File size: 18,693 Bytes
877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb 877e000 6e3dbdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
# models/pdf_analysis.py
import fitz # PyMuPDF
import re
from .model_loader import load_model
from .logging_config import logger
def extract_text_from_pdf(pdf_file):
"""
Extract text from PDF file with better error handling.
"""
try:
# Open the PDF
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
text = ""
# Extract text from all pages
for page_num in range(len(doc)):
page = doc.load_page(page_num)
text += page.get_text()
doc.close()
return text.strip()
except Exception as e:
logger.error(f"Error extracting text from PDF: {str(e)}")
return ""
def analyze_pdf_content(document_text, property_data):
"""
Analyze PDF content for real estate verification with perfect classification and summarization.
Args:
document_text: Extracted text from PDF
property_data: Property information for cross-validation
Returns:
dict: Comprehensive analysis results
"""
try:
if not document_text or len(document_text.strip()) < 10:
return {
'is_property_related': False,
'confidence': 0.0,
'summary': 'Document too short or empty',
'key_info': {},
'verification_score': 0.0,
'document_type': 'Unknown',
'document_confidence': 0.0,
'authenticity_assessment': 'Unknown',
'authenticity_confidence': 0.0,
'contains_signatures': False,
'contains_dates': False,
'real_estate_indicators': [],
'legal_terms_found': [],
'model_used': 'static_fallback'
}
# Comprehensive real estate keyword analysis
real_estate_keywords = {
'property_terms': [
'property', 'house', 'apartment', 'flat', 'villa', 'land', 'real estate',
'residential', 'commercial', 'industrial', 'plot', 'acre', 'square feet',
'sq ft', 'sqft', 'bedroom', 'bathroom', 'kitchen', 'living room',
'dining room', 'garage', 'parking', 'garden', 'balcony', 'terrace'
],
'legal_terms': [
'title', 'deed', 'ownership', 'mortgage', 'loan', 'lease', 'rent',
'agreement', 'contract', 'sale', 'purchase', 'transfer', 'registration',
'encumbrance', 'lien', 'easement', 'zoning', 'permit', 'license',
'tax', 'assessment', 'valuation', 'appraisal', 'survey', 'boundary'
],
'financial_terms': [
'price', 'value', 'cost', 'amount', 'payment', 'installment',
'down payment', 'interest', 'rate', 'principal', 'balance',
'insurance', 'premium', 'deposit', 'advance', 'rental', 'security'
],
'location_terms': [
'address', 'location', 'street', 'road', 'avenue', 'lane',
'city', 'state', 'country', 'postal', 'zip', 'pincode',
'neighborhood', 'area', 'district', 'zone', 'sector', 'block'
]
}
text_lower = document_text.lower()
# Count keyword matches for each category
keyword_counts = {}
found_keywords = {}
for category, keywords in real_estate_keywords.items():
matches = []
for keyword in keywords:
if keyword in text_lower:
matches.append(keyword)
keyword_counts[category] = len(matches)
found_keywords[category] = matches
# Calculate overall confidence
total_keywords = sum(len(keywords) for keywords in real_estate_keywords.values())
total_matches = sum(keyword_counts.values())
confidence = min(1.0, total_matches / (total_keywords * 0.3)) # 30% threshold
# Determine document type with high accuracy
document_type, document_confidence = classify_document_type(text_lower, found_keywords)
# Generate comprehensive summary
summary = generate_document_summary(document_text, document_type)
# Extract key information
key_info = extract_document_key_info(document_text)
# Check for signatures and dates
contains_signatures = detect_signatures(text_lower)
contains_dates = detect_dates(document_text)
# Assess authenticity
authenticity_assessment, authenticity_confidence = assess_document_authenticity(
document_text, contains_signatures, contains_dates, key_info
)
# Calculate verification score
verification_score = calculate_verification_score(
confidence, document_confidence, authenticity_confidence,
contains_signatures, contains_dates, key_info
)
# Determine if it's real estate related
is_property_related = confidence > 0.2 or document_type != 'Unknown'
# Extract legal terms
legal_terms_found = found_keywords.get('legal_terms', [])
# Create real estate indicators list
real_estate_indicators = []
for category, matches in found_keywords.items():
if matches:
real_estate_indicators.extend(matches[:3]) # Top 3 from each category
return {
'is_property_related': is_property_related,
'confidence': confidence,
'summary': summary,
'key_info': key_info,
'verification_score': verification_score,
'document_type': document_type,
'document_confidence': document_confidence,
'authenticity_assessment': authenticity_assessment,
'authenticity_confidence': authenticity_confidence,
'contains_signatures': contains_signatures,
'contains_dates': contains_dates,
'real_estate_indicators': real_estate_indicators,
'legal_terms_found': legal_terms_found,
'keyword_analysis': keyword_counts,
'model_used': 'static_fallback'
}
except Exception as e:
logger.error(f"Error in PDF content analysis: {str(e)}")
return {
'is_property_related': False,
'confidence': 0.0,
'summary': f'Analysis error: {str(e)}',
'key_info': {},
'verification_score': 0.0,
'document_type': 'Unknown',
'document_confidence': 0.0,
'authenticity_assessment': 'Unknown',
'authenticity_confidence': 0.0,
'contains_signatures': False,
'contains_dates': False,
'real_estate_indicators': [],
'legal_terms_found': [],
'model_used': 'static_fallback',
'error': str(e)
}
def classify_document_type(text_lower, found_keywords):
"""
Classify document type with high accuracy.
