File size: 115,625 Bytes
9de1ea5 2e6b8f8 7b54623 2e6b8f8 756b2d5 2e6b8f8 904a7af 8eecd40 307e39b 2e6b8f8 82eb509 95154ff 2e6b8f8 307e39b 2e6b8f8 307e39b 2e6b8f8 2382584 8eecd40 2382584 8eecd40 2382584 8eecd40 2382584 8eecd40 fd8f5ac 2382584 fd8f5ac 2382584 fd8f5ac 2382584 fd8f5ac 2382584 fd8f5ac 2382584 8eecd40 2e6b8f8 307e39b 82eb509 2e6b8f8 904a7af 9de1ea5 904a7af 9de1ea5 904a7af 9de1ea5 904a7af 7b54623 fd8f5ac 9de1ea5 fd8f5ac 9de1ea5 fd8f5ac 9de1ea5 fd8f5ac 9de1ea5 fd8f5ac 307e39b 9de1ea5 82eb509 9de1ea5 82eb509 307e39b 9de1ea5 82eb509 756b2d5 fd8f5ac 756b2d5 fd8f5ac 756b2d5 82eb509 756b2d5 82eb509 df328ca 9de1ea5 df328ca 9de1ea5 df328ca 9e2ab78 df328ca 9e2ab78 df328ca 9e2ab78 df328ca 9e2ab78 df328ca 9e2ab78 df328ca 9e2ab78 df328ca 82eb509 9e2ab78 82eb509 2e6b8f8 9de1ea5 2e6b8f8 9de1ea5 2e6b8f8 9de1ea5 82eb509 2e6b8f8 70a5197 7b54623 70a5197 2e6b8f8 70a5197 2e6b8f8 70a5197 2e6b8f8 9de1ea5 2e6b8f8 82eb509 fcf8067 9de1ea5 fcf8067 9de1ea5 fcf8067 9de1ea5 fcf8067 904a7af fcf8067 904a7af 9de1ea5 82eb509 9de1ea5 fcf8067 904a7af fcf8067 9de1ea5 fcf8067 9de1ea5 fcf8067 904a7af 2e6b8f8 9de1ea5 2e6b8f8 9de1ea5 82eb509 9de1ea5 2e6b8f8 9de1ea5 82eb509 9de1ea5 82eb509 9de1ea5 82eb509 9de1ea5 82eb509 2e6b8f8 7b54623 2e6b8f8 7b54623 2e6b8f8 9de1ea5 7b54623 2e6b8f8 7b54623 9e2ab78 7b54623 9e2ab78 7b54623 9e2ab78 7b54623 9e2ab78 7b54623 9e2ab78 7b54623 9e2ab78 7b54623 9e2ab78 82eb509 fe32d47 9de1ea5 fe32d47 82eb509 756b2d5 82eb509 9de1ea5 82eb509 9de1ea5 82eb509 307e39b 9de1ea5 307e39b 9de1ea5 307e39b 9de1ea5 307e39b 9de1ea5 307e39b 9de1ea5 307e39b 9de1ea5 307e39b 9de1ea5 307e39b 9de1ea5 307e39b 9de1ea5 307e39b 756b2d5 7b54623 756b2d5 70a5197 756b2d5 307e39b 9de1ea5 307e39b 9de1ea5 307e39b 9de1ea5 307e39b 9de1ea5 307e39b 9de1ea5 756b2d5 9de1ea5 307e39b 756b2d5 307e39b 9de1ea5 756b2d5 307e39b 756b2d5 9de1ea5 756b2d5 307e39b 756b2d5 9e2ab78 756b2d5 9e2ab78 9de1ea5 9e2ab78 82eb509 9de1ea5 82eb509 9de1ea5 82eb509 9de1ea5 df328ca 82eb509 904a7af 9de1ea5 756b2d5 2e6b8f8 9de1ea5 2e6b8f8 9de1ea5 2e6b8f8 2382584 7b54623 8eecd40 2382584 8eecd40 2382584 8eecd40 9de1ea5 307e39b 95154ff 9de1ea5 fe32d47 307e39b 9de1ea5 307e39b 95154ff 70a5197 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 70a5197 7b54623 307e39b 7b54623 307e39b 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 fe32d47 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 7b54623 9de1ea5 fd8f5ac 7b54623 763d049 9de1ea5 2e6b8f8 7b54623 756b2d5 7b54623 82eb509 7b54623 82eb509 70a5197 82eb509 307e39b 82eb509 307e39b 82eb509 307e39b 82eb509 9de1ea5 82eb509 9de1ea5 82eb509 9de1ea5 307e39b 82eb509 9de1ea5 82eb509 9de1ea5 82eb509 7b54623 9de1ea5 82eb509 7b54623 307e39b 82eb509 307e39b 9de1ea5 95154ff 307e39b 9de1ea5 307e39b 70a5197 7b54623 82eb509 307e39b 7b54623 307e39b 95154ff 70a5197 7b54623 70a5197 7b54623 82eb509 70a5197 307e39b 7b54623 70a5197 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 70a5197 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 9de1ea5 95154ff 7b54623 95154ff 70a5197 9de1ea5 70a5197 9de1ea5 70a5197 9de1ea5 7b54623 9de1ea5 fe32d47 70a5197 fe32d47 9de1ea5 fe32d47 7b54623 fe32d47 9de1ea5 307e39b 7b54623 9de1ea5 307e39b 9de1ea5 307e39b 9de1ea5 307e39b 9de1ea5 307e39b 7b54623 307e39b 9de1ea5 307e39b 82eb509 9de1ea5 82eb509 7b54623 82eb509 307e39b 70a5197 307e39b fd8f5ac 9de1ea5 fd8f5ac 7b54623 9de1ea5 307e39b 9de1ea5 307e39b 7b54623 9de1ea5 70a5197 307e39b 70a5197 9de1ea5 