File size: 22,287 Bytes
877e000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb3d5e
 
877e000
 
ebb3d5e
877e000
ebb3d5e
877e000
 
ebb3d5e
877e000
ebb3d5e
877e000
 
ebb3d5e
877e000
ebb3d5e
877e000
 
ebb3d5e
877e000
 
 
ebb3d5e
877e000
 
 
ebb3d5e
877e000
 
ebb3d5e
 
877e000
 
 
 
 
 
 
 
 
ebb3d5e
 
877e000
 
ebb3d5e
877e000
ebb3d5e
877e000
 
 
 
 
 
 
 
 
 
 
ebb3d5e
877e000
ebb3d5e
 
 
 
877e000
 
 
 
 
 
 
ebb3d5e
 
 
877e000
ebb3d5e
 
877e000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb3d5e
877e000
ebb3d5e
 
 
 
 
 
 
 
877e000
 
 
 
 
ebb3d5e
 
 
 
 
 
877e000
 
ebb3d5e
 
877e000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb3d5e
877e000
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb3d5e
 
 
 
 
 
 
 
 
 
 
 
 
877e000
 
ebb3d5e
877e000
 
 
 
 
 
 
 
 
 
 
ebb3d5e
877e000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# models/location_analysis.py

from .model_loader import load_model
from geopy.geocoders import Nominatim
from .logging_config import logger
import re
import time
from typing import Dict, Any
from geopy.distance import geodesic

geocoder = Nominatim(user_agent="indian_property_verifier", timeout=10)

def validate_address_format(address: str) -> bool:
    """Validate the format of the address."""
    if not address:
        return False
    
    # Much more lenient minimum length
    if len(address.strip()) < 5:  # Reduced from 10 to 5
        return False
    
    # Much more lenient component check
    components = [comp.strip() for comp in address.split(',')]
    if len(components) < 1:  # Reduced from 2 to 1 - just need some address
        return False
    
    # Much more lenient pattern matching
    patterns = [
        r'[A-Za-z\s]+',  # Should contain letters (most important)
    ]
    
    # Check if at least 1 pattern matches (reduced from 2)
    pattern_matches = sum(1 for pattern in patterns if re.search(pattern, address.lower()))
    if pattern_matches < 1:  # Reduced from 2 to 1
        return False
    
    # Much more lenient address component check
    address_lower = address.lower()
    has_location = any(term in address_lower for term in [
        'ward', 'zone', 'mandal', 'municipal', 'corporation', 'greater',
        'street', 'road', 'avenue', 'lane', 'colony', 'society', 'area', 'near'
    ])
    has_area = any(term in address_lower for term in [
        'colony', 'society', 'apartment', 'flat', 'house', 'plot', 'block', 'sector',
        'area', 'locality', 'main', 'cross', 'circle', 'square', 'market', 'near'
    ])
    
    # Much more lenient - return True if either condition is met or if address has reasonable length
    return has_location or has_area or len(address.strip()) >= 8  # Added length-based validation

def validate_postal_code(postal_code: str) -> bool:
    """Validate Indian postal code format."""
    if not postal_code:
        return False
    
    # Remove any spaces and convert to string
    postal_code = str(postal_code).strip().replace(' ', '')
    
    # Much more lenient format check
    if not re.match(r'^\d{5,6}$', postal_code):  # Allow 5-6 digits instead of exactly 6
        return False
    
    # Much more lenient first digit validation
    first_digit = int(postal_code[0])
    if first_digit not in range(0, 10):  # Allow 0-9 instead of 1-8
        return False
    
    return True

def validate_coordinates(latitude: str, longitude: str) -> bool:
    """Validate coordinate format and range for India."""
    try:
        # Convert to float and handle any string formatting
        lat = float(str(latitude).strip())
        lng = float(str(longitude).strip())
        
        # Much more lenient India boundaries with larger buffer
        india_bounds = {
            'lat_min': 5.0,   # Reduced from 6.0
            'lat_max': 40.0,  # Increased from 38.0
            'lng_min': 65.0,  # Reduced from 67.0
            'lng_max': 100.0  # Increased from 98.0
        }
        
