score = 0.0

        # CRITICAL: Much more lenient penalty for fake data in trust score
        if fake_data_detected:
            trust_score = max(0.0, trust_score - 0.2)  # Reduced penalty from 0.5 to 0.2

        # Calculate address verification score
        address_score = 0.0
        if address_verification and isinstance(address_verification, dict):
            verification_score = address_verification.get('verification_score', 0.0)
            address_score = float(verification_score) / 100.0 if verification_score > 0 else 0.0

        # Calculate location analysis score
        location_score = 0.0
        if location_analysis and isinstance(location_analysis, dict):
            completeness_score = location_analysis.get('completeness_score', 0.0)
            location_score = float(completeness_score) / 100.0 if completeness_score > 0 else 0.0

        # Calculate price analysis score
        price_score = 0.0
        if price_analysis and isinstance(price_analysis, dict):
            confidence = price_analysis.get('confidence', 0.0)
            price_score = float(confidence) if confidence > 0 else 0.0

        # Calculate legal analysis score
        legal_score = 0.0
        if legal_analysis and isinstance(legal_analysis, dict):
            confidence = legal_analysis.get('confidence', 0.0)
            legal_score = float(confidence) if confidence > 0 else 0.0

        # Calculate specs verification score
        specs_score = 0.0
        if specs_verification and isinstance(specs_verification, dict):
            verification_score = specs_verification.get('verification_score', 0.0)
            specs_score = float(verification_score) / 100.0 if verification_score > 0 else 0.0

        # Calculate quality assessment score
        quality_score = 0.0
        if quality_assessment and isinstance(quality_assessment, dict):
            score = quality_assessment.get('score', 0.0)
            quality_score = float(score) / 100.0 if score > 0 else 0.0

        # Much more balanced weighted scoring system
        weights = {
            'fraud': 0.25,      # Reduced from 0.35
            'trust': 0.30,      # Increased from 0.25
            'address': 0.15,    # Keep address verification
            'location': 0.12,   # Increased from 0.10
            'price': 0.10,      # Keep price analysis
            'legal': 0.05,      # Increased from 0.03
            'specs': 0.02,      # Increased from 0.01
            'quality': 0.01     # Keep quality assessment
        }

        # Calculate weighted score
        weighted_score = (
            (1.0 - fraud_score) * weights['fraud'] +
            trust_score * weights['trust'] +
            address_score * weights['address'] +
            location_score * weights['location'] +
            price_score * weights['price'] +
            legal_score * weights['legal'] +
            specs_score * weights['specs'] +
            quality_score * weights['quality']
        )

        # Debug logging
        logger.info(f"Score components: fraud={fraud_score:.3f}, trust={trust_score:.3f}, address={address_score:.3f}, location={location_score:.3f}, price={price_score:.3f}, legal={legal_score:.3f}, specs={specs_score:.3f}, quality={quality_score:.3f}")
        logger.info(f"Weighted score before penalty: {weighted_score:.3f}")

        # Much more lenient penalty system
        issue_penalty = 0.0
        if fraudulent_issues > 0:
            issue_penalty += fraudulent_issues * 0.08  # Reduced from 0.15 to 0.08
        if high_severity_issues > 0:
            issue_penalty += high_severity_issues * 0.05  # Reduced from 0.10 to 0.05
        if medium_severity_issues > 0:
            issue_penalty += medium_severity_issues * 0.02  # Reduced from 0.05 to 0.02
        if low_severity_issues > 0:
            issue_penalty += low_severity_issues * 0.01  # Reduced from 0.02 to 0.01
        
        weighted_score = max(0.0, weighted_score - issue_penalty)
        
        logger.info(f"Issue penalty: {issue_penalty:.3f}, Final weighted score: {weighted_score:.3f}")

        # CRITICAL: Much more lenient minimum score requirements
        if fake_data_detected:
            weighted_score = max(0.15, weighted_score)  # Increased from 0.05 to 0.15
        elif any([trust_score > 0, address_score > 0, location_score > 0, price_score > 0]):
            weighted_score = max(0.30, weighted_score)  # Increased from 0.15 to 0.30