307e39b 9de1ea5 307e39b 7b54623 9de1ea5 70a5197 307e39b 9de1ea5 307e39b 7b54623 9de1ea5 70a5197 307e39b 82eb509 7b54623 9de1ea5 307e39b 756b2d5 fd8f5ac 9de1ea5 fd8f5ac 9de1ea5 fd8f5ac 9de1ea5 307e39b 756b2d5 82eb509 307e39b 9de1ea5 307e39b 756b2d5 9e2ab78 6fcbfed 70a5197 8eecd40 9de1ea5 2382584 8eecd40 2382584 8eecd40 9de1ea5 8eecd40 9de1ea5 7b54623 8eecd40 2382584 7b54623 2382584 8eecd40 70a5197 2382584 7b54623 2382584 7b54623 9de1ea5 8eecd40 7b54623 8eecd40 2e6b8f8 82eb509 9de1ea5 2e6b8f8 9e2ab78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 |
# -*- coding: utf-8 -*-
import os
import sys
# THIS IS THE FIX - PART 1
os.environ['GRADIO_SUPPRESS_PROGRESS'] = 'true'
import cv2
import numpy as np
import gradio as gr
import shutil
import subprocess
from PIL import Image, ImageDraw, ImageFont, ImageOps
from datetime import datetime
from threading import Lock
import base64
import json
import io
# --- Dependency Check ---
try:
from controlnet_aux import (
CannyDetector, MLSDdetector, HEDdetector,
LineartDetector, OpenposeDetector, NormalBaeDetector
)
from gradio_client import Client
from rembg import remove
import librosa
except ImportError as e:
print("="*80)
print(f"ERROR: Missing dependency -> {e}")
print("Please install all required packages by running:")
print("pip install -r requirements.txt")
print("="*80)
sys.exit(1)
# --- AI Model Dependency Check ---
try:
import whisper
except ImportError:
print("="*80)
print("WARNING: 'openai-whisper' not installed. The Transcription tab will be disabled.")
print("To enable it, run: pip install -U openai-whisper")
print("="*80)
whisper = None
# --- Global Variables & Setup ---
TEMP_DIR = "temp_gradio"
os.makedirs(TEMP_DIR, exist_ok=True)
model_load_lock = Lock()
loaded_detectors = {}
whisper_model = None
# --- Default Presets for Transfer Tab (Flat Dictionary) ---
DEFAULT_LINK_PRESETS = {
# Virtual Try-On & Character
"OutfitAnyone": "https://huggingface.co/spaces/HumanAIGC/OutfitAnyone",
"Kolors Virtual Try-On": "https://huggingface.co/spaces/Kwai-Kolors/Kolors-Virtual-Try-On",
"Miragic Virtual Try-On": "https://huggingface.co/spaces/Miragic-AI/Miragic-Virtual-Try-On",
"OutfitAnyway": "https://huggingface.co/spaces/selfit-camera/OutfitAnyway",
"IDM-VTON": "https://huggingface.co/spaces/yisol/IDM-VTON",
"InstantCharacter": "https://huggingface.co/spaces/InstantX/InstantCharacter",
"InstantID": "https://huggingface.co/spaces/InstantX/InstantID",
# AI Lip-Sync & Talking Avatars
"LivePortrait": "https://huggingface.co/spaces/Han-123/LivePortrait",
"LivePortrait (CPU)": "https://huggingface.co/spaces/K00B404/LivePortrait_cpu",
"D-ID Live Portrait AI": "https://www.d-id.com/liveportrait-4/",
"Synthesia Avatars": "https://www.synthesia.io/features/avatars",
"Papercup": "https://www.papercup.com/",
"Hedra": "https://www.hedra.com",
"LemonSlice": "https://lemonslice.com",
"Vozo AI": "https://www.vozo.ai/lip-sync",
"Gooey AI Lipsync": "https://gooey.ai/Lipsync",
"Sync.so": "https://sync.so",
"LipDub AI": "https://www.lipdub.ai",
"Magic Hour": "https://magichour.ai",
"Lifelike AI": "https://www.lifelikeai.io",
"DeepMotion": "https://www.deepmotion.com",
"Elai.io": "https://elai.io",
"Rephrase.ai": "https://www.rephrase.ai",
"Colossyan": "https://www.colossyan.com",
"HeyGen (Movio)": "https://www.heygen.com",
"Murf Studio": "https://murf.ai",
# Image Editing & Upscaling
"FLUX Fill/Outpaint": "https://huggingface.co/spaces/multimodalart/flux-fill-outpaint",