        # Check if coordinates are within India's boundaries
        if not (india_bounds['lat_min'] <= lat <= india_bounds['lat_max'] and 
                india_bounds['lng_min'] <= lng <= india_bounds['lng_max']):
            return False
        
        # Much more lenient precision check
        lat_str = f"{lat:.4f}"  # Reduced from 6 to 4 decimal places
        lng_str = f"{lng:.4f}"  # Reduced from 6 to 4 decimal places
        
        # Much more lenient precision validation
        if abs(float(lat_str) - lat) > 0.0001 or abs(float(lng_str) - lng) > 0.0001:  # Increased tolerance
            return False
        
        return True
    except (ValueError, TypeError):
        return False

def verify_location_in_city(address: str, city: str) -> bool:
    """Verify if the address exists in the given city."""
    if not address or not city:
        return False
    
    try:
        # Clean and normalize inputs
        address = address.strip()
        city = city.strip()
        
        # Extract key components from the address
        address_components = [comp.strip() for comp in address.split(',')]
        
        # Try different address formats with various combinations
        address_formats = [
            # Full address
            f"{address}, India",
            # City with key components
            f"{city}, {address_components[0]}, India",  # First component (usually area/ward)
            f"{city}, {address_components[1]}, India",  # Second component (usually ward details)
            # Municipal corporation format
            f"{city}, {next((comp for comp in address_components if 'municipal corporation' in comp.lower()), '')}, India",
            # Mandal format
            f"{city}, {next((comp for comp in address_components if 'mandal' in comp.lower()), '')}, India",
            # Basic format
            f"{address_components[0]}, {city}, India",
            # Zone format
            f"{next((comp for comp in address_components if 'zone' in comp.lower()), '')}, {city}, India"
        ]
        
        # Try each format with rate limiting
        for addr_format in address_formats:
            try:
                location = geocoder.geocode(addr_format, timeout=10)
                if location:
                    # Get the full address and normalize it
                    location_address = location.address.lower()
                    city_lower = city.lower()
                    
                    # Check for city name in different formats
                    city_variations = [
                        city_lower,
                        city_lower.replace(' ', ''),
                        city_lower.replace(' ', '-'),
                        f"{city_lower} city",
                        f"{city_lower} district",
                        f"{city_lower} municipal corporation",
                        f"greater {city_lower}",
                        f"greater {city_lower} municipal corporation"
                    ]
                    
                    # Check if any city variation is in the address
                    if any(var in location_address for var in city_variations):
                        # Additional verification: check if the address components match
                        location_components = [comp.strip().lower() for comp in location_address.split(',')]
                        
                        # Check for key components
                        key_components = [
                            comp.lower() for comp in address_components
                            if any(keyword in comp.lower() for keyword in [
                                'ward', 'zone', 'mandal', 'municipal', 'corporation', 'greater'
                            ])
                        ]
                        
                        # Check if at least 2 key components match
                        matching_components = sum(1 for comp in key_components if any(comp in loc_comp for loc_comp in location_components))
                        if matching_components >= 2:
                            return True
            except Exception as e:
                logger.debug(f"Error in address verification: {str(e)}")
                continue
            time.sleep(1)  # Rate limiting
        
        # If direct verification fails, try reverse geocoding
        try:
            # Get city coordinates
            city_location = geocoder.geocode(f"{city}, India", timeout=10)
            if city_location:
                # Try to geocode the address
                address_location = geocoder.geocode(f"{address}, {city}, India", timeout=10)
                if address_location:
                    # Calculate distance between coordinates
                    city_coords = (city_location.latitude, city_location.longitude)
                    address_coords = (address_location.latitude, address_location.longitude)
                    distance = geodesic(city_coords, address_coords).kilometers
                    