        # Much more lenient verdict determination
        if fake_data_detected and fraudulent_issues > 5:  # Increased threshold from 2 to 5
            verdict = 'HIGH RISK LISTING'
            risk_level = 'high'
        elif weighted_score >= 0.60 and fraud_score < 0.4 and high_severity_issues == 0:  # Reduced from 0.70 to 0.60
            verdict = 'VERIFIED REAL ESTATE LISTING'
            risk_level = 'low'
        elif weighted_score >= 0.40 and fraud_score < 0.5 and high_severity_issues <= 2:  # Reduced from 0.50 to 0.40
            verdict = 'LIKELY LEGITIMATE'
            risk_level = 'low'
        elif weighted_score >= 0.25 and fraud_score < 0.7 and high_severity_issues <= 3:  # Reduced from 0.30 to 0.25
            verdict = 'SUSPICIOUS LISTING'
            risk_level = 'medium'
        elif fraud_score >= 0.8 or weighted_score < 0.20 or high_severity_issues >= 6:  # Much more lenient thresholds
            verdict = 'HIGH RISK LISTING'
            risk_level = 'high'
        elif weighted_score >= 0.20:  # Reduced from 0.15
            verdict = 'VERIFICATION REQUIRED'
            risk_level = 'medium'
        else:
            verdict = 'INSUFFICIENT DATA'
            risk_level = 'medium'

        # Generate detailed reasoning
        reasoning_parts = []
        
        if fake_data_detected:
            reasoning_parts.append("Fake data patterns detected")
        
        if fraudulent_issues > 0:
            reasoning_parts.append(f"{fraudulent_issues} fraudulent validation issues")
        
        if fraud_score > 0.4:  # Reduced from 0.3
            reasoning_parts.append(f"Fraud risk detected (level: {fraud_level})")
        
        if trust_score < 0.4:  # Reduced from 0.3
            reasoning_parts.append(f"Low trust score ({trust_score:.1%})")
        
        if address_score < 0.6:  # Reduced from 0.5
            reasoning_parts.append("Address verification issues")
        
        if location_score < 0.6:  # Reduced from 0.5
            reasoning_parts.append("Location verification issues")
        
        if price_score < 0.6:  # Reduced from 0.5
            reasoning_parts.append("Price analysis concerns")
        
        if legal_score < 0.6:  # Reduced from 0.5
            reasoning_parts.append("Legal documentation issues")
        
        if high_severity_issues > 0:
            reasoning_parts.append(f"{high_severity_issues} critical validation issues")
        
        if medium_severity_issues > 0:
            reasoning_parts.append(f"{medium_severity_issues} moderate validation issues")
        
        if not reasoning_parts:
            reasoning_parts.append("All verification checks passed successfully")

        reasoning = ". ".join(reasoning_parts)
        
        # Calculate overall score as percentage
        overall_score = int(weighted_score * 100)
        
        # Ensure score is between 0 and 100
        overall_score = max(0, min(100, overall_score))
        
        # CRITICAL: Much more lenient minimum score for fake data
        if fake_data_detected:
            overall_score = max(25, min(50, overall_score))  # Increased range from 10-25% to 25-50%
        elif overall_score == 0 and any([trust_score > 0, address_score > 0, location_score > 0]):
            overall_score = 40  # Increased from 20 to 40
        
        # Final score adjustment based on data quality - Much more lenient
        if fake_data_detected or fraudulent_issues > 0:
            overall_score = max(25, min(50, overall_score))  # Increased from 10-25% to 25-50%
        elif high_severity_issues >= 3:
            overall_score = max(30, overall_score)  # Increased from 15 to 30
        elif high_severity_issues >= 1:
            overall_score = max(40, overall_score)  # Increased from 20 to 40
        else:
            overall_score = max(50, overall_score)  # Increased from 25 to 50

        return {
            'verdict': verdict,
            'confidence': min(1.0, weighted_score),
            'reasoning': reasoning,
            'risk_level': risk_level,
            'overall_score': overall_score,
            'scores': {
                'fraud_score': fraud_score,
                'trust_score': trust_score,
                'address_score': address_score,
                'location_score': location_score,
                'price_score': price_score,
                'legal_score': legal_score,
                'specs_score': specs_score,
                'quality_score': quality_score,
                'weighted_score': weighted_score,
                'cross_validation_issues': len(cross_validation) if isinstance(cross_validation, list) else 0,
                'high_severity_issues': high_severity_issues,
                'medium_severity_issues': medium_severity_issues,
                'low_severity_issues': low_severity_issues,
                'fraudulent_issues': fraudulent_issues,
                'fake_data_detected': fake_data_detected
            }
        }

    except Exception as e:
        logger.error(f"Error calculating final verdict: {str(e)}")
        return {
            'verdict': 'VERIFICATION REQUIRED',
            'confidence': 0.0,
            'reasoning': f'Error in verdict calculation: {str(e)}',
            'risk_level': 'medium',
            'overall_score': 50  # Increased from 25
        }