"ReSize Image Outpainting": "https://huggingface.co/spaces/VIDraft/ReSize-Image-Outpainting",
"IC-Light (Relighting)": "https://huggingface.co/spaces/lllyasviel/IC-Light",
"Kontext Relight": "https://huggingface.co/spaces/kontext-community/kontext-relight",
"SUPIR Upscaler": "https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR",
# Video Generation & FramePacks
"Framepacks (atunc29)": "https://huggingface.co/spaces/atunc29/Framepacks",
"Framepack i2v (ginigen)": "https://huggingface.co/spaces/ginigen/framepack-i2v",
"Framepack i2v (beowcow)": "https://huggingface.co/spaces/beowcow/framepack-i2v",
"Framepack i2v (lisonallen)": "https://huggingface.co/spaces/lisonallen/framepack-i2v",
"FramePack F1 (Latyrine)": "https://huggingface.co/spaces/Latyrine/FramePack-F1",
"FramePack F1 (linoyts)": "https://huggingface.co/spaces/linoyts/FramePack-F1",
"FramePack Rotate (bep40)": "https://huggingface.co/spaces/bep40/FramePack_rotate_landscape",
"FramePack Rotate (VIDraft)": "https://huggingface.co/spaces/VIDraft/FramePack_rotate_landscape",
"FramePack Rotate (tori29umai)": "https://huggingface.co/spaces/tori29umai/FramePack_rotate_landscape",
"Framepack-H111 (rahul7star)": "https://huggingface.co/spaces/rahul7star/Framepack-H111",
"FLUX.1 Kontext Dev": "https://huggingface.co/spaces/black-forest-labs/FLUX.1-Kontext-Dev",
"Wan2-1-fast": "https://huggingface.co/spaces/multimodalart/wan2-1-fast",
"LTX-video-distilled": "https://huggingface.co/spaces/Lightricks/ltx-video-distilled",
"RunwayML": "https://app.runwayml.com/video-tools/teams/rinaabdine1/ai-tools/generate",
"Pika Labs": "https://pika.art/",
"Kling AI": "https://app.klingai.com/global/image-to-video/frame-mode",
# Video Interpolation & Slow Motion
"RIFE (remzloev)": "https://huggingface.co/spaces/remzloev/Rife",
"VFI Converter (Agung1453)": "https://huggingface.co/spaces/Agung1453/Video-Frame-Interpolation-Converter",
"ZeroGPU Upscaler/Interpolation": "https://huggingface.co/spaces/inoculatemedia/zerogpu-upscaler-interpolation",
"Frame Interpolation (meta-artem)": "https://huggingface.co/spaces/meta-artem/frame-interpolation",
"Video Frame Interpolation (guardiancc)": "https://huggingface.co/spaces/guardiancc/video_frame_interpolation",
"Video Frame Interpolation (freealise)": "https://huggingface.co/spaces/freealise/video_frame_interpolation",
"Framer (wwen1997)": "https://huggingface.co/spaces/wwen1997/Framer",
"Inter4k VideoInterpolator": "https://huggingface.co/spaces/vimleshc57/Inter4k_VideoInterpolator",
# AnimateDiff & Advanced Animation
"AnimateDiff Lightning (ByteDance)": "https://huggingface.co/spaces/ByteDance/AnimateDiff-Lightning",
"AnimateDiff Lightning (SahaniJi)": "https://huggingface.co/spaces/SahaniJi/AnimateDiff-Lightning",
"AnimateDiff (fatima14)": "https://huggingface.co/spaces/fatima14/AnimateDiff",
"AnimateDiff Video Gen (faizanR)": "https://huggingface.co/spaces/faizanR/animatediff-video-generator",
"Text-to-Animation Fast (MisterProton)": "https://huggingface.co/spaces/MisterProton/text-to-Animation-Fast-AnimateDiff",
"Text-to-Animation Fast (Rowdy013)": "https://huggingface.co/spaces/Rowdy013/text-to-Animation-Fast",
# StyleGAN & Portrait Motion
"StyleGAN-Human Interpolation (hysts)": "https://huggingface.co/spaces/hysts/StyleGAN-Human-Interpolation",
"StyleGAN-Human (Gradio-Blocks)": "https://huggingface.co/spaces/Gradio-Blocks/StyleGAN-Human",