                    # Use tier-based distance threshold
                    city_lower = city.lower()
                    metro_cities = ["mumbai", "delhi", "bangalore", "hyderabad", "chennai", "kolkata", "pune"]
                    tier2_cities = ["ahmedabad", "jaipur", "surat", "lucknow", "kanpur", "nagpur", "indore", 
                                  "thane", "bhopal", "visakhapatnam", "patna", "vadodara", "ghaziabad", 
                                  "ludhiana", "agra", "nashik", "faridabad", "meerut", "rajkot", "varanasi"]
                    
                    if any(city in city_lower for city in metro_cities):
                        max_distance = 50  # 50km for metro cities
                    elif any(city in city_lower for city in tier2_cities):
                        max_distance = 30  # 30km for tier 2 cities
                    else:
                        max_distance = 20  # 20km for other cities
                    
                    return distance <= max_distance
        except Exception as e:
            logger.debug(f"Error in reverse geocoding: {str(e)}")
        
        return False
    except Exception as e:
        logger.error(f"Error in location verification: {str(e)}")
        return False

def verify_city_in_state(city: str, state: str) -> bool:
    """Verify if the city exists in the given state."""
    if not city or not state:
        return False
    
    try:
        # Try different formats
        formats = [
            f"{city}, {state}, India",
            f"{state}, {city}, India",
            f"{city}, {state}"
        ]
        
        for fmt in formats:
            try:
                location = geocoder.geocode(fmt, timeout=10)
                if location:
                    location_address = location.address.lower()
                    city_lower = city.lower()
                    state_lower = state.lower()
                    
                    # Check for city and state names in different formats
                    city_variations = [
                        city_lower,
                        city_lower.replace(' ', ''),
                        city_lower.replace(' ', '-')
                    ]
                    
                    state_variations = [
                        state_lower,
                        state_lower.replace(' ', ''),
                        state_lower.replace(' ', '-')
                    ]
                    
                    if any(city_var in location_address for city_var in city_variations) and \
                       any(state_var in location_address for state_var in state_variations):
                        return True
            except:
                continue
            time.sleep(1)
        
        return False
    except:
        return False

def verify_state_in_country(state: str, country: str = "India") -> bool:
    """Verify if the state exists in the given country."""
    if not state:
        return False
    
    # List of valid Indian states and union territories
    valid_states = [
        'andhra pradesh', 'arunachal pradesh', 'assam', 'bihar', 'chhattisgarh',
        'goa', 'gujarat', 'haryana', 'himachal pradesh', 'jharkhand', 'karnataka',
        'kerala', 'madhya pradesh', 'maharashtra', 'manipur', 'meghalaya', 'mizoram',
        'nagaland', 'odisha', 'punjab', 'rajasthan', 'sikkim', 'tamil nadu',
        'telangana', 'tripura', 'uttar pradesh', 'uttarakhand', 'west bengal',
        'andaman and nicobar islands', 'chandigarh', 'dadra and nagar haveli and daman and diu',
        'delhi', 'jammu and kashmir', 'ladakh', 'lakshadweep', 'puducherry'
    ]
    
    state_lower = state.lower()
    return state_lower in valid_states

def verify_postal_code_in_city(postal_code: str, city: str) -> bool:
    """Verify if the postal code belongs to the given city."""
    if not postal_code or not city:
        return False
    
    try:
        # Try different formats
        formats = [
            f"{postal_code}, {city}, India",
            f"{city}, {postal_code}, India",
            f"{postal_code}, {city}"
        ]
        
        for fmt in formats:
            try:
                location = geocoder.geocode(fmt, timeout=10)
                if location:
                    location_address = location.address.lower()
                    city_lower = city.lower()
                    
                    # Check for city name in different formats
                    city_variations = [
                        city_lower,
                        city_lower.replace(' ', ''),
                        city_lower.replace(' ', '-')
                    ]
                    
                    if any(var in location_address for var in city_variations):
                        return True
            except:
                continue
            time.sleep(1)
        
        return False
    except:
        return False

def verify_coordinates_in_city(latitude: str, longitude: str, city: str) -> bool:
    """Verify if the coordinates are within the given city."""
    if not all([latitude, longitude, city]):
        return False
    
    try:
        # Convert to float and handle any string formatting
        lat = float(str(latitude).strip())
        lng = float(str(longitude).strip())
        