@app.route('/verify', methods=['POST'])
def verify_property():
    try:
        start_time = time.time()
        
        if not request.form and not request.files:
            logger.warning("No form data or files provided")
            return jsonify({
                'error': 'No data provided',
                'status': 'error'
            }), 400

        # Extract form data
        data = {
            'property_name': request.form.get('property_name', '').strip(),
            'property_type': request.form.get('property_type', '').strip(),
            'status': request.form.get('status', '').strip(),
            'description': request.form.get('description', '').strip(),
            'address': request.form.get('address', '').strip(),
            'city': request.form.get('city', '').strip(),
            'state': request.form.get('state', '').strip(),
            'country': request.form.get('country', 'India').strip(),
            'zip': request.form.get('zip', '').strip(),
            'latitude': request.form.get('latitude', '').strip(),
            'longitude': request.form.get('longitude', '').strip(),
            'bedrooms': request.form.get('bedrooms', '').strip(),
            'bathrooms': request.form.get('bathrooms', '').strip(),
            'total_rooms': request.form.get('total_rooms', '').strip(),
            'year_built': request.form.get('year_built', '').strip(),
            'parking': request.form.get('parking', '').strip(),
            'sq_ft': request.form.get('sq_ft', '').strip(),
            'market_value': request.form.get('market_value', '').strip(),
            'amenities': request.form.get('amenities', '').strip(),
            'nearby_landmarks': request.form.get('nearby_landmarks', '').strip(),
            'legal_details': request.form.get('legal_details', '').strip()
        }

        # Validate required fields
        required_fields = ['property_name', 'property_type', 'address', 'city', 'state']
        missing_fields = [field for field in required_fields if not data[field]]
        if missing_fields:
            logger.warning(f"Missing required fields: {', '.join(missing_fields)}")
            return jsonify({
                'error': f"Missing required fields: {', '.join(missing_fields)}",
                'status': 'error'
            }), 400

        # Process images in parallel
        images = []
        image_analysis = []
        image_model_used = set()
        image_parallel_info = []
        if 'images' in request.files:
            image_files = []
            for img_file in request.files.getlist('images'):
                if img_file.filename and img_file.filename.lower().endswith(('.jpg', '.jpeg', '.png')):
                    image_files.append(img_file)
            if image_files:
                # Process images in parallel
                image_results = parallel_processor.process_images_parallel(image_files)
                for result in image_results:
                    if 'image_data' in result:
                        images.append(result['image_data'])
                        image_analysis.append(result['analysis'])
                        if 'model_used' in result['analysis']:
                            image_model_used.add(result['analysis']['model_used'])
                        if 'parallelization_info' in result:
                            image_parallel_info.append(result['parallelization_info'])
                    else:
                        image_analysis.append(result)
                        if 'model_used' in result:
                            image_model_used.add(result['model_used'])
                        if 'parallelization_info' in result:
                            image_parallel_info.append(result['parallelization_info'])
        
        # Add image count to data for cross-validation
        data['image_count'] = len(images)
        data['has_images'] = len(images) > 0
        
        # Process PDFs in parallel
        pdf_texts = []
        pdf_analysis = []
        pdf_parallel_info = []
        if 'documents' in request.files:
            pdf_files = []
            for pdf_file in request.files.getlist('documents'):
                if pdf_file.filename and pdf_file.filename.lower().endswith('.pdf'):
                    pdf_files.append(pdf_file)
            if pdf_files:
                # Process PDFs in parallel
                pdf_results = parallel_processor.process_pdfs_parallel(pdf_files)
                for result in pdf_results:
                    if 'filename' in result:
                        pdf_texts.append({
                            'filename': result['filename'],
                            'text': result['text']
                        })
                        pdf_analysis.append(result['analysis'])
                        if 'parallelization_info' in result:
                            pdf_parallel_info.append(result['parallelization_info'])
                    else:
                        pdf_analysis.append(result)
                        if 'parallelization_info' in result:
                            pdf_parallel_info.append(result['parallelization_info'])
        
        # Add document count to data for cross-validation
        data['document_count'] = len(pdf_texts)
        data['has_documents'] = len(pdf_texts) > 0

        # Create consolidated text for analysis
        consolidated_text = f"""
        Property Name: {data['property_name']}
        Property Type: {data['property_type']}
        Status: {data['status']}
        Description: {data['description']}
        Location: {data['address']}, {data['city']}, {data['state']}, {data['country']}, {data['zip']}
        Coordinates: Lat {data['latitude']}, Long {data['longitude']}
        Specifications: {data['bedrooms']} bedrooms, {data['bathrooms']} bathrooms, {data['total_rooms']} total rooms
        Year Built: {data['year_built']}
        Parking: {data['parking']}
        Size: {data['sq_ft']} sq. ft.
        Market Value: ₹{data['market_value']}
        Amenities: {data['amenities']}
        Nearby Landmarks: {data['nearby_landmarks']}
        Legal Details: {data['legal_details']}
        """

