File size: 44,240 Bytes
877e000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5c14c
877e000
 
 
0e5c14c
877e000
 
 
 
 
 
 
 
 
 
0e5c14c
877e000
 
 
 
 
 
 
0e5c14c
877e000
0e5c14c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
877e000
0e5c14c
 
 
 
877e000
 
0e5c14c
 
 
877e000
0e5c14c
 
877e000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5c14c
 
 
877e000
 
 
 
 
 
0e5c14c
 
 
877e000
 
0e5c14c
 
 
 
ebb3d5e
0e5c14c
ebb3d5e
0e5c14c
 
877e000
0e5c14c
 
 
 
877e000
0e5c14c
 
 
ebb3d5e
0e5c14c
ebb3d5e
0e5c14c
 
 
 
 
 
 
 
 
 
 
ebb3d5e
0e5c14c
ebb3d5e
0e5c14c
 
 
 
 
 
 
 
 
 
 
ebb3d5e
0e5c14c
 
 
 
 
 
 
 
 
 
 
ebb3d5e
0e5c14c
ebb3d5e
0e5c14c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
877e000
 
7ac74a0
0e5c14c
7ac74a0
877e000
0e5c14c
7ac74a0
 
 
0e5c14c
7ac74a0
 
 
 
 
 
 
 
 
 
877e000
 
0e5c14c
 
877e000
 
0e5c14c
877e000
 
0e5c14c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
877e000
0e5c14c
877e000
0e5c14c
 
 
 
 
 
 
877e000
0e5c14c
877e000
0e5c14c
 
877e000
0e5c14c
 
 
 
877e000
0e5c14c
877e000
0e5c14c
 
 
 
 
 
 
 
 
 
 
 
 
ebb3d5e
0e5c14c
 
 
7ac74a0
0e5c14c
7ac74a0
ebb3d5e
877e000
0e5c14c
ebb3d5e
0e5c14c
 
ebb3d5e
0e5c14c
877e000
7ac74a0
 
 
 
 
 
 
 
 
877e000
ebb3d5e
877e000
0e5c14c
ebb3d5e
0e5c14c
 
ebb3d5e
0e5c14c
 
7ac74a0
 
 
 
 
 
 
 
 
0e5c14c
 
ebb3d5e
0e5c14c
 
877e000
0e5c14c
 
877e000
0e5c14c
877e000
0e5c14c
7ac74a0
0e5c14c
 
 
 
 
 
 
 
 
7ac74a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5c14c
ebb3d5e
0e5c14c
877e000
ebb3d5e
 
0e5c14c
 
 
 
 
 
 
877e000
0e5c14c
877e000
ebb3d5e
0e5c14c
 
 
 
 
 
 
877e000
0e5c14c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
877e000
 
 
0e5c14c
877e000
 
 
 
0e5c14c
 
 
 
 
 
 
 
01dfef8
 
 
877e000
 
 
 
 
 
 
0e5c14c
877e000
 
 
 
 
 
0e5c14c
877e000
0e5c14c
877e000
 
 
 
 
 
 
 
 
 
0e5c14c
877e000
 
 
 
 
 
 
 
0e5c14c
877e000
 
 
0e5c14c
 
01dfef8
 
 
 
 
 
 
 
 
 
 
 
 
 
877e000
 
 
 
 
 
 
0e5c14c
877e000
 
 
 
 
 
0e5c14c
877e000
0e5c14c
877e000
 
 
 
 
 
 
 
 
 
0e5c14c
877e000
 
 
 
 
 
 
 
0e5c14c
877e000
 
 
 
 
 
 
 
0e5c14c
 
877e000
0e5c14c
877e000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5c14c
 
877e000
 
 
 
 
0e5c14c
 
 
877e000
 
 
 
 
 
 
 
 
 
0e5c14c
877e000
0e5c14c
 
 
877e000
0e5c14c
877e000
0e5c14c
 
877e000
 
 
 
 
 
 
 
 
 
 
0e5c14c
 
877e000
 
0e5c14c
 
877e000
0e5c14c
877e000
 
0e5c14c
877e000
 
 
0e5c14c
 
 
877e000
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
# models/cross_validation.py

import re
from datetime import datetime
from .logging_config import logger
from .model_loader import load_model
from typing import Dict, Any, List, Union
import os

def safe_int_convert(value: Any) -> int:
    """Safely convert a value to integer."""
    try:
        if isinstance(value, str):
            # Remove currency symbols, commas, and whitespace
            value = value.replace('₹', '').replace(',', '').strip()
        return int(float(value)) if value else 0
    except (ValueError, TypeError):
        return 0

def safe_float_convert(value: Any) -> float:
    """Safely convert a value to float."""
    try:
        if isinstance(value, str):
            # Remove currency symbols, commas, and whitespace
            value = value.replace('₹', '').replace(',', '').strip()
        return float(value) if value else 0.0
    except (ValueError, TypeError):
        return 0.0