# Film & Style Models
"MGM-Film-Diffusion (tonyassi)": "https://huggingface.co/spaces/tonyassi/MGM-Film-Diffusion",
"CineDiffusion (takarajordan)": "https://huggingface.co/spaces/takarajordan/CineDiffusion",
"FLUX Film Foto (MartsoBodziu1994)": "https://huggingface.co/spaces/MartsoBodziu1994/alvdansen-flux_film_foto",
"FLUX Style Shaping": "https://huggingface.co/spaces/multimodalart/flux-style-shaping",
"Film (Stijnijzelenberg)": "https://huggingface.co/spaces/Stijnijzelenberg/film",
"Film Eras (abbiewoodbridge)": "https://huggingface.co/spaces/abbiewoodbridge/Film_Eras",
"Film Genre Classifier (Rezuwan)": "https://huggingface.co/spaces/Rezuwan/film_genre_classifier",
"RunwayML (Faizbulbul)": "https://huggingface.co/spaces/Faizbulbul/Runwaymlfaiz",
# Text-to-3D
"TRELLIS TextTo3D (PUM4CH3N)": "https://huggingface.co/spaces/PUM4CH3N/TRELLIS_TextTo3D",
"TRELLIS TextTo3D (cavargas10)": "https://huggingface.co/spaces/cavargas10/TRELLIS-Texto3D",
"TRELLIS TextTo3D (dkatz2391)": "https://huggingface.co/spaces/dkatz2391/TRELLIS_TextTo3D_Try2",
"Sparc3D": "https://huggingface.co/spaces/ilcve21/Sparc3D",
"Hunyuan3D-2.1": "https://huggingface.co/spaces/tencent/Hunyuan3D-2.1",
# Image Captioning & Interrogation
"BLIP-2 (hysts)": "https://huggingface.co/spaces/hysts/BLIP2",
"BLIP-3o": "https://huggingface.co/spaces/BLIP3o/blip-3o",
"Blip-Dalle3 (DarwinAnim8or)": "https://huggingface.co/spaces/DarwinAnim8or/Blip-Dalle3",
"BLIP API (Jonu1)": "https://huggingface.co/spaces/Jonu1/blip-image-captioning-api",
"BLIP API (muxiddin19)": "https://huggingface.co/spaces/muxiddin19/blip-image-captioning-api",
# Diffusion & Sketching Tools
"DiffSketcher (SVGRender)": "https://huggingface.co/spaces/SVGRender/DiffSketcher",
"Diffusion WikiArt (kaupane)": "https://huggingface.co/spaces/kaupane/diffusion-wikiart",
"Diffusers Image Fill (OzzyGT)": "https://huggingface.co/spaces/OzzyGT/diffusers-image-fill",
"Diffusers Fast Inpaint (OzzyGT)": "https://huggingface.co/spaces/OzzyGT/diffusers-fast-inpaint",
# Miscellaneous Tools
"EBSynth (NihalGazi)": "https://huggingface.co/spaces/NihalGazi/EBSynth",
"MoodSpace (huzey)": "https://huggingface.co/spaces/huzey/MoodSpace",
"TR0N (Layer6)": "https://huggingface.co/spaces/Layer6/TR0N",
"TUTOR (nathannarrik)": "https://huggingface.co/spaces/nathannarrik/TUTOR",
"Sport Model 1 (CHEN11102)": "https://huggingface.co/spaces/CHEN11102/sportmodel1",
}
# --- Model Loading ---
DETECTOR_CONFIG = {
"Canny": {"class": CannyDetector, "args": {}},
"Lineart": {"class": LineartDetector, "args": {"pretrained_model_or_path": "lllyasviel/Annotators"}},
"MLSD": {"class": MLSDdetector, "args": {"pretrained_model_or_path": "lllyasviel/Annotators"}},
"OpenPose": {"class": OpenposeDetector, "args": {"pretrained_model_or_path": "lllyasviel/Annotators"}},
"NormalBAE": {"class": NormalBaeDetector, "args": {"pretrained_model_or_path": "lllyasviel/Annotators"}},
"SoftEdge (HED)": {"class": HEDdetector, "args": {"pretrained_model_or_path": "lllyasviel/Annotators"}},
}
def get_detector(name):
with model_load_lock:
if name not in loaded_detectors:
print(f"Loading {name} model...")
config = DETECTOR_CONFIG[name]
if "pretrained_model_or_path" in config["args"]:
detector_class = config["class"]
loaded_detectors[name] = detector_class.from_pretrained(**config["args"])
else:
loaded_detectors[name] = config["class"](**config["args"])
print(f"{name} model loaded.")