        # Detect if this is a rental property
        is_rental = any(keyword in data['status'].lower() for keyword in ['rent', 'lease', 'let', 'hiring'])
        if not is_rental:
            # Check description for rental keywords
            is_rental = any(keyword in data['description'].lower() for keyword in ['rent', 'lease', 'let', 'hiring', 'monthly', 'per month'])
        
        # Add rental detection to data
        data['is_rental'] = is_rental
        data['property_status'] = 'rental' if is_rental else 'sale'

        # Process description translation if needed
        try:
            description = data['description']
            if description and len(description) > 10:
                data['description_translated'] = description
            else:
                data['description_translated'] = description
        except Exception as e:
            logger.error(f"Error in language detection/translation: {str(e)}")
            data['description_translated'] = data['description']

        # Run all analyses in parallel using the new parallel processor
        analysis_start_time = time.time()
        
        # Create new event loop for async operations
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        
        try:
            analysis_results = loop.run_until_complete(
                parallel_processor.run_analyses_parallel(data, consolidated_text, image_analysis, pdf_analysis)
            )
        finally:
            loop.close()

        analysis_time = time.time() - analysis_start_time
        logger.info(f"Analysis completed in {analysis_time:.2f} seconds")

        # Ensemble/agentic logic for summary, fraud, and legal analysis
        # (run multiple models and combine results if possible)
        # For demonstration, just add model_used/fallback info to the results
        # Unpack results
        summary = analysis_results.get('summary', "Property summary unavailable.")
        fraud_classification = analysis_results.get('fraud', {})
        legal_analysis = analysis_results.get('legal', {})
        trust_result = analysis_results.get('trust', (0.0, "Trust analysis failed"))
        suggestions = analysis_results.get('suggestions', {})
        quality_assessment = analysis_results.get('quality', {})
        address_verification = analysis_results.get('address', {})
        cross_validation = analysis_results.get('cross_validation', [])
        location_analysis = analysis_results.get('location', {})
        price_analysis = analysis_results.get('price', {})
        specs_verification = analysis_results.get('specs', {})
        market_analysis = analysis_results.get('market', {})
        
        # Add model_used/fallback info if present
        if hasattr(summary, 'model_used'):
            summary_model_used = summary.model_used
        else:
            summary_model_used = getattr(summary, 'fallback_model', None)
        if hasattr(fraud_classification, 'model_used'):
            fraud_model_used = fraud_classification.model_used
        else:
            fraud_model_used = getattr(fraud_classification, 'fallback_model', None)
        if hasattr(legal_analysis, 'model_used'):
            legal_model_used = legal_analysis.model_used
        else:
            legal_model_used = getattr(legal_analysis, 'fallback_model', None)
        
        # Handle trust score result
        if isinstance(trust_result, tuple):
            trust_score, trust_reasoning = trust_result
        else:
            trust_score, trust_reasoning = 0.0, "Trust analysis failed"

        # Prepare response
        document_analysis = {
            'pdf_count': len(pdf_texts),
            'pdf_texts': pdf_texts,
            'pdf_analysis': pdf_analysis,
            'pdf_parallelization': pdf_parallel_info
        }
        
        # Fix image analysis structure to match frontend expectations
        image_results = {
            'image_count': len(images),
            'image_analysis': image_analysis,
            'image_model_used': list(image_model_used),
            'image_parallelization': image_parallel_info
        }
        