        # Get city coordinates
        city_location = geocoder.geocode(f"{city}, India", timeout=10)
        if not city_location:
            return False
        
        city_coords = (city_location.latitude, city_location.longitude)
        property_coords = (lat, lng)
        
        # Calculate distance between coordinates
        distance = geodesic(city_coords, property_coords).kilometers
        
        # Define maximum allowed distance based on city tier
        city_lower = city.lower()
        metro_cities = ["mumbai", "delhi", "bangalore", "hyderabad", "chennai", "kolkata", "pune"]
        tier2_cities = ["ahmedabad", "jaipur", "surat", "lucknow", "kanpur", "nagpur", "indore", 
                       "thane", "bhopal", "visakhapatnam", "patna", "vadodara", "ghaziabad", 
                       "ludhiana", "agra", "nashik", "faridabad", "meerut", "rajkot", "varanasi"]
        
        # Adjust max distance based on city tier
        if any(city in city_lower for city in metro_cities):
            max_distance = 50  # 50km for metro cities
        elif any(city in city_lower for city in tier2_cities):
            max_distance = 30  # 30km for tier 2 cities
        else:
            max_distance = 20  # 20km for other cities
        
        return distance <= max_distance
    except:
        return False

def analyze_location(data: Dict[str, Any]) -> Dict[str, Any]:
    """Analyze location data with detailed verification."""
    try:
        # Defensive: ensure data is a dict
        if not isinstance(data, dict):
            logger.warning(f"Input to analyze_location is not a dict: {type(data)}")
            data = {}
        # Defensive: ensure all expected keys exist
        for key in ['address', 'city', 'state', 'zip', 'latitude', 'longitude', 'nearby_landmarks']:
            if key not in data:
                data[key] = ''
        # Initialize verification results
        verification_results = {
            'address_format_valid': validate_address_format(data.get('address', '')),
            'address_in_city': verify_location_in_city(data.get('address', ''), data.get('city', '')),
            'city_in_state': verify_city_in_state(data.get('city', ''), data.get('state', '')),
            'state_in_country': verify_state_in_country(data.get('state', '')),
            'postal_code_valid': validate_postal_code(data.get('zip', '')),
            'postal_code_in_city': verify_postal_code_in_city(data.get('zip', ''), data.get('city', '')),
            'coordinates_valid': validate_coordinates(data.get('latitude', ''), data.get('longitude', '')),
            'coordinates_in_city': verify_coordinates_in_city(
                data.get('latitude', ''), 
                data.get('longitude', ''), 
                data.get('city', '')
            )
        }
        # Calculate weighted completeness score with much more lenient weights
        weights = {
            'address_format_valid': 0.10,  # Reduced from 0.15
            'address_in_city': 0.15,       # Reduced from 0.20
            'city_in_state': 0.15,         # Increased from 0.10
            'state_in_country': 0.15,      # Increased from 0.10
            'postal_code_valid': 0.15,     # Increased from 0.10
            'postal_code_in_city': 0.10,   # Keep same
            'coordinates_valid': 0.10,     # Keep same
            'coordinates_in_city': 0.10    # Reduced from 0.15
        }
        completeness_score = sum(
            weights[key] * 100 if result else 0 
            for key, result in verification_results.items()
        )
        
        # Much more lenient criteria for location quality
        critical_checks = ['city_in_state', 'state_in_country']  # Reduced critical checks
        secondary_checks = ['address_format_valid', 'address_in_city', 'postal_code_valid', 'postal_code_in_city', 'coordinates_valid', 'coordinates_in_city']
        
        # Location is verified if critical checks pass and at least 1 secondary check passes
        critical_passed = all(verification_results[check] for check in critical_checks)
        secondary_passed = sum(1 for check in secondary_checks if verification_results[check])
        location_quality = "verified" if critical_passed and secondary_passed >= 1 else "unverified"  # Reduced from 2 to 1
        