return loaded_detectors[name]
def load_whisper_model(model_name="base"):
global whisper_model
if whisper:
with model_load_lock:
if whisper_model is None or whisper_model.name != model_name:
print(f"Loading Whisper model '{model_name}'... (This may download files on first run)")
whisper_model = whisper.load_model(model_name)
print("Whisper model loaded.")
return whisper_model
return None
get_detector("Canny") # Pre-load Canny detector
# --- Utility Functions ---
def rotate_image(image, rotation):
if rotation == "90 Degrees Clockwise":
return cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
elif rotation == "90 Degrees Counter-Clockwise":
return cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
elif rotation == "180 Degrees":
return cv2.rotate(image, cv2.ROTATE_180)
return image
def manipulate_image(image, operation):
if image is None:
raise gr.Error("Please upload an image first.")
if operation == "Invert Colors":
return cv2.bitwise_not(image)
elif operation == "Flip Horizontal":
return cv2.flip(image, 1)
elif operation == "Flip Vertical":
return cv2.flip(image, 0)
elif operation == "Rotate 90Β° Right":
return cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
elif operation == "Rotate 90Β° Left":
return cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
else:
return image
def manipulate_video(video_path, operation, progress=gr.Progress(track_tqdm=True)):
if not video_path:
raise gr.Error("Please upload a video first.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_video_path = os.path.join(TEMP_DIR, f"manipulated_video_{timestamp}.mp4")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise gr.Error("Error opening video file.")
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
if fps == 0: fps = 30
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out_width, out_height = width, height
if operation in ["Rotate 90Β° Right", "Rotate 90Β° Left"]:
out_width, out_height = height, width
writer = cv2.VideoWriter(output_video_path, fourcc, fps, (out_width, out_height))
for _ in progress.tqdm(range(frame_count), desc=f"Applying '{operation}'"):
ret, frame = cap.read()
if not ret:
break
processed_frame = manipulate_image(frame, operation)
writer.write(processed_frame)
cap.release()
writer.release()
return output_video_path
def get_media_duration(media_path):
if not media_path: return 0.0
try:
cmd = ["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", media_path]
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
return float(result.stdout.strip())
except Exception as e:
print(f"Could not get duration for {media_path}: {e}")
return 0.0
def get_video_dimensions(video_path):
if not video_path: return 0, 0
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened(): return 0, 0
width, height = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
return width, height
except Exception: return 0, 0
def get_video_fps(video_path):
if not video_path: return 24.0
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened(): return 24.0
fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
return fps if fps > 0 else 24.0
except Exception: return 24.0
def run_ffmpeg_command(cmd, desc="Processing with FFMPEG..."):
try:
print(f"Running FFMPEG command: {' '.join(cmd)}")
# Use subprocess.run for a more robust, blocking call that waits for completion.
process = subprocess.run(
cmd,
capture_output=True,
text=True,
encoding='utf-8',
check=False # We check the return code manually to provide a better error.
)
# If FFMPEG returns a non-zero exit code, it indicates an error.
if process.returncode != 0:
# Combine stdout and stderr for a complete, easy-to-read log.
full_output = f"--- FFMPEG & GRADIO ERROR LOG ---\n\n" \
f"FFMPEG COMMAND:\n{' '.join(cmd)}\n\n" \
f"FFMPEG STDERR:\n{process.stderr}\n\n" \
f"FFMPEG STDOUT:\n{process.stdout}"
# Raise our own exception with the detailed output.
raise subprocess.CalledProcessError(process.returncode, cmd, output=full_output)
except subprocess.CalledProcessError as e:
# Catch the exception and raise a user-friendly Gradio error.
raise gr.Error(f"FFMPEG failed!\n\nDetails:\n{e.output}")
except FileNotFoundError:
raise gr.Error("FFMPEG not found. Please ensure ffmpeg is installed and in your system's PATH.")
def batch_image_processor(files, processing_function, job_name, progress, **kwargs):
if not files: raise gr.Error("Please upload at least one image.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
job_temp_dir = os.path.join(TEMP_DIR, f"{job_name}_{timestamp}"); os.makedirs(job_temp_dir, exist_ok=True)
output_paths = []
for file_obj in progress.tqdm(files, desc=f"Processing batch for {job_name}"):
try:
base, _ = os.path.splitext(os.path.basename(file_obj.name))
if job_name == "zoom_videos":
output_filename = f"{base}.mp4"
elif job_name == "bg_removed":
output_filename = f"{base}.png"
else:
output_filename = os.path.basename(file_obj.name)
output_path = os.path.join(job_temp_dir, output_filename)
processing_function(input_path=file_obj.name, output_path=output_path, **kwargs)
output_paths.append(output_path)
except Exception as e:
print(f"Skipping file {file_obj.name} due to error: {e}")
continue
if not output_paths:
shutil.rmtree(job_temp_dir)
raise gr.Error("No images could be processed from the batch.")