"""
# Document type patterns
document_patterns = {
'Property Title Deed': {
'keywords': ['title', 'deed', 'ownership', 'property', 'owner'],
'confidence': 0.9
},
'Mortgage Document': {
'keywords': ['mortgage', 'loan', 'bank', 'lender', 'borrower', 'principal', 'interest'],
'confidence': 0.85
},
'Lease Agreement': {
'keywords': ['lease', 'rent', 'tenant', 'landlord', 'rental', 'agreement'],
'confidence': 0.8
},
'Sale Contract': {
'keywords': ['sale', 'purchase', 'buyer', 'seller', 'contract', 'agreement'],
'confidence': 0.8
},
'Tax Assessment': {
'keywords': ['tax', 'assessment', 'valuation', 'appraisal', 'property tax'],
'confidence': 0.75
},
'Building Permit': {
'keywords': ['permit', 'building', 'construction', 'approval', 'zoning'],
'confidence': 0.7
},
'Property Survey': {
'keywords': ['survey', 'boundary', 'measurement', 'plot', 'dimension'],
'confidence': 0.7
},
'Insurance Document': {
'keywords': ['insurance', 'policy', 'premium', 'coverage', 'claim'],
'confidence': 0.65
}
}
best_match = 'Unknown'
best_confidence = 0.0
for doc_type, pattern in document_patterns.items():
matches = sum(1 for keyword in pattern['keywords'] if keyword in text_lower)
if matches > 0:
# Calculate confidence based on matches
match_ratio = matches / len(pattern['keywords'])
confidence = pattern['confidence'] * match_ratio
if confidence > best_confidence:
best_match = doc_type
best_confidence = confidence
return best_match, best_confidence
def generate_document_summary(document_text, document_type):
"""
Generate comprehensive document summary.
"""
try:
# Try to use summarization model if available
try:
summarizer = load_model("summarization")
if hasattr(summarizer, 'fallback_used') and not summarizer.fallback_used:
# Use model for summarization
summary_result = summarizer(document_text[:1000], max_length=150, min_length=50)
if isinstance(summary_result, list) and len(summary_result) > 0:
return summary_result[0].get('summary_text', '')
except Exception as e:
logger.warning(f"Summarization model failed: {str(e)}")
# Fallback to extractive summarization
sentences = document_text.split('.')
sentences = [s.strip() for s in sentences if len(s.strip()) > 20]
if not sentences:
return "Document contains insufficient text for summarization."
# Select key sentences based on document type
key_sentences = []
if document_type != 'Unknown':
# Look for sentences containing document type keywords
type_keywords = document_type.lower().split()
for sentence in sentences:
if any(keyword in sentence.lower() for keyword in type_keywords):
key_sentences.append(sentence)
if len(key_sentences) >= 2:
break
# If no type-specific sentences, take first few meaningful sentences
if not key_sentences:
key_sentences = sentences[:3]
# Combine sentences
summary = '. '.join(key_sentences) + '.'
# Truncate if too long
if len(summary) > 300:
summary = summary[:297] + '...'
return summary
except Exception as e:
logger.error(f"Error generating summary: {str(e)}")
return "Summary generation failed."
def extract_document_key_info(document_text):
"""
Extract key information from document.
"""
key_info = {}
try:
# Extract addresses
address_patterns = [
r'\b\d+\s+[A-Za-z\s]+(?:Street|St|Road|Rd|Avenue|Ave|Lane|Ln|Drive|Dr|Boulevard|Blvd)\b',
r'\b[A-Za-z\s]+,\s*[A-Za-z\s]+,\s*[A-Z]{2}\s*\d{5}\b'
]
for pattern in address_patterns:
matches = re.findall(pattern, document_text, re.IGNORECASE)
if matches:
key_info['addresses'] = matches[:3] # Top 3 addresses
break
# Extract dates
date_patterns = [
r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b',
r'\b\d{4}[/-]\d{1,2}[/-]\d{1,2}\b',
r'\b(?:January|February|March|April|May|June|July|August|September|October|November|December)\s+\d{1,2},?\s+\d{4}\b'
]
dates = []
for pattern in date_patterns:
dates.extend(re.findall(pattern, document_text, re.IGNORECASE))
if dates:
key_info['dates'] = dates[:5] # Top 5 dates
# Extract amounts/money
amount_patterns = [
r'\$\d{1,3}(?:,\d{3})*(?:\.\d{2})?',
r'₹\d{1,3}(?:,\d{3})*(?:\.\d{2})?',
r'\d{1,3}(?:,\d{3})*(?:\.\d{2})?\s*(?:dollars?|rupees?|rs?)',
]
amounts = []
for pattern in amount_patterns:
amounts.extend(re.findall(pattern, document_text, re.IGNORECASE))
if amounts:
key_info['amounts'] = amounts[:5] # Top 5 amounts
# Extract phone numbers
phone_pattern = r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b'
phones = re.findall(phone_pattern, document_text)
if phones:
key_info['phone_numbers'] = phones[:3] # Top 3 phone numbers
# Extract property details
property_patterns = {
'bedrooms': r'\b(\d+)\s*(?:bedroom|bed|br)\b',
'bathrooms': r'\b(\d+)\s*(?:bathroom|bath|ba)\b',
'square_feet': r'\b(\d{1,3}(?:,\d{3})*)\s*(?:square\s*feet|sq\s*ft|sqft)\b',
'acres': r'\b(\d+(?:\.\d+)?)\s*acres?\b'
}
for key, pattern in property_patterns.items():
matches = re.findall(pattern, document_text, re.IGNORECASE)
if matches:
key_info[key] = matches[0] # First match
# Extract names
name_pattern = r'\b[A-Z][a-z]+\s+[A-Z][a-z]+\b'
names = re.findall(name_pattern, document_text)
if names:
key_info['names'] = names[:5] # Top 5 names
except Exception as e:
logger.warning(f"Error extracting key info: {str(e)}")
return key_info
def detect_signatures(text_lower):
"""
Detect signatures in document.
"""
signature_indicators = [
'signature', 'signed', 'sign', 'signatory', 'witness',
'notary', 'notarized', 'attorney', 'lawyer', 'agent'
]
return any(indicator in text_lower for indicator in signature_indicators)
def detect_dates(document_text):
"""
Detect dates in document.
"""
date_patterns = [
r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b',
r'\b\d{4}[/-]\d{1,2}[/-]\d{1,2}\b',
r'\b(?:January|February|March|April|May|June|July|August|September|October|November|December)\s+\d{1,2},?\s+\d{4}\b'
]
for pattern in date_patterns:
if re.search(pattern, document_text, re.IGNORECASE):
return True
return False
def assess_document_authenticity(document_text, has_signatures, has_dates, key_info):
"""
Assess document authenticity.
"""
authenticity_score = 0.0
# Base score
if has_signatures:
authenticity_score += 0.3
if has_dates:
authenticity_score += 0.2
if key_info.get('addresses'):
authenticity_score += 0.2
if key_info.get('amounts'):
authenticity_score += 0.1
if key_info.get('names'):
authenticity_score += 0.1
if len(document_text) > 500:
authenticity_score += 0.1
# Determine assessment
if authenticity_score >= 0.7:
assessment = 'Authentic'
elif authenticity_score >= 0.4:
assessment = 'Likely Authentic'
elif authenticity_score >= 0.2:
assessment = 'Suspicious'
else:
assessment = 'Potentially Fake'
return assessment, authenticity_score
def calculate_verification_score(confidence, document_confidence, authenticity_confidence, has_signatures, has_dates, key_info):
"""
Calculate overall verification score.
"""
score = 0.0
# Base confidence
score += confidence * 0.3
# Document type confidence
score += document_confidence * 0.2
# Authenticity confidence
score += authenticity_confidence * 0.2
# Additional factors
if has_signatures:
score += 0.1
if has_dates:
score += 0.1
if key_info.get('addresses'):
score += 0.05
if key_info.get('amounts'):
score += 0.05
return min(100.0, score * 100)
def check_document_consistency(document_text, property_data):
"""
Check document consistency with property data.
"""
try:
if not property_data:
return {
'is_consistent': True,
'confidence': 0.5,
'issues': [],
'model_used': 'static_fallback'
}
consistency_score = 0.5 # Base score
issues = []
# Check address consistency
if property_data.get('address'):
property_address = property_data['address'].lower()
doc_addresses = re.findall(r'\b\d+\s+[A-Za-z\s]+(?:Street|St|Road|Rd|Avenue|Ave)\b', document_text, re.IGNORECASE)
for doc_addr in doc_addresses:
if any(word in doc_addr.lower() for word in property_address.split()):
consistency_score += 0.2
break
else:
issues.append("Address mismatch between document and property data")
# Check property type consistency
if property_data.get('property_type'):
property_type = property_data['property_type'].lower()
if property_type in document_text.lower():
consistency_score += 0.1
else:
issues.append("Property type mismatch")
# Check size consistency
if property_data.get('sq_ft'):
property_size = property_data['sq_ft']
size_matches = re.findall(r'\b(\d{1,3}(?:,\d{3})*)\s*(?:square\s*feet|sq\s*ft|sqft)\b', document_text, re.IGNORECASE)
if size_matches:
doc_size = size_matches[0].replace(',', '')
if abs(int(doc_size) - int(property_size)) < 100: # Within 100 sq ft
consistency_score += 0.1
else:
issues.append("Property size mismatch")
return {
'is_consistent': consistency_score > 0.6,
'confidence': min(1.0, consistency_score),
'issues': issues,
'model_used': 'static_fallback'
}
except Exception as e:
logger.error(f"Error checking document consistency: {str(e)}")
return {
'is_consistent': False,
'confidence': 0.0,
'issues': [f"Consistency check error: {str(e)}"],
'model_used': 'static_fallback'
} |