        # Analyze landmarks
        landmarks_analysis = {
            'provided': bool(data.get('nearby_landmarks')),
            'count': len(data.get('nearby_landmarks', '').split(',')) if data.get('nearby_landmarks') else 0,
            'types': []
        }
        if data.get('nearby_landmarks'):
            landmark_types = {
                'transport': ['station', 'metro', 'bus', 'railway', 'airport', 'terminal', 'depot', 'stand', 'stop'],
                'education': ['school', 'college', 'university', 'institute', 'academy', 'campus', 'library'],
                'healthcare': ['hospital', 'clinic', 'medical', 'health', 'diagnostic', 'pharmacy', 'dispensary'],
                'shopping': ['mall', 'market', 'shop', 'store', 'bazaar', 'complex', 'plaza', 'retail', 'outlet'],
                'entertainment': ['park', 'garden', 'theater', 'cinema', 'stadium', 'auditorium', 'playground'],
                'business': ['office', 'business', 'corporate', 'commercial', 'industrial', 'tech park', 'hub']
            }
            landmarks = [landmark.strip() for landmark in data['nearby_landmarks'].lower().split(',')]
            for landmark in landmarks:
                for type_name, keywords in landmark_types.items():
                    if any(keyword in landmark for keyword in keywords):
                        if type_name not in landmarks_analysis['types']:
                            landmarks_analysis['types'].append(type_name)
        
        # Determine city tier
        city_tier = "unknown"
        if data.get('city'):
            city_lower = data['city'].lower()
            metro_cities = ["mumbai", "delhi", "bangalore", "hyderabad", "chennai", "kolkata", "pune"]
            tier2_cities = ["ahmedabad", "jaipur", "surat", "lucknow", "kanpur", "nagpur", "indore", 
                          "thane", "bhopal", "visakhapatnam", "patna", "vadodara", "ghaziabad", 
                          "ludhiana", "agra", "nashik", "faridabad", "meerut", "rajkot", "varanasi"]
            if any(city in city_lower for city in metro_cities):
                city_tier = "metro"
            elif any(city in city_lower for city in tier2_cities):
                city_tier = "tier2"
            else:
                city_tier = "tier3"
        
        # Much more lenient assessment criteria
        if completeness_score >= 60:  # Reduced from 80
            assessment = "complete"
        elif completeness_score >= 30:  # Reduced from 50
            assessment = "partial"
        else:
            assessment = "minimal"
        
        # Ensure minimum score for valid data
        if completeness_score == 0 and (data.get('city') or data.get('state')):
            completeness_score = 40  # Minimum 40% for having city/state
        
        return {
            **verification_results,
            'assessment': assessment,
            'completeness_score': completeness_score,
            'location_quality': location_quality,
            'city_tier': city_tier,
            'landmarks_analysis': landmarks_analysis,
            'verification_status': "verified" if location_quality == "verified" else "unverified",
            'formatted_address': f"{data.get('address', '')}, {data.get('city', '')}, {data.get('state', '')}, India - {data.get('zip', '')}"
        }
    except Exception as e:
        logger.error(f"Error analyzing location: {str(e)}")
        return {
            'assessment': 'error',
            'completeness_score': 30,  # Increased from 0 to 30
            'location_quality': 'error',
            'city_tier': 'unknown',
            'landmarks_analysis': {'provided': False, 'count': 0, 'types': []},
            'verification_status': 'error',
            'formatted_address': '',
            'address_format_valid': False,
            'address_in_city': False,
            'city_in_state': False,
            'state_in_country': False,
            'postal_code_valid': False,
            'postal_code_in_city': False,
            'coordinates_valid': False,
            'coordinates_in_city': False
        }

def calculate_location_completeness(data):
    # Define weights for different fields
    weights = {
        'address': 0.25,
        'city': 0.20,
        'state': 0.15,
        'country': 0.05,
        'zip': 0.10,
        'latitude': 0.10,
        'longitude': 0.10,
        'nearby_landmarks': 0.05
    }

    # Calculate weighted score
    score = 0
    for field, weight in weights.items():
        if data[field]:
            score += weight

    return int(score * 100)