zip_base_name = os.path.join(TEMP_DIR, f"{job_name}_archive_{timestamp}")
zip_path = shutil.make_archive(zip_base_name, 'zip', job_temp_dir)
return output_paths, zip_path, job_temp_dir
def process_batch_images_with_detector(files, detector_name, progress=gr.Progress(track_tqdm=True)):
detector = get_detector(detector_name)
def apply_detector(input_path, output_path, **kwargs):
with Image.open(input_path).convert("RGB") as img:
processed = detector(img, detect_resolution=512, image_resolution=1024)
processed.save(output_path)
output_paths, zip_path, _ = batch_image_processor(files, apply_detector, f"controlnet_{detector_name}", progress)
return output_paths, zip_path
def process_video_with_detector(video_path, detector_name, progress=gr.Progress(track_tqdm=True)):
if not video_path: raise gr.Error("Please upload a video first.")
detector = get_detector(detector_name)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
job_temp_dir = os.path.join(TEMP_DIR, f"job_{timestamp}")
input_frames_dir, output_frames_dir = os.path.join(job_temp_dir, "input_frames"), os.path.join(job_temp_dir, "output_frames")
os.makedirs(input_frames_dir, exist_ok=True); os.makedirs(output_frames_dir, exist_ok=True)
output_video_path = os.path.join(TEMP_DIR, f"{detector_name.lower()}_output_{timestamp}.mp4")
cap = cv2.VideoCapture(video_path)
frame_count, frame_rate = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), get_video_fps(video_path)
for i in progress.tqdm(range(frame_count), desc="Extracting Frames"):
success, frame = cap.read()
if not success: break
cv2.imwrite(os.path.join(input_frames_dir, f"frame_{i:05d}.png"), frame)
cap.release()
input_files = sorted(os.listdir(input_frames_dir))
for filename in progress.tqdm(input_files, desc=f"Applying {detector_name}"):
with Image.open(os.path.join(input_frames_dir, filename)).convert("RGB") as image:
result_pil = detector(image, detect_resolution=512, image_resolution=1024)
result_np = cv2.cvtColor(np.array(result_pil), cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(output_frames_dir, filename), result_np)
cmd = ["ffmpeg", "-framerate", str(frame_rate), "-i", os.path.join(output_frames_dir, "frame_%05d.png"), "-c:v", "libx264", "-pix_fmt", "yuv420p", "-y", output_video_path]
run_ffmpeg_command(cmd, "Compiling Video")
shutil.rmtree(job_temp_dir)
return output_video_path
def extract_first_last_frame(video_path):
if not video_path: raise gr.Error("Please upload a video first.")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened(): raise gr.Error("Failed to open video file.")
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if frame_count < 1:
cap.release()
raise gr.Error("Video has no frames.")
if frame_count < 2:
success, frame_img = cap.read()
cap.release()
if not success: raise gr.Error("Could not read the only frame.")
frame_rgb = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB)
return [frame_rgb, frame_rgb.copy()]
success, first_frame_img = cap.read()
if not success: raise gr.Error("Could not read the first frame.")
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_count - 1)
success, last_frame_img = cap.read()
if not success: raise gr.Error("Could not read the last frame.")
cap.release()
return [cv2.cvtColor(first_frame_img, cv2.COLOR_BGR2RGB), cv2.cvtColor(last_frame_img, cv2.COLOR_BGR2RGB)]
def video_to_frames_extractor(video_path, skip_rate, rotation, do_resize, out_w, out_h, out_format, jpg_quality, progress=gr.Progress(track_tqdm=True)):
if not video_path: raise gr.Error("Please upload a video first.")
if do_resize and (out_w <= 0 or out_h <= 0): raise gr.Error("If resizing, width and height must be positive.")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened(): raise gr.Error("Failed to open video file.")
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if frame_count < 1: cap.release(); raise gr.Error("Video appears to have no frames.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
job_temp_dir = os.path.join(TEMP_DIR, f"v2f_{timestamp}"); os.makedirs(job_temp_dir, exist_ok=True)
frame_paths = []
saved_count = 0
for i in progress.tqdm(range(frame_count), desc="Extracting Frames"):
success, frame = cap.read()
if not success: break
if i % skip_rate != 0: continue
frame = rotate_image(frame, rotation)
if do_resize: frame = cv2.resize(frame, (out_w, out_h), interpolation=cv2.INTER_LANCZOS4)
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
file_ext = out_format.lower()
frame_path = os.path.join(job_temp_dir, f"frame_{saved_count:05d}.{file_ext}")
if out_format == "JPG": frame_pil.save(frame_path, quality=jpg_quality)
else: frame_pil.save(frame_path)
frame_paths.append(frame_path)
saved_count += 1
cap.release()
if not frame_paths: shutil.rmtree(job_temp_dir); raise gr.Error("Could not extract any frames.")