        # Ensure image analysis has proper structure for frontend
        if image_analysis:
            # Convert image analysis to proper format if needed
            formatted_image_analysis = []
            for i, analysis in enumerate(image_analysis):
                if isinstance(analysis, dict):
                    # Ensure all required fields are present
                    formatted_analysis = {
                        'is_property_related': analysis.get('is_property_related', False),
                        'predicted_label': analysis.get('predicted_label', 'Unknown'),
                        'confidence': analysis.get('confidence', 0.0),
                        'real_estate_confidence': analysis.get('real_estate_confidence', 0.0),
                        'authenticity_score': analysis.get('authenticity_score', 0.0),
                        'is_ai_generated': analysis.get('is_ai_generated', False),
                        'image_quality': analysis.get('image_quality', {
                            'resolution': 'Unknown',
                            'quality_score': 0.0,
                            'total_pixels': 0,
                            'aspect_ratio': 1.0
                        }),
                        'top_predictions': analysis.get('top_predictions', []),
                        'model_used': analysis.get('model_used', 'static_fallback')
                    }
                    formatted_image_analysis.append(formatted_analysis)
                else:
                    # Fallback for non-dict analysis
                    formatted_image_analysis.append({
                        'is_property_related': False,
                        'predicted_label': 'Unknown',
                        'confidence': 0.0,
                        'real_estate_confidence': 0.0,
                        'authenticity_score': 0.0,
                        'is_ai_generated': False,
                        'image_quality': {
                            'resolution': 'Unknown',
                            'quality_score': 0.0,
                            'total_pixels': 0,
                            'aspect_ratio': 1.0
                        },
                        'top_predictions': [],
                        'model_used': 'static_fallback'
                    })
            image_results['image_analysis'] = formatted_image_analysis
        
        # Ensure document analysis has proper structure for frontend
        if pdf_analysis:
            formatted_pdf_analysis = []
            for i, analysis in enumerate(pdf_analysis):
                if isinstance(analysis, dict):
                    # Ensure all required fields are present
                    formatted_analysis = {
                        'is_property_related': analysis.get('is_property_related', False),
                        'confidence': analysis.get('confidence', 0.0),
                        'document_type': analysis.get('document_type', 'Unknown'),
                        'document_confidence': analysis.get('document_confidence', 0.0),
                        'authenticity_assessment': analysis.get('authenticity_assessment', 'Unknown'),
                        'authenticity_confidence': analysis.get('authenticity_confidence', 0.0),
                        'summary': analysis.get('summary', 'No summary available'),
                        'key_info': analysis.get('key_info', {}),
                        'contains_signatures': analysis.get('contains_signatures', False),
                        'contains_dates': analysis.get('contains_dates', False),
                        'verification_score': analysis.get('verification_score', 0.0),
                        'real_estate_indicators': analysis.get('real_estate_indicators', []),
                        'legal_terms_found': analysis.get('legal_terms_found', []),
                        'keyword_analysis': analysis.get('keyword_analysis', {}),
                        'model_used': analysis.get('model_used', 'static_fallback')
                    }
                    formatted_pdf_analysis.append(formatted_analysis)
                else:
                    # Fallback for non-dict analysis
                    formatted_pdf_analysis.append({
                        'is_property_related': False,
                        'confidence': 0.0,
                        'document_type': 'Unknown',
                        'document_confidence': 0.0,
                        'authenticity_assessment': 'Unknown',
                        'authenticity_confidence': 0.0,
                        'summary': 'No summary available',
                        'key_info': {},
                        'contains_signatures': False,
                        'contains_dates': False,
                        'verification_score': 0.0,
                        'real_estate_indicators': [],
                        'legal_terms_found': [],
                        'keyword_analysis': {},
                        'model_used': 'static_fallback'
                    })
            document_analysis['pdf_analysis'] = formatted_pdf_analysis

        report_id = str(uuid.uuid4())

        # Create results dictionary
        results = {
            'report_id': report_id,
            'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
            'summary': summary,
            'summary_model_used': summary_model_used,
            'fraud_classification': fraud_classification,
            'fraud_model_used': fraud_model_used,
            'trust_score': {
                'score': trust_score,
                'reasoning': trust_reasoning
            },
            'suggestions': suggestions,
            'quality_assessment': quality_assessment,
            'address_verification': address_verification,
            'cross_validation': cross_validation,
            'location_analysis': location_analysis,
            'price_analysis': price_analysis,
            'legal_analysis': legal_analysis,
            'legal_model_used': legal_model_used,
            'document_analysis': document_analysis,
            'image_analysis': image_results,
            'specs_verification': specs_verification,
            'market_analysis': market_analysis,
            'images': images,
            'processing_time': {
                'total_time': time.time() - start_time,
                'analysis_time': analysis_time
            }
        }

        # Calculate final verdict
        final_verdict = calculate_final_verdict(results)
        results['final_verdict'] = final_verdict

        total_time = time.time() - start_time
        logger.info(f"Total verification completed in {total_time:.2f} seconds")

        return jsonify(make_json_serializable(results))

    except Exception as e:
        logger.error(f"Error in verify_property: {str(e)}")
        return jsonify({
            'error': 'Server error occurred. Please try again later.',
            'status': 'error',
            'details': str(e)
        }), 500

if __name__ == '__main__':
    # Run Flask app
    app.run(host='0.0.0.0', port=8000, debug=True, use_reloader=False)