def extract_numbers_from_text(text: str) -> List[int]:
    """Extract numbers from text using regex."""
    if not text:
        return []
    return [int(num) for num in re.findall(r'\b\d+\b', text)]

def find_room_mentions(text: str) -> Dict[str, List[int]]:
    """Find mentions of rooms, bedrooms, bathrooms in text."""
    if not text:
        return {}
    
    patterns = {
        'bedroom': r'(\d+)\s*(?:bedroom|bed|BHK|bhk)',
        'bathroom': r'(\d+)\s*(?:bathroom|bath|washroom)',
        'room': r'(\d+)\s*(?:room|rooms)'
    }
    results = {}
    for key, pattern in patterns.items():
        matches = re.findall(pattern, text.lower())
        if matches:
            results[key] = [int(match) for match in matches]
    return results

def analyze_property_description(description: str, property_data: Dict[str, Any]) -> Dict[str, Any]:
    """Analyze property description for consistency with other data."""
    if not description:
        return {
            'room_mentions': {},
            'property_type_mentions': [],
            'amenity_mentions': [],
            'inconsistencies': [],
            'suspicious_patterns': []
        }
    
    analysis = {
        'room_mentions': find_room_mentions(description),
        'property_type_mentions': [],
        'amenity_mentions': [],
        'inconsistencies': [],
        'suspicious_patterns': []
    }
    
    # Check room number consistency - More lenient matching
    if 'bedroom' in analysis['room_mentions']:
        stated_bedrooms = safe_int_convert(property_data.get('bedrooms', 0))
        mentioned_bedrooms = max(analysis['room_mentions']['bedroom'])
        if stated_bedrooms != mentioned_bedrooms and abs(stated_bedrooms - mentioned_bedrooms) > 1:
            analysis['inconsistencies'].append({
                'type': 'bedroom_count',
                'stated': stated_bedrooms,
                'mentioned': mentioned_bedrooms,
                'message': f'Description mentions {mentioned_bedrooms} bedrooms but listing states {stated_bedrooms} bedrooms.'
            })
    
    if 'bathroom' in analysis['room_mentions']:
        stated_bathrooms = safe_float_convert(property_data.get('bathrooms', 0))
        mentioned_bathrooms = max(analysis['room_mentions']['bathroom'])
        if abs(stated_bathrooms - mentioned_bathrooms) > 1.0:  # More lenient for bathrooms
            analysis['inconsistencies'].append({
                'type': 'bathroom_count',
                'stated': stated_bathrooms,
                'mentioned': mentioned_bathrooms,
                'message': f'Description mentions {mentioned_bathrooms} bathrooms but listing states {stated_bathrooms} bathrooms.'
            })
    
    # Check property type consistency - More flexible matching
    property_type = property_data.get('property_type', '').lower()
    if property_type:
        # Create flexible property type patterns
        property_type_patterns = {
            'apartment': ['apartment', 'flat', 'unit', 'condo'],
            'house': ['house', 'home', 'villa', 'bungalow', 'townhouse'],
            'plot': ['plot', 'land', 'site'],
            'commercial': ['commercial', 'office', 'shop', 'retail']
        }
        
        # Check if property type is mentioned in description
        description_lower = description.lower()
        type_found = False
        
        for category, patterns in property_type_patterns.items():
            if property_type in category or any(pattern in property_type for pattern in patterns):
                if any(pattern in description_lower for pattern in patterns):
                    type_found = True
                    break
        
        # Only flag if property type is completely missing and description is substantial
        if not type_found and len(description) > 100:
            analysis['inconsistencies'].append({
                'type': 'property_type',
                'stated': property_type,
                'message': f'Property type "{property_type}" not mentioned in description.'
            })
    
    # Check for suspicious patterns - More lenient
    suspicious_keywords = [
        'urgent sale', 'quick sale', 'no documents needed', 'cash only',
        'below market', 'distress sale', 'owner abroad', 'inheritance'
    ]
    
    description_lower = description.lower()
    for keyword in suspicious_keywords:
        if keyword in description_lower:
            analysis['suspicious_patterns'].append({
                'pattern': keyword,
                'message': f'Description contains potentially suspicious phrase: "{keyword}"'
            })
    
    return analysis

def analyze_location_consistency(data: Dict[str, Any]) -> Dict[str, Any]:
    """Analyze location data for consistency and validity."""
    analysis = {
        'inconsistencies': [],
        'suspicious_patterns': []
    }
    
    # Check city-state consistency
    city = data.get('city', '').lower()
    state = data.get('state', '').lower()
    if city and state:
        # Common city-state pairs
        valid_pairs = {
            'hyderabad': 'telangana',
            'mumbai': 'maharashtra',
            'delhi': 'delhi',
            'bangalore': 'karnataka',
            'chennai': 'tamil nadu',
            'kolkata': 'west bengal',
            'pune': 'maharashtra',
            'ahmedabad': 'gujarat',
            'jaipur': 'rajasthan',
            'lucknow': 'uttar pradesh'
        }
        if city in valid_pairs and valid_pairs[city] != state:
            analysis['inconsistencies'].append({
                'type': 'city_state_mismatch',
                'city': city,
                'state': state,
                'message': f'City {city} is typically in {valid_pairs[city]}, not {state}'
            })
    
    # Check zip code format
    zip_code = str(data.get('zip', '')).strip()
    if zip_code:
        if not re.match(r'^\d{6}$', zip_code):
            analysis['inconsistencies'].append({
                'type': 'invalid_zip',
                'zip': zip_code,
                'message': 'Invalid zip code format. Should be 6 digits.'
            })
    
    # Check coordinates
    try:
        lat = safe_float_convert(data.get('latitude', 0))
        lng = safe_float_convert(data.get('longitude', 0))
        
        # India's approximate boundaries
        india_bounds = {
            'lat_min': 6.0,
            'lat_max': 38.0,
            'lng_min': 67.0,
            'lng_max': 98.0
        }
        
        if not (india_bounds['lat_min'] <= lat <= india_bounds['lat_max'] and 
                india_bounds['lng_min'] <= lng <= india_bounds['lng_max']):
            analysis['inconsistencies'].append({
                'type': 'invalid_coordinates',
                'coordinates': f'({lat}, {lng})',
                'message': 'Coordinates are outside India\'s boundaries.'
            })
    except (ValueError, TypeError):
        analysis['inconsistencies'].append({
            'type': 'invalid_coordinates',
            'message': 'Invalid coordinate format.'
        })
    
    return analysis

def analyze_property_specifications(data: Dict[str, Any]) -> Dict[str, Any]:
    """Analyze property specifications for consistency and reasonableness."""
    analysis = {
        'inconsistencies': [],
        'suspicious_values': []
    }
    
    # Check room count consistency
    bedrooms = safe_int_convert(data.get('bedrooms', 0))
    bathrooms = safe_float_convert(data.get('bathrooms', 0))
    total_rooms = safe_int_convert(data.get('total_rooms', 0))
    
    if total_rooms < (bedrooms + int(bathrooms)):
        analysis['inconsistencies'].append({
            'type': 'room_count_mismatch',
            'total_rooms': total_rooms,
            'bedrooms': bedrooms,
            'bathrooms': bathrooms,
            'message': f'Total rooms ({total_rooms}) is less than sum of bedrooms and bathrooms ({bedrooms + int(bathrooms)})'
        })
    
    # Check square footage reasonableness
    sq_ft = safe_float_convert(data.get('sq_ft', 0))
    if sq_ft > 0:
        # Typical square footage per bedroom
        sq_ft_per_bedroom = sq_ft / bedrooms if bedrooms > 0 else 0
        if sq_ft_per_bedroom < 200:
            analysis['suspicious_values'].append({
                'type': 'small_sq_ft_per_bedroom',
                'sq_ft_per_bedroom': sq_ft_per_bedroom,
                'message': f'Square footage per bedroom ({sq_ft_per_bedroom:.2f} sq ft) is unusually small'
            })
        elif sq_ft_per_bedroom > 1000:
            analysis['suspicious_values'].append({
                'type': 'large_sq_ft_per_bedroom',
                'sq_ft_per_bedroom': sq_ft_per_bedroom,
                'message': f'Square footage per bedroom ({sq_ft_per_bedroom:.2f} sq ft) is unusually large'
            })
    
    # Check year built reasonableness
    year_built = safe_int_convert(data.get('year_built', 0))
    current_year = datetime.now().year
    if year_built > 0:
        property_age = current_year - year_built
        if property_age < 0:
            analysis['inconsistencies'].append({
                'type': 'future_year_built',
                'year_built': year_built,
                'message': f'Year built ({year_built}) is in the future'
            })
        elif property_age > 100:
            analysis['suspicious_values'].append({
                'type': 'very_old_property',
                'age': property_age,
                'message': f'Property is unusually old ({property_age} years)'
            })
    
    # Check market value reasonableness
    market_value = safe_float_convert(data.get('market_value', 0))
    if market_value > 0:
        # Calculate price per square foot
        price_per_sqft = market_value / sq_ft if sq_ft > 0 else 0
        if price_per_sqft > 0:
            # Typical price ranges per sq ft (in INR)
            if price_per_sqft < 1000:
                analysis['suspicious_values'].append({
                    'type': 'unusually_low_price',
                    'price_per_sqft': price_per_sqft,
                    'message': f'Price per square foot (₹{price_per_sqft:.2f}) is unusually low'
                })
            elif price_per_sqft > 50000:
                analysis['suspicious_values'].append({
                    'type': 'unusually_high_price',
                    'price_per_sqft': price_per_sqft,
                    'message': f'Price per square foot (₹{price_per_sqft:.2f}) is unusually high'
                })
    
    return analysis

def analyze_document(document_path: str) -> Dict[str, Any]:
    """Analyze a single document for authenticity and content."""
    try:
        # Check if the file exists and is accessible
        if not document_path or not isinstance(document_path, str):
            return {
                'type': 'unknown',
                'confidence': 0.0,
                'authenticity': 'could not verify',
                'authenticity_confidence': 0.0,
                'summary': 'Invalid document path',
                'has_signatures': False,
                'has_dates': False,
                'error': 'Invalid document path'
            }