zip_base_name = os.path.join(TEMP_DIR, f"frames_archive_{timestamp}")
zip_path = shutil.make_archive(zip_base_name, 'zip', job_temp_dir)
return frame_paths[:100], zip_path
def create_video_from_frames(files, fps, rotation, do_resize, out_w, out_h, progress=gr.Progress(track_tqdm=True)):
if not files: raise gr.Error("Please upload frame images first.")
if do_resize and (out_w <= 0 or out_h <= 0): raise gr.Error("If resizing, width and height must be positive.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
job_temp_dir = os.path.join(TEMP_DIR, f"f2v_{timestamp}"); os.makedirs(job_temp_dir, exist_ok=True)
filenames = []
for i, file in enumerate(progress.tqdm(files, desc="Preparing Frames")):
ext = os.path.splitext(file.name)[1]
temp_path = os.path.join(job_temp_dir, f"frame_{i:05d}{ext}")
shutil.copy(file.name, temp_path); filenames.append(temp_path)
output_video_path = os.path.join(TEMP_DIR, f"video_from_frames_{timestamp}.mp4")
first_frame_img = rotate_image(cv2.imread(filenames[0]), rotation)
h, w, _ = first_frame_img.shape
if do_resize: w, h = out_w, out_h
w -= w % 2; h -= h % 2
temp_processed_dir = os.path.join(job_temp_dir, "processed"); os.makedirs(temp_processed_dir, exist_ok=True)
for i, filename in enumerate(progress.tqdm(filenames, desc="Processing Frames for Video")):
frame = rotate_image(cv2.imread(filename), rotation)
frame = cv2.resize(frame, (w, h), interpolation=cv2.INTER_LANCZOS4)
cv2.imwrite(os.path.join(temp_processed_dir, f"pframe_{i:05d}.png"), frame)
cmd = ["ffmpeg", "-framerate", str(fps), "-i", os.path.join(temp_processed_dir, "pframe_%05d.png"), "-c:v", "libx264", "-pix_fmt", "yuv420p", "-y", output_video_path]
run_ffmpeg_command(cmd, "Compiling Video")
shutil.rmtree(job_temp_dir)
return output_video_path
def image_to_looping_video(image_array, duration, audio_path=None):
if image_array is None: raise gr.Error("Please upload an image first.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
temp_image_path = os.path.join(TEMP_DIR, f"temp_image_{timestamp}.png")
output_video_path = os.path.join(TEMP_DIR, f"looping_video_{timestamp}.mp4")
img = Image.fromarray(image_array)
img.save(temp_image_path)
width, height = img.size
width -= width % 2; height -= height % 2
cmd = ["ffmpeg", "-loop", "1", "-i", temp_image_path]
if audio_path:
cmd.extend(["-i", audio_path, "-c:a", "aac", "-shortest"])
cmd.extend(["-c:v", "libx264", "-t", str(duration), "-pix_fmt", "yuv420p", "-vf", f"scale={width}:{height}", "-y", output_video_path])
run_ffmpeg_command(cmd, "Creating Looping Video...")
os.remove(temp_image_path)
return output_video_path
def create_zoom_videos(files, duration, zoom_ratio, zoom_direction, combine_videos, audio_path=None, progress=gr.Progress(track_tqdm=True)):
if not files:
raise gr.Error("Please upload at least one image.")
fps = 30
total_frames = int(duration * fps)
zoom_step = (zoom_ratio - 1.0) / total_frames
zoom_coords = {
"Center": "x=iw/2-(iw/zoom)/2:y=ih/2-(ih/zoom)/2", "Top": "x=iw/2-(iw/zoom)/2:y=0", "Bottom": "x=iw/2-(iw/zoom)/2:y=ih-(ih/zoom)",
"Left": "x=0:y=ih/2-(ih/zoom)/2", "Right": "x=iw-(iw/zoom):y=ih/2-(ih/zoom)/2", "Top-Left": "x=0:y=0",
"Top-Right": "x=iw-(iw/zoom):y=0", "Bottom-Left": "x=0:y=ih-(ih/zoom)", "Bottom-Right": "x=iw-(iw/zoom):y=ih-(ih/zoom)",
}
def process_single_image(input_path, output_path, **kwargs):
audio_for_clip = kwargs.get('audio_for_clip')
zoom_filter = (f"scale=3840:-1,zoompan=z='min(zoom+{zoom_step},{zoom_ratio})':{zoom_coords[zoom_direction]}:d={total_frames}:s=1920x1080:fps={fps}")
cmd = ["ffmpeg", "-loop", "1", "-i", input_path]
if audio_for_clip:
cmd.extend(["-i", audio_for_clip, "-c:a", "aac", "-shortest"])
cmd.extend(["-vf", zoom_filter, "-c:v", "libx264", "-t", str(duration), "-pix_fmt", "yuv420p", "-b:v", "5M", "-y", output_path])
run_ffmpeg_command(cmd, f"Creating zoom video for {os.path.basename(input_path)}")
batch_kwargs = {}
if not combine_videos and audio_path:
batch_kwargs['audio_for_clip'] = audio_path
video_paths, zip_path, job_temp_dir = batch_image_processor(files, process_single_image, "zoom_videos", progress, **batch_kwargs)
if not combine_videos:
return video_paths, None, zip_path
if not video_paths:
raise gr.Error("No videos were created to be combined.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
silent_combined_path = os.path.join(job_temp_dir, f"combined_silent_{timestamp}.mp4")
if len(video_paths) > 1:
file_list_path = os.path.join(job_temp_dir, "files.txt")
with open(file_list_path, 'w', encoding='utf-8') as f:
for path in video_paths:
f.write(f"file '{os.path.abspath(path)}'\n")
run_ffmpeg_command(["ffmpeg", "-f", "concat", "-safe", "0", "-i", file_list_path, "-c", "copy", "-y", silent_combined_path], "Combining Videos")
else:
shutil.copy(video_paths[0], silent_combined_path)
if audio_path:
final_video_path = os.path.join(TEMP_DIR, f"combined_audio_{timestamp}.mp4")
run_ffmpeg_command(["ffmpeg", "-i", silent_combined_path, "-i", audio_path, "-c:v", "copy", "-c:a", "aac", "-shortest", "-y", final_video_path], "Adding audio...")
else:
final_video_path = os.path.join(TEMP_DIR, f"combined_final_{timestamp}.mp4")
shutil.move(silent_combined_path, final_video_path)
return None, final_video_path, zip_path
def change_video_speed(video_path, speed_multiplier):
if not video_path: raise gr.Error("Please upload a video first.")
if speed_multiplier <= 0: raise gr.Error("Speed multiplier must be positive.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_video_path = os.path.join(TEMP_DIR, f"speed_change_{timestamp}.mp4")
pts_value = 1 / speed_multiplier
cmd = ["ffmpeg", "-i", video_path, "-filter:v", f"setpts={pts_value}*PTS", "-an", "-y", output_video_path]
run_ffmpeg_command(cmd, "Changing Video Speed")
return output_video_path
def reverse_video(video_path, audio_option):
if not video_path: raise gr.Error("Please upload a video first.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_video_path = os.path.join(TEMP_DIR, f"reversed_video_{timestamp}.mp4")
filters = ["reverse"]
if audio_option == "Reverse Audio": filters.append("areverse")
cmd = ["ffmpeg", "-i", video_path, "-vf", filters[0]]
if len(filters) > 1: cmd.extend(["-af", filters[1]])
if audio_option == "Remove Audio": cmd.append("-an")
cmd.extend(["-c:v", "libx264", "-pix_fmt", "yuv420p", "-y", output_video_path])
run_ffmpeg_command(cmd, "Reversing video...")
return output_video_path
def add_audio_to_video(video_path, audio_path):
if not video_path: raise gr.Error("Please upload a video.")
if not audio_path: raise gr.Error("Please upload an audio file.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_video_path = os.path.join(TEMP_DIR, f"video_with_audio_{timestamp}.mp4")
cmd = ["ffmpeg", "-i", video_path, "-i", audio_path, "-c:v", "copy", "-c:a", "aac", "-shortest", "-y", output_video_path]
run_ffmpeg_command(cmd, "Adding Audio to Video")
return output_video_path
def extract_audio(video_path, audio_format="mp3", progress=gr.Progress(track_tqdm=True)):
if not video_path: raise gr.Error("Please upload a video first.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_audio_path = os.path.join(TEMP_DIR, f"extracted_audio_{timestamp}.{audio_format}")
cmd = ["ffmpeg", "-i", video_path, "-vn"] # -vn strips video
if audio_format == "mp3": cmd.extend(["-c:a", "libmp3lame", "-q:a", "2"]) # VBR quality
elif audio_format == "aac": cmd.extend(["-c:a", "aac", "-b:a", "192k"])
elif audio_format == "wav": cmd.extend(["-c:a", "pcm_s16le"])
cmd.extend(["-y", output_audio_path])
run_ffmpeg_command(cmd, "Extracting audio...")
return output_audio_path
def create_gif_from_video(video_path, start_time, end_time, progress=gr.Progress(track_tqdm=True)):
if not video_path: raise gr.Error("Please upload a video first.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_gif_path, palette_path = os.path.join(TEMP_DIR, f"video_to_gif_{timestamp}.gif"), os.path.join(TEMP_DIR, f"palette_{timestamp}.png")
duration_filter = []
if start_time > 0 or end_time > 0:
if end_time > 0 and end_time <= start_time: raise gr.Error("End time must be after start time.")
if start_time > 0: duration_filter.extend(["-ss", str(start_time)])
if end_time > 0: duration_filter.extend(["-to", str(end_time)])
progress(0, desc="Generating Color Palette"); