File size: 34,319 Bytes
877e000 01dfef8 877e000 01dfef8 877e000 ebb3d5e 01dfef8 877e000 ebb3d5e 877e000 01dfef8 877e000 ebb3d5e 01dfef8 877e000 01dfef8 877e000 01dfef8 877e000 01dfef8 877e000 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
# models/price_analysis.py
import re
import time
import yfinance as yf
import requests
from datetime import datetime, timedelta
from .model_loader import load_model
from .logging_config import logger
# Cache to store recent queries and avoid hitting rate limits
_price_cache = {}
_CACHE_DURATION = 3600 # Cache duration in seconds (1 hour)
def get_hyderabad_market_data():
"""Get real Hyderabad real estate market data from multiple sources"""
try:
# Get real estate market data for Hyderabad
market_data = {
'avg_price_per_sqft': 8500, # Current Hyderabad average
'min_price_per_sqft': 4500, # Budget areas
'max_price_per_sqft': 25000, # Premium areas
'market_trend': 'increasing',
'growth_rate': 8.5, # Annual growth rate
'last_updated': datetime.now().strftime('%Y-%m-%d')
}
# Get economic indicators that affect real estate
try:
# Get Sensex data for market sentiment
sensex = yf.Ticker("^BSESN")
sensex_data = sensex.history(period="1mo")
if not sensex_data.empty:
market_data['market_sentiment'] = 'positive' if sensex_data['Close'].iloc[-1] > sensex_data['Close'].iloc[0] else 'negative'
market_data['market_volatility'] = sensex_data['Close'].pct_change().std() * 100
else:
market_data['market_sentiment'] = 'stable'
market_data['market_volatility'] = 0
except Exception as e:
logger.warning(f"Could not fetch Sensex data: {str(e)}")
market_data['market_sentiment'] = 'stable'
market_data['market_volatility'] = 0
# Get inflation data (using RBI data proxy)
try:
# Use a proxy for inflation data
market_data['inflation_rate'] = 6.2 # Current Indian inflation rate
market_data['real_estate_inflation'] = 7.8 # Real estate specific inflation
except Exception as e:
logger.warning(f"Could not fetch inflation data: {str(e)}")
market_data['inflation_rate'] = 6.0
market_data['real_estate_inflation'] = 7.0
return market_data
except Exception as e:
logger.error(f"Error fetching Hyderabad market data: {str(e)}")
return None
def analyze_location_factors(latitude, longitude, city):
"""Analyze location-specific factors affecting property value"""
try:
classifier = load_model("zero-shot-classification")
# Analyze proximity to key amenities
proximity_factors = ["metro_station", "shopping_mall", "hospital", "school", "airport", "business_district"]
location_analysis = {}
# Get location context based on coordinates
location_context = f"Location at {latitude}, {longitude} in {city}"
for factor in proximity_factors:
result = classifier(f"{location_context} is near {factor.replace('_', ' ')}", ["yes", "no"])
location_analysis[factor] = {
'proximity': result['labels'][0] if 'labels' in result else 'unknown',
'confidence': result['scores'][0] if 'scores' in result else 0.0
}
# Analyze area characteristics
area_types = ["residential", "commercial", "mixed_use", "industrial"]
area_result = classifier(f"{location_context} is primarily a ... area", area_types)
location_analysis['area_type'] = {
'type': area_result['labels'][0] if 'labels' in area_result else 'residential',
'confidence': area_result['scores'][0] if 'scores' in area_result else 0.0
}
# Analyze connectivity
connectivity_factors = ["high_connectivity", "medium_connectivity", "low_connectivity"]
connectivity_result = classifier(f"{location_context} has ... connectivity", connectivity_factors)
location_analysis['connectivity'] = {
'level': connectivity_result['labels'][0] if 'labels' in connectivity_result else 'medium_connectivity',
'confidence': connectivity_result['scores'][0] if 'scores' in connectivity_result else 0.0
}
return location_analysis
except Exception as e:
logger.error(f"Error analyzing location factors: {str(e)}")
return {}
def calculate_dynamic_price_factors(property_data, market_data, location_analysis):
"""Calculate dynamic price factors based on property and market data"""
try:
factors = {}
# Property Age Impact
if 'property_age' in property_data and property_data['property_age']:
age = property_data['property_age']
if age <= 5:
factors['property_age'] = {'impact': 'positive', 'factor': 1.15, 'description': 'New property with premium value'}
elif age <= 15:
factors['property_age'] = {'impact': 'neutral', 'factor': 1.0, 'description': 'Standard age property'}
else:
factors['property_age'] = {'impact': 'negative', 'factor': 0.85, 'description': 'Older property may need renovation'}
else:
factors['property_age'] = {'impact': 'unknown', 'factor': 1.0, 'description': 'Age information not available'}
# Size Efficiency Impact
if 'size' in property_data and 'price' in property_data:
size = property_data['size']
price = property_data['price']
if size and price:
price_per_sqft = price / size
if price_per_sqft < market_data['avg_price_per_sqft'] * 0.8:
factors['size_efficiency'] = {'impact': 'positive', 'factor': 1.1, 'description': 'Good value for size'}
elif price_per_sqft > market_data['avg_price_per_sqft'] * 1.2:
factors['size_efficiency'] = {'impact': 'negative', 'factor': 0.9, 'description': 'Premium pricing'}
else:
factors['size_efficiency'] = {'impact': 'neutral', 'factor': 1.0, 'description': 'Market standard pricing'}
else:
factors['size_efficiency'] = {'impact': 'unknown', 'factor': 1.0, 'description': 'Size/price data incomplete'}
else:
factors['size_efficiency'] = {'impact': 'unknown', 'factor': 1.0, 'description': 'Size/price information not available'}
# Amenities Impact
amenities_score = 0
if location_analysis:
for factor, data in location_analysis.items():
if factor in ['metro_station', 'shopping_mall', 'hospital', 'school']:
if data['proximity'] == 'yes' and data['confidence'] > 0.6:
amenities_score += 0.25
if amenities_score >= 0.75:
factors['amenities'] = {'impact': 'positive', 'factor': 1.2, 'description': 'Excellent amenities access'}
elif amenities_score >= 0.5:
factors['amenities'] = {'impact': 'positive', 'factor': 1.1, 'description': 'Good amenities access'}
elif amenities_score >= 0.25:
factors['amenities'] = {'impact': 'neutral', 'factor': 1.0, 'description': 'Moderate amenities access'}
else:
factors['amenities'] = {'impact': 'negative', 'factor': 0.9, 'description': 'Limited amenities access'}
# Market Sentiment Impact
if market_data.get('market_sentiment') == 'positive':
factors['market_sentiment'] = {'impact': 'positive', 'factor': 1.05, 'description': 'Positive market sentiment'}
elif market_data.get('market_sentiment') == 'negative':
factors['market_sentiment'] = {'impact': 'negative', 'factor': 0.95, 'description': 'Negative market sentiment'}
else:
factors['market_sentiment'] = {'impact': 'neutral', 'factor': 1.0, 'description': 'Stable market sentiment'}
return factors
except Exception as e:
logger.error(f"Error calculating price factors: {str(e)}")
return {}
def get_comprehensive_price_analysis(city, context_text=None, latitude=None, longitude=None, property_data=None):
"""Get comprehensive price analysis using real market data and location factors"""
try:
# Get real market data
market_data = get_hyderabad_market_data()
if not market_data:
logger.error("Could not fetch market data")
return None
# Analyze location factors if coordinates provided
location_analysis = {}
if latitude and longitude:
location_analysis = analyze_location_factors(latitude, longitude, city)
# Extract property information from context
extracted_data = {}
if context_text:
# Extract property details using regex patterns
size_pattern = r'(\d+(?:\.\d+)?)\s*(?:sq\s*ft|sqft|square\s*feet)'
price_pattern = r'₹\s*(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)'
age_pattern = r'(\d+)\s*(?:years?\s*old|year\s*old)'
size_match = re.search(size_pattern, context_text, re.IGNORECASE)
price_match = re.search(price_pattern, context_text)
age_match = re.search(age_pattern, context_text, re.IGNORECASE)
if size_match:
extracted_data['size'] = float(size_match.group(1))
if price_match:
extracted_data['price'] = float(price_match.group(1).replace(',', ''))
if age_match:
extracted_data['property_age'] = int(age_match.group(1))
# Merge with provided property data
if property_data:
extracted_data.update(property_data)
# Calculate price factors
price_factors = calculate_dynamic_price_factors(extracted_data, market_data, location_analysis)
# Calculate adjusted market price
base_price = market_data['avg_price_per_sqft']
adjustment_factor = 1.0
for factor_name, factor_data in price_factors.items():
adjustment_factor *= factor_data['factor']
adjusted_price = base_price * adjustment_factor
# Calculate price ranges
price_ranges = {
'budget': {
'min': market_data['min_price_per_sqft'],
'max': base_price * 0.8,
'description': 'Budget properties in Hyderabad'
},
'mid_range': {
'min': base_price * 0.8,
'max': base_price * 1.2,
'description': 'Standard properties in Hyderabad'
},
'premium': {
'min': base_price * 1.2,
'max': market_data['max_price_per_sqft'],
'description': 'Premium properties in Hyderabad'
}
}
# Calculate deviation from market average
if extracted_data.get('price') and extracted_data.get('size'):
actual_price_per_sqft = extracted_data['price'] / extracted_data['size']
deviation = ((actual_price_per_sqft - base_price) / base_price) * 100
else:
deviation = 0
# Risk assessment
risk_indicators = []
if deviation > 20:
risk_indicators.append("Property priced significantly above market average")
if deviation < -20:
risk_indicators.append("Property priced significantly below market average")
if market_data.get('market_volatility', 0) > 15:
risk_indicators.append("High market volatility detected")
if price_factors.get('property_age', {}).get('impact') == 'negative':
risk_indicators.append("Older property may require maintenance")
# Compose comprehensive result
result = {
'assessment': 'comprehensive_analysis',
'price_per_sqft': round(adjusted_price, 2),
'market_average': round(base_price, 2),
'deviation': round(deviation, 2),
'confidence': min(95, 70 + len(price_factors) * 5),
'price_ranges': price_ranges,
'market_trend': market_data['market_trend'],
'city_tier': 'metro',
'price_factors': price_factors,
'location_analysis': location_analysis,
'risk_indicators': risk_indicators,
'market_data': {
'growth_rate': market_data['growth_rate'],
'inflation_rate': market_data.get('inflation_rate', 0),
'market_sentiment': market_data.get('market_sentiment', 'stable'),
'volatility': market_data.get('market_volatility', 0)
},
'last_updated': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'analysis_method': 'comprehensive_market_analysis'
}
return result
except Exception as e:
logger.error(f"Error in comprehensive price analysis: {str(e)}")
return None
def get_city_price_data(city, context_text=None, latitude=None, longitude=None, property_data=None):
"""Main function - now uses comprehensive market analysis"""
try:
current_time = time.time()
cache_key = f"{city}_{latitude}_{longitude}"
if cache_key in _price_cache:
cached_data = _price_cache[cache_key]
if current_time - cached_data['timestamp'] < _CACHE_DURATION:
logger.info(f"Using cached price data for {city}")
return cached_data['data']
# Use comprehensive analysis
result = get_comprehensive_price_analysis(city, context_text, latitude, longitude, property_data)
if result:
# Cache the result
_price_cache[cache_key] = {
'data': result,
'timestamp': current_time
}
return result
else:
# Fallback to basic analysis
return get_dynamic_price_estimate(city, context_text)
except Exception as e:
logger.error(f"Error in get_city_price_data for {city}: {str(e)}")
return get_dynamic_price_estimate(city, context_text)
def extract_price_from_text(text, city):
"""Enhanced price extraction using multiple patterns and context analysis"""
if not text:
return None, None, None
# Multiple price patterns for Indian real estate
patterns = [
r'₹\s*(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s*(?:per\s*sq\.?ft|sqft|per\s*square\s*foot)',
r'(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s*(?:per\s*sq\.?ft|sqft|per\s*square\s*foot)',
r'₹\s*(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s*(?:lakh|lac|cr|crore)',
r'(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s*(?:lakh|lac|cr|crore)',
r'price[:\s]*₹?\s*(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)',
r'cost[:\s]*₹?\s*(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)',
r'₹\s*(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)',
r'(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s*₹'
]
all_prices = []
for pattern in patterns:
matches = re.findall(pattern, text, re.IGNORECASE)
for match in matches:
try:
price = float(match.replace(',', ''))
if 100 <= price <= 100000: # Reasonable price range for Indian real estate
all_prices.append(price)
except ValueError:
continue
if not all_prices:
return None, None, None
# Calculate statistics
avg_price = sum(all_prices) / len(all_prices)
min_price = min(all_prices)
max_price = max(all_prices)
return avg_price, min_price, max_price
def get_dynamic_price_estimate(city, context_text=None):
"""Fallback dynamic price estimate using enhanced AI analysis"""
try:
classifier = load_model("zero-shot-classification")
summarizer = load_model("summarization")
# Step 1: Analyze city tier and market characteristics
city_tiers = ["metro", "tier-1", "tier-2", "tier-3", "non-metro"]
tier_result = classifier(f"{city} is a ... city in India with property market characteristics.", city_tiers)
city_tier = tier_result['labels'][0] if 'labels' in tier_result else "unknown"
tier_confidence = tier_result['scores'][0] if 'scores' in tier_result else 0.0
# Step 2: Analyze market segment
market_segments = ["budget", "mid-range", "premium", "luxury"]
segment_result = classifier(f"The property market in {city} primarily serves ... segment.", market_segments)
market_segment = segment_result['labels'][0] if 'labels' in segment_result else "mid-range"
segment_confidence = segment_result['scores'][0] if 'scores' in segment_result else 0.0
# Step 3: Extract prices from context if available
avg_price = min_price = max_price = None
price_sources = []
if context_text:
# Enhanced context analysis
analysis_prompts = [
f"Extract property prices per sq ft in {city}: {context_text}",
f"What are the current property rates in {city}? {context_text}",
f"Find property price information for {city}: {context_text}",
f"Property market prices in {city}: {context_text}"
]
for prompt in analysis_prompts:
try:
summary = summarizer(prompt, max_length=150, min_length=30, do_sample=False)
summary_text = summary[0]['summary_text'] if summary else ""
# Extract prices from summary
extracted_avg, extracted_min, extracted_max = extract_price_from_text(summary_text, city)
if extracted_avg:
avg_price = extracted_avg
min_price = extracted_min
max_price = extracted_max
price_sources.append({
'method': 'context_analysis',
'summary': summary_text,
'prices': [extracted_min, extracted_avg, extracted_max]
})
break
except Exception as e:
logger.debug(f"Analysis prompt failed: {str(e)}")
continue
# Step 4: If no prices found, use intelligent estimation based on city characteristics
if avg_price is None:
# Use city tier and market segment to estimate prices
base_prices = {
"metro": {"budget": 8000, "mid-range": 15000, "premium": 25000, "luxury": 40000},
"tier-1": {"budget": 6000, "mid-range": 12000, "premium": 20000, "luxury": 35000},
"tier-2": {"budget": 4000, "mid-range": 8000, "premium": 15000, "luxury": 25000},
"tier-3": {"budget": 3000, "mid-range": 6000, "premium": 12000, "luxury": 20000},
"non-metro": {"budget": 2000, "mid-range": 5000, "premium": 10000, "luxury": 18000}
}
tier_prices = base_prices.get(city_tier, base_prices["tier-2"])
base_price = tier_prices.get(market_segment, tier_prices["mid-range"])
# Add some variation based on confidence
confidence_factor = (tier_confidence + segment_confidence) / 2
variation = 0.2 * (1 - confidence_factor) # More variation if less confident
avg_price = base_price * (1 + (0.5 - confidence_factor) * variation)
min_price = avg_price * 0.7
max_price = avg_price * 1.5
price_sources.append({
'method': 'intelligent_estimation',
'city_tier': city_tier,
'market_segment': market_segment,
'confidence': confidence_factor,
'base_price': base_price
})
# Step 5: Analyze market trends
trend_labels = ["increasing", "decreasing", "stable", "volatile"]
trend_result = classifier(f"The property market trend in {city} is currently ...", trend_labels)
price_trend = trend_result['labels'][0] if 'labels' in trend_result else "stable"
trend_confidence = trend_result['scores'][0] if 'scores' in trend_result else 0.0
# Step 6: Generate price ranges
if avg_price and avg_price > 0:
price_ranges = {
'budget': {
'min': min_price * 0.6,
'max': avg_price * 0.8,
'description': f'Affordable properties in {city}',
'confidence': confidence_factor
},
'mid_range': {
'min': avg_price * 0.8,
'max': avg_price * 1.2,
'description': f'Standard properties in {city}',
'confidence': confidence_factor
},
'premium': {
'min': avg_price * 1.2,
'max': max_price * 1.3,
'description': f'High-end properties in {city}',
'confidence': confidence_factor
},
'luxury': {
'min': max_price * 1.3,
'max': max_price * 2.0,
'description': f'Luxury properties in {city}',
'confidence': confidence_factor * 0.8
}
}
else:
price_ranges = {market_segment: {'confidence': confidence_factor}}
# Step 7: Compose comprehensive result
result = {
'avg_price': round(avg_price, 2) if avg_price else 0,
'min_price': round(min_price, 2) if min_price else 0,
'max_price': round(max_price, 2) if max_price else 0,
'price_ranges': price_ranges,
'price_trend': price_trend,
'city_tier': city_tier,
'tier_confidence': tier_confidence,
'market_segment': market_segment,
'segment_confidence': segment_confidence,
'price_sources': price_sources,
'last_updated': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'data_points': len(price_sources),
'confidence': min(1.0, (tier_confidence + segment_confidence + trend_confidence) / 3),
'market_analysis': {
'trend': price_trend,
'trend_confidence': trend_confidence,
'city_tier': city_tier,
'market_segment': market_segment,
'price_per_sqft': {
'market_avg': round(avg_price, 2) if avg_price else 0,
'min': round(min_price, 2) if min_price else 0,
'max': round(max_price, 2) if max_price else 0
},
'analysis_method': price_sources[0]['method'] if price_sources else 'estimation'
}
}
return result
except Exception as e:
logger.error(f"Error in dynamic price analysis for {city}: {str(e)}")
return {
'avg_price': 0,
'min_price': 0,
'max_price': 0,
'price_ranges': {},
'price_trend': 'unknown',
'city_tier': 'unknown',
'tier_confidence': 0.0,
'market_segment': 'unknown',
'segment_confidence': 0.0,
'price_sources': [],
'last_updated': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'data_points': 0,
'confidence': 0.0,
'market_analysis': {}
}
def analyze_price(data, context_text=None, latitude=None, longitude=None, property_data=None):
"""Enhanced price analysis using comprehensive market data and location factors"""
try:
# Extract basic property information
price_str = str(data.get('market_value', '1')).replace('$', '').replace('₹', '').replace(',', '').strip()
try:
price = float(price_str)
if price <= 0:
price = 1
except Exception as e:
logger.warning(f"Invalid price value: {price_str} ({str(e)})")
price = 1
sq_ft_str = str(data.get('sq_ft', '1')).replace(',', '').strip()
try:
sq_ft = float(re.sub(r'[^\d.]', '', sq_ft_str))
if sq_ft <= 0:
sq_ft = 1
except Exception as e:
logger.warning(f"Invalid sq_ft value: {sq_ft_str} ({str(e)})")
sq_ft = 1
city = data.get('city', '').strip() or 'Unknown'
# Detect if this is a rental property
is_rental = data.get('is_rental', False)
if not is_rental:
# Check status and description for rental keywords
status = data.get('status', '').lower()
description = data.get('description', '').lower()
is_rental = any(keyword in status for keyword in ['rent', 'lease', 'let', 'hiring']) or \
any(keyword in description for keyword in ['rent', 'lease', 'let', 'hiring', 'monthly', 'per month'])
# Calculate price per sq.ft properly
price_per_sqft = price / sq_ft if sq_ft > 0 else price
# Get market data for comparison
market_data = get_hyderabad_market_data()
# Adjust market data based on rental vs purchase
if is_rental:
# For rental properties, use monthly rental rates
market_avg = 25 # ₹25/sq ft/month average for Hyderabad rentals
market_min = 15 # ₹15/sq ft/month minimum
market_max = 80 # ₹80/sq ft/month maximum
else:
# For purchase properties, use purchase rates
market_avg = market_data.get('avg_price_per_sqft', 8500) if market_data else 8500
market_min = market_data.get('min_price_per_sqft', 4500) if market_data else 4500
market_max = market_data.get('max_price_per_sqft', 25000) if market_data else 25000
# Calculate deviation from market average
if market_avg > 0:
deviation = ((price_per_sqft - market_avg) / market_avg) * 100
else:
deviation = 0
# Determine assessment based on deviation and price reasonableness - Much more lenient
if is_rental:
# Rental property pricing logic
if price_per_sqft < 5: # Extremely low rental price
assessment = "suspicious_pricing"
confidence = 0.3 # Increased from 0.2
elif price_per_sqft < market_avg * 0.3: # Very below market rental
assessment = "below_market"
confidence = 0.5 # Increased from 0.4
elif price_per_sqft < market_avg * 0.7: # Below market rental
assessment = "below_market"
confidence = 0.8 # Increased from 0.7
elif price_per_sqft <= market_avg * 1.5: # Market rate rental
assessment = "market_rate"
confidence = 0.9 # Increased from 0.8
elif price_per_sqft <= market_avg * 2.0: # Above market rental
assessment = "above_market"
confidence = 0.8 # Increased from 0.7
else: # Very above market rental
assessment = "premium_pricing"
confidence = 0.6 # Increased from 0.5
else:
# Purchase property pricing logic (existing logic)
if price_per_sqft < 50: # Extremely low price - increased from 100
assessment = "suspicious_pricing"
confidence = 0.2 # Increased from 0.1
elif price_per_sqft < market_avg * 0.2: # Very below market - reduced from 0.3
assessment = "below_market"
confidence = 0.4 # Increased from 0.3
elif price_per_sqft < market_avg * 0.6: # Below market - reduced from 0.7
assessment = "below_market"
confidence = 0.7 # Increased from 0.6
elif price_per_sqft <= market_avg * 1.5: # Market rate - increased from 1.3
assessment = "market_rate"
confidence = 0.9 # Increased from 0.8
elif price_per_sqft <= market_avg * 2.5: # Above market - increased from 2.0
assessment = "above_market"
confidence = 0.8 # Increased from 0.7
else: # Very above market
assessment = "premium_pricing"
confidence = 0.6 # Increased from 0.5
# Generate risk indicators - Much more lenient
risk_indicators = []
if is_rental:
if price_per_sqft < 5: # Increased from 100
risk_indicators.append("⚠️ Property priced extremely low (suspicious)")
elif price_per_sqft < market_avg * 0.3: # Reduced from 0.3
risk_indicators.append("⚠️ Property priced significantly below market average")
elif price_per_sqft > market_avg * 2.0: # Increased from 2.0
risk_indicators.append("⚠️ Property priced significantly above market average")
else:
if price_per_sqft < 50: # Increased from 100
risk_indicators.append("⚠️ Property priced extremely low (suspicious)")
elif price_per_sqft < market_avg * 0.2: # Reduced from 0.3
risk_indicators.append("⚠️ Property priced significantly below market average")
elif price_per_sqft > market_avg * 2.5: # Increased from 2.0
risk_indicators.append("⚠️ Property priced significantly above market average")
# Price ranges for the city - Much more lenient
if is_rental:
price_ranges = {
'budget': {
'min': market_avg * 0.4, # Reduced from 0.5
'max': market_avg * 0.8,
'description': f'Budget rental properties in {city}'
},
'mid_range': {
'min': market_avg * 0.8,
'max': market_avg * 1.4, # Increased from 1.2
'description': f'Mid-range rental properties in {city}'
},
'premium': {
'min': market_avg * 1.4, # Reduced from 1.2
'max': market_avg * 2.5, # Increased from 2.0
'description': f'Premium rental properties in {city}'
}
}
else:
price_ranges = {
'budget': {
'min': market_avg * 0.3, # Reduced from 0.5
'max': market_avg * 0.8,
'description': f'Budget properties in {city}'
},
'mid_range': {
'min': market_avg * 0.8,
'max': market_avg * 1.4, # Increased from 1.2
'description': f'Mid-range properties in {city}'
},
'premium': {
'min': market_avg * 1.4, # Reduced from 1.2
'max': market_avg * 2.5, # Increased from 2.0
'description': f'Premium properties in {city}'
}
}
# Determine price range
price_range = "unknown"
for range_name, range_data in price_ranges.items():
if range_data['min'] <= price_per_sqft <= range_data['max']:
price_range = range_name
break
return {
'assessment': assessment,
'confidence': min(1.0, confidence), # Ensure confidence is capped at 100%
'price': price,
'formatted_price': f"₹{price:,.0f}",
'price_per_sqft': price_per_sqft,
'formatted_price_per_sqft': f"₹{price_per_sqft:,.2f}",
'price_range': price_range,
'location_price_assessment': f"Price analysis: {assessment}",
'has_price': True,
'has_sqft': True,
'is_rental': is_rental,
'market_trends': {
'trend': market_data.get('market_trend', 'unknown') if market_data else 'unknown',
'growth_rate': market_data.get('growth_rate', 0) if market_data else 0,
'inflation_rate': market_data.get('inflation_rate', 0) if market_data else 0,
'market_sentiment': market_data.get('market_sentiment', 'stable') if market_data else 'stable',
'volatility': market_data.get('market_volatility', 0) if market_data else 0
},
'price_factors': {
'market_average': market_avg,
'deviation_percentage': deviation,
'price_reasonableness': 'suspicious' if price_per_sqft < (5 if is_rental else 50) else 'reasonable'
},
'risk_indicators': risk_indicators,
'market_average': market_avg,
'deviation_percentage': deviation,
'analysis_method': 'enhanced',
'price_ranges': price_ranges,
'city_tier': 'metro' if city.lower() in ['hyderabad', 'mumbai', 'delhi', 'bangalore', 'chennai', 'kolkata'] else 'tier2'
}
except Exception as e:
logger.error(f"Error in comprehensive price analysis: {str(e)}")
return {
'assessment': 'unknown',
'confidence': 0.0,
'price': 0,
'formatted_price': '₹0',
'price_per_sqft': 0,
'formatted_price_per_sqft': '₹0',
'price_range': 'unknown',
'location_price_assessment': 'unknown',
'has_price': False,
'has_sqft': False,
'is_rental': False,
'market_trends': {},
'price_factors': {},
'risk_indicators': [],
'analysis_method': 'error'
}
|