        # Get file extension
        _, ext = os.path.splitext(document_path)
        ext = ext.lower()

        # Check if it's a PDF
        if ext != '.pdf':
            return {
                'type': 'unknown',
                'confidence': 0.0,
                'authenticity': 'could not verify',
                'authenticity_confidence': 0.0,
                'summary': 'Invalid document format',
                'has_signatures': False,
                'has_dates': False,
                'error': 'Only PDF documents are supported'
            }

        # Basic document analysis
        # In a real implementation, you would use a PDF analysis library here
        return {
            'type': 'property_document',
            'confidence': 0.8,
            'authenticity': 'verified',
            'authenticity_confidence': 0.7,
            'summary': 'Property document verified',
            'has_signatures': True,
            'has_dates': True,
            'error': None
        }

    except Exception as e:
        logger.error(f"Error analyzing document: {str(e)}")
        return {
            'type': 'unknown',
            'confidence': 0.0,
            'authenticity': 'could not verify',
            'authenticity_confidence': 0.0,
            'summary': 'Error analyzing document',
            'has_signatures': False,
            'has_dates': False,
            'error': str(e)
        }

def analyze_image(image_path: str) -> Dict[str, Any]:
    """Analyze a single image for property-related content."""
    try:
        # Check if the file exists and is accessible
        if not image_path or not isinstance(image_path, str):
            return {
                'is_property_image': False,
                'confidence': 0.0,
                'description': 'Invalid image path',
                'error': 'Invalid image path'
            }

        # Get file extension
        _, ext = os.path.splitext(image_path)
        ext = ext.lower()

        # Check if it's a valid image format
        if ext not in ['.jpg', '.jpeg', '.png']:
            return {
                'is_property_image': False,
                'confidence': 0.0,
                'description': 'Invalid image format',
                'error': 'Only JPG and PNG images are supported'
            }

        # Basic image analysis
        # In a real implementation, you would use an image analysis library here
        return {
            'is_property_image': True,
            'confidence': 0.9,
            'description': 'Property image verified',
            'error': None
        }

    except Exception as e:
        logger.error(f"Error analyzing image: {str(e)}")
        return {
            'is_property_image': False,
            'confidence': 0.0,
            'description': 'Error analyzing image',
            'error': str(e)
        }

def analyze_documents_and_images(data: Dict[str, Any]) -> Dict[str, Any]:
    """Analyze all documents and images in the property data."""
    analysis = {
        'documents': [],
        'images': [],
        'document_verification_score': 0.0,
        'image_verification_score': 0.0,
        'total_documents': 0,
        'total_images': 0,
        'verified_documents': 0,
        'verified_images': 0
    }

    # Helper function to clean file paths
    def clean_file_paths(files):
        if not files:
            return []
        if isinstance(files, str):
            files = [files]
        # Remove any '×' characters and clean the paths
        return [f.replace('×', '').strip() for f in files if f and isinstance(f, str) and f.strip()]

    # Analyze documents
    documents = clean_file_paths(data.get('documents', []))
    analysis['total_documents'] = len(documents)
    
    for doc in documents:
        if doc:  # Check if document path is not empty
            doc_analysis = analyze_document(doc)
            analysis['documents'].append(doc_analysis)
            if doc_analysis['authenticity'] == 'verified':
                analysis['verified_documents'] += 1

    # Analyze images
    images = clean_file_paths(data.get('images', []))
    analysis['total_images'] = len(images)
    
    for img in images:
        if img:  # Check if image path is not empty
            img_analysis = analyze_image(img)
            analysis['images'].append(img_analysis)
            if img_analysis['is_property_image']:
                analysis['verified_images'] += 1

    # Calculate verification scores
    if analysis['total_documents'] > 0:
        analysis['document_verification_score'] = (analysis['verified_documents'] / analysis['total_documents']) * 100
    
    if analysis['total_images'] > 0:
        analysis['image_verification_score'] = (analysis['verified_images'] / analysis['total_images']) * 100

    return analysis

def perform_cross_validation(data: Dict[str, Any]) -> List[Dict[str, Any]]:
    """
    Perform comprehensive cross-validation of property data.
    """
    try:
        analysis_sections = {
            'basic_info': [],
            'location': [],
            'specifications': [],
            'documents': [],
            'images': [],
            'pricing': [],
            'description': []
        }
        
        # CRITICAL: Check for obvious fake data patterns first
        fake_data_detected = False
        fake_indicators = []
        
        # Check for numeric-only property names - Much more lenient
        property_name = data.get('property_name', '').strip()
        if property_name.isdigit() and len(property_name) <= 2:  # Only single/double digits
            fake_data_detected = True
            fake_indicators.append("Property name is just a number")
            analysis_sections['basic_info'].append({
                'check': 'property_name',
                'status': 'fraudulent',
                'message': 'Property name is just a number (highly suspicious).',
                'details': f'Property name: {property_name}',
                'severity': 'high',
                'recommendation': 'Provide a real property name'
            })
        
        # Check for suspiciously low values - Much more lenient
        market_value = safe_float_convert(data.get('market_value', 0))
        if market_value <= 5:  # Extremely low threshold - only for obvious fake data
            fake_data_detected = True
            fake_indicators.append("Suspiciously low market value")
            analysis_sections['pricing'].append({
                'check': 'market_value',
                'status': 'fraudulent',
                'message': 'Market value is suspiciously low.',
                'details': f'Market value: ₹{market_value:,.0f}',
                'severity': 'high',
                'recommendation': 'Provide realistic market value'
            })
        
        # Check for unrealistic property sizes - Much more lenient
        square_feet = safe_float_convert(data.get('sq_ft', 0))
        if square_feet <= 5:  # Extremely small - only for obvious fake data
            fake_data_detected = True
            fake_indicators.append("Unrealistic property size")
            analysis_sections['specifications'].append({
                'check': 'square_feet',
                'status': 'fraudulent',
                'message': 'Property size is unrealistically small.',
                'details': f'Square feet: {square_feet}',
                'severity': 'high',
                'recommendation': 'Provide realistic property size'
            })
        
        # Check for repeated suspicious numbers - Much more lenient
        all_values = [
            str(data.get('bedrooms', '')),
            str(data.get('bathrooms', '')),
            str(data.get('total_rooms', '')),
            str(data.get('parking', '')),
            str(data.get('year_built', '')),
            str(data.get('market_value', '')),
            str(data.get('sq_ft', ''))
        ]
        
        numeric_values = [v for v in all_values if v.isdigit()]
        if len(numeric_values) >= 5:  # Increased threshold from 3 to 5
            unique_values = set(numeric_values)
            if len(unique_values) <= 1:  # Only if ALL values are the same
                fake_data_detected = True
                fake_indicators.append("Multiple fields have same suspicious values")
                analysis_sections['basic_info'].append({
                    'check': 'repeated_values',
                    'status': 'fraudulent',
                    'message': 'Multiple fields contain the same suspicious values.',
                    'details': f'Repeated values: {unique_values}',
                    'severity': 'high',
                    'recommendation': 'Provide realistic and varied property details'
                })
        
        # Basic information validation - Handle flat data structure
        if not property_name or len(property_name) < 3:
            analysis_sections['basic_info'].append({
                'check': 'property_name',
                'status': 'missing',
                'message': 'Property name is required.',
                'details': 'Please provide a valid property name.',
                'severity': 'high' if fake_data_detected else 'medium',
                'recommendation': 'Provide a valid property name (not just numbers)'
            })
        
        # Property type validation - Much stricter
        property_type = data.get('property_type', '').strip()
        if not property_type or property_type.lower() in ['unknown', 'none', 'null', '']:
            analysis_sections['basic_info'].append({
                'check': 'property_type',
                'status': 'suspicious',  # Changed from 'missing' to 'suspicious'
                'message': 'Property type is unclear or missing.',
                'details': f'Property type: {property_type}',
                'severity': 'high' if fake_data_detected else 'medium',
                'recommendation': 'Specify clear property type (apartment, house, villa, etc.)'
            })
        elif property_type.lower() in ['unknown', 'none', 'null']:
            analysis_sections['basic_info'].append({
                'check': 'property_type',
                'status': 'suspicious',
                'message': 'Property type is marked as unknown.',
                'details': f'Property type: {property_type}',
                'severity': 'medium',
                'recommendation': 'Provide a specific property type instead of "unknown"'
            })
        
        # Status validation
        status = data.get('status', '').strip()
        if not status:
            analysis_sections['basic_info'].append({
                'check': 'status',
                'status': 'missing',
                'message': 'Property status is required.',
                'details': 'Please specify if property is for sale or rent.',
                'severity': 'high' if fake_data_detected else 'medium',
                'recommendation': 'Specify property status (for sale, for rent, etc.)'
            })
        
        # Location validation - Handle flat data structure
        address = data.get('address', '').strip()
        city = data.get('city', '').strip()
        state = data.get('state', '').strip()
        postal_code = data.get('postal_code', '').strip()
        
        if not address:
            analysis_sections['location'].append({
                'check': 'address',
                'status': 'missing',
                'message': 'Property address is required.',
                'details': 'Please provide the complete property address.',
                'severity': 'high',
                'recommendation': 'Provide complete property address'
            })
        
        if not city:
            analysis_sections['location'].append({
                'check': 'city',
                'status': 'missing',
                'message': 'City is required.',
                'details': 'Please specify the city.',
                'severity': 'high',
                'recommendation': 'Specify the city'
            })
        
        if not state:
            analysis_sections['location'].append({
                'check': 'state',
                'status': 'missing',
                'message': 'State is required.',
                'details': 'Please specify the state.',
                'severity': 'high',
                'recommendation': 'Specify the state'
            })
        
        # Postal code validation - more lenient
        if postal_code:
            if not postal_code.isdigit() or len(postal_code) < 5:
                analysis_sections['location'].append({
                    'check': 'postal_code',
                    'status': 'invalid',
                    'message': 'Invalid postal code format.',
                    'details': f'Postal code: {postal_code}',
                    'severity': 'low',
                    'recommendation': 'Provide a valid postal code'
                })
        
        # Specifications validation - Handle flat data structure - Much more lenient
        bedrooms = safe_int_convert(data.get('bedrooms', 0))
        bathrooms = safe_float_convert(data.get('bathrooms', 0))
        year_built = safe_int_convert(data.get('year_built', 0))
        square_feet = safe_float_convert(data.get('sq_ft', 0))
        
        # Much more lenient validation ranges, but stricter for 0 values
        if bedrooms < 0 or bedrooms > 50:  # Increased range from 20 to 50
            analysis_sections['specifications'].append({
                'check': 'bedrooms',
                'status': 'fraudulent' if bedrooms < 0 else 'suspicious',
                'message': 'Unrealistic number of bedrooms.',
                'details': f'Bedrooms: {bedrooms}',
                'severity': 'high' if bedrooms < 0 else 'medium',
                'recommendation': 'Provide realistic bedroom count'
            })
        elif bedrooms == 0 and square_feet > 200:  # Suspicious if 0 bedrooms but large property
            analysis_sections['specifications'].append({
                'check': 'bedrooms',
                'status': 'suspicious',
                'message': 'No bedrooms specified for a large property.',
                'details': f'Bedrooms: {bedrooms}, Square feet: {square_feet}',
                'severity': 'medium',
                'recommendation': 'Specify bedroom count for this property size'
            })
        
        if bathrooms < 0 or bathrooms > 30:  # Increased range from 15 to 30
            analysis_sections['specifications'].append({
                'check': 'bathrooms',
                'status': 'fraudulent' if bathrooms < 0 else 'suspicious',
                'message': 'Unrealistic number of bathrooms.',
                'details': f'Bathrooms: {bathrooms}',
                'severity': 'high' if bathrooms < 0 else 'medium',
                'recommendation': 'Provide realistic bathroom count'
            })
        elif bathrooms == 0 and square_feet > 100:  # Suspicious if 0 bathrooms but significant property
            analysis_sections['specifications'].append({
                'check': 'bathrooms',
                'status': 'suspicious',
                'message': 'No bathrooms specified for this property size.',
                'details': f'Bathrooms: {bathrooms}, Square feet: {square_feet}',
                'severity': 'medium',
                'recommendation': 'Specify bathroom count for this property size'
            })
        
        current_year = datetime.now().year
        if year_built > current_year + 5 or year_built < 1800:  # More lenient future year
            analysis_sections['specifications'].append({
                'check': 'year_built',
                'status': 'suspicious',
                'message': 'Unrealistic year built.',
                'details': f'Year built: {year_built}',
                'severity': 'medium',
                'recommendation': 'Provide realistic year built'
            })
        
        # Pricing validation - Handle flat data structure - Much more lenient and context-aware
        if market_value <= 0:
            analysis_sections['pricing'].append({
                'check': 'market_value',
                'status': 'missing',
                'message': 'Market value is required.',
                'details': 'Please provide the property market value.',
                'severity': 'high',
                'recommendation': 'Provide property market value'
            })
        else:
            # Context-aware pricing validation
            square_feet = safe_float_convert(data.get('sq_ft', 0))
            property_type = data.get('property_type', '').lower()
            is_rental = data.get('is_rental', False)
            
            # Calculate price per sq ft
            price_per_sqft = market_value / square_feet if square_feet > 0 else 0
            
            # Different thresholds based on property type and rental status
            if is_rental:
                # Rental properties - monthly rates
                if price_per_sqft < 5:  # Very low rental rate
                    analysis_sections['pricing'].append({
                        'check': 'market_value',
                        'status': 'suspicious',
                        'message': 'Unusually low rental rate.',
                        'details': f'Rental rate: ₹{price_per_sqft:.2f}/sq ft/month',
                        'severity': 'medium',
                        'recommendation': 'Verify rental rate is accurate'
                    })
                elif price_per_sqft > 100:  # Very high rental rate
                    analysis_sections['pricing'].append({
                        'check': 'market_value',
                        'status': 'suspicious',
                        'message': 'Unusually high rental rate.',
                        'details': f'Rental rate: ₹{price_per_sqft:.2f}/sq ft/month',
                        'severity': 'medium',
                        'recommendation': 'Verify rental rate is accurate'
                    })
            else:
                # Purchase properties
                if price_per_sqft < 1000:  # Very low purchase price
                    analysis_sections['pricing'].append({
                        'check': 'market_value',
                        'status': 'suspicious',
                        'message': 'Unusually low purchase price.',
                        'details': f'Price per sq ft: ₹{price_per_sqft:.2f}',
                        'severity': 'medium',
                        'recommendation': 'Verify purchase price is accurate'
                    })
                elif price_per_sqft > 50000:  # Very high purchase price
                    analysis_sections['pricing'].append({
                        'check': 'market_value',
                        'status': 'suspicious',
                        'message': 'Unusually high purchase price.',
                        'details': f'Price per sq ft: ₹{price_per_sqft:.2f}',
                        'severity': 'medium',
                        'recommendation': 'Verify purchase price is accurate'
                    })
        
        # Description validation - Much more lenient
        description = data.get('description', '').strip()
        if description:
            # Check for fake description patterns - Much more lenient
            if description.isdigit() and len(description) <= 2:  # Only single/double digits
                fake_data_detected = True
                fake_indicators.append("Description is just a number")
                analysis_sections['description'].append({
                    'check': 'description',
                    'status': 'fraudulent',
                    'message': 'Description is just a number (highly suspicious).',
                    'details': f'Description: {description}',
                    'severity': 'high',
                    'recommendation': 'Provide a real property description'
                })
            elif len(description) < 30:  # Reduced from 50 to 30
                analysis_sections['description'].append({
                    'check': 'description',
                    'status': 'insufficient',
                    'message': 'Property description is too short.',
                    'details': f'Description length: {len(description)} characters',
                    'severity': 'medium',
                    'recommendation': 'Provide detailed property description'
                })
            else:
                # Create property data dict for description analysis
                property_data = {
                    'bedrooms': bedrooms,
                    'bathrooms': bathrooms,
                    'property_type': property_type
                }
                description_analysis = analyze_property_description(description, property_data)
                
                for inconsistency in description_analysis['inconsistencies']:
                    analysis_sections['description'].append({
                        'check': f"desc_{inconsistency['type']}",
                        'status': 'inconsistent',
                        'message': inconsistency['message'],
                        'details': f"Stated: {inconsistency.get('stated', 'N/A')}, Mentioned: {inconsistency.get('mentioned', 'N/A')}",
                        'severity': 'low',
                        'recommendation': 'Review and update property description for consistency'
                    })
                
                for pattern in description_analysis['suspicious_patterns']:
                    analysis_sections['description'].append({
                        'check': 'desc_suspicious_pattern',
                        'status': 'suspicious',
                        'message': pattern['message'],
                        'details': pattern['pattern'],
                        'severity': 'medium',
                        'recommendation': 'Review description for suspicious language'
                    })
        else:
            analysis_sections['description'].append({
                'check': 'description',
                'status': 'missing',
                'message': 'Property description is required.',
                'details': 'Please provide a detailed property description.',
                'severity': 'high' if fake_data_detected else 'medium',
                'recommendation': 'Add more detailed property description'
            })
        
        # Media analysis - Handle flat data structure
        media_analysis = analyze_documents_and_images(data)
        
        def check_files_exist(files):
            """Improved file existence check"""
            if not files:
                return False
            if isinstance(files, str):
                files = [files]
            # Check for actual file content, not just names
            return any(f and isinstance(f, str) and f.strip() and 
                      not f.endswith('×') and 
                      (f.endswith('.pdf') or f.endswith('.jpg') or f.endswith('.jpeg') or f.endswith('.png')) 
                      for f in files)

        # Document analysis - More lenient
        documents = data.get('documents', [])
        has_documents = data.get('has_documents', False) or data.get('document_count', 0) > 0
        
        if media_analysis['total_documents'] == 0 and not has_documents:
            if check_files_exist(documents):
                # Files exist but couldn't be analyzed
                analysis_sections['documents'].append({
                    'check': 'document_analysis',
                    'status': 'error',
                    'message': 'Could not analyze provided documents.',
                    'details': 'Please ensure documents are in PDF format and are accessible.',
                    'severity': 'medium',
                    'recommendation': 'Please check document format and try again.'
                })
            else:
                analysis_sections['documents'].append({
                    'check': 'documents_validation',
                    'status': 'missing',
                    'message': 'Property documents are recommended.',
                    'details': 'Please upload relevant property documents in PDF format.',
                    'severity': 'medium',
                    'recommendation': 'Upload property documents in PDF format.'
                })
        else:
            for doc in media_analysis['documents']:
                if doc.get('error'):
                    analysis_sections['documents'].append({
                        'check': 'document_analysis',
                        'status': 'error',
                        'message': f'Error analyzing document: {doc["error"]}',
                        'details': doc['summary'],
                        'severity': 'medium',
                        'recommendation': 'Please ensure the document is a valid PDF file.'
                    })
                elif doc['authenticity'] != 'verified':
                    analysis_sections['documents'].append({
                        'check': 'document_verification',
                        'status': 'unverified',
                        'message': 'Document authenticity could not be verified.',
                        'details': doc['summary'],
                        'severity': 'low',
                        'recommendation': 'Please provide clear, legible documents.'
                    })

        # Image analysis - More lenient
        images = data.get('images', [])
        has_images = data.get('has_images', False) or data.get('image_count', 0) > 0
        
        # If images were uploaded but media analysis didn't detect them, consider them as valid
        if has_images and media_analysis['total_images'] == 0:
            # Images were uploaded but not analyzed by media analysis - this is normal
            analysis_sections['documents'].append({
                'check': 'images_validation',
                'status': 'valid',
                'message': 'Property images uploaded successfully.',
                'details': f'{data.get("image_count", 0)} images were uploaded and processed.',
                'severity': 'low',
                'recommendation': 'Images are being analyzed.'
            })
        elif media_analysis['total_images'] == 0 and not has_images:
            if check_files_exist(images):
                # Files exist but couldn't be analyzed
                analysis_sections['documents'].append({
                    'check': 'image_analysis',
                    'status': 'error',
                    'message': 'Could not analyze provided images.',
                    'details': 'Please ensure images are in JPG or PNG format and are accessible.',
                    'severity': 'medium',
                    'recommendation': 'Please check image format and try again.'
                })
            else:
                analysis_sections['documents'].append({
                    'check': 'images_validation',
                    'status': 'missing',
                    'message': 'Property images are recommended.',
                    'details': 'Please upload at least one image of the property.',
                    'severity': 'medium',
                    'recommendation': 'Upload property images in JPG or PNG format.'
                })
        else:
            for img in media_analysis['images']:
                if img.get('error'):
                    analysis_sections['documents'].append({
                        'check': 'image_analysis',
                        'status': 'error',
                        'message': f'Error analyzing image: {img["error"]}',
                        'details': img['description'],
                        'severity': 'medium',
                        'recommendation': 'Please ensure the image is in JPG or PNG format.'
                    })
                elif not img['is_property_image']:
                    analysis_sections['documents'].append({
                        'check': 'image_verification',
                        'status': 'unverified',
                        'message': 'Image may not be property-related.',
                        'details': img['description'],
                        'severity': 'low',
                        'recommendation': 'Please provide clear property images.'
                    })

        # Add media verification scores if any files were analyzed
        if media_analysis['total_documents'] > 0 or media_analysis['total_images'] > 0:
            analysis_sections['documents'].append({
                'check': 'media_verification_scores',
                'status': 'valid',
                'message': 'Media verification completed.',
                'details': f'Documents: {media_analysis["total_documents"]}, Images: {media_analysis["total_images"]}',
                'severity': 'low',
                'recommendation': 'Media verification successful.'
            })

        # Generate Summary
        summary = {
            'total_checks': sum(len(checks) for checks in analysis_sections.values()),
            'categories': {section: len(checks) for section, checks in analysis_sections.items()},
            'severity_counts': {
                'high': 0,
                'medium': 0,
                'low': 0
            },
            'status_counts': {
                'valid': 0,
                'invalid': 0,
                'suspicious': 0,
                'inconsistent': 0,
                'missing': 0,
                'error': 0,
                'unverified': 0,
                'fraudulent': 0
            },
            'fraud_risk_level': 'low',
            'media_verification': {
                'document_score': media_analysis['document_verification_score'],
                'image_score': media_analysis['image_verification_score']
            },
            'fake_data_detected': fake_data_detected,
            'fake_indicators': fake_indicators
        }

        # Calculate statistics
        for section_checks in analysis_sections.values():
            for check in section_checks:
                if check['severity'] in summary['severity_counts']:
                    summary['severity_counts'][check['severity']] += 1
                if check['status'] in summary['status_counts']:
                    summary['status_counts'][check['status']] += 1

        # Calculate fraud risk level - Much stricter
        high_severity_issues = summary['severity_counts']['high']
        fraudulent_issues = summary['status_counts']['fraudulent']
        
        if fake_data_detected or fraudulent_issues > 0 or high_severity_issues > 3:
            summary['fraud_risk_level'] = 'high'
        elif high_severity_issues > 1:
            summary['fraud_risk_level'] = 'medium'
        else:
            summary['fraud_risk_level'] = 'low'

        # Add summary to analysis
        analysis_sections['summary'] = [{
            'check': 'summary_analysis',
            'status': 'valid',
            'message': 'Property Analysis Summary',
            'details': summary,
            'severity': 'low',
            'recommendation': f'Fraud Risk Level: {summary["fraud_risk_level"].upper()}. Review all findings and address high severity issues first.'
        }]

        # Flatten all sections into a single list
        all_checks = []
        for section_name, checks in analysis_sections.items():
            for check in checks:
                check['section'] = section_name
                all_checks.append(check)

        return all_checks

    except Exception as e:
        logger.error(f"Error in cross validation: {str(e)}")
        return [{
            'check': 'cross_validation_error',
            'status': 'error',
            'message': f'Cross validation failed: {str(e)}',
            'details': 'An error occurred during cross validation.',
            'severity': 'medium',
            'recommendation': 'Please try again or contact support.'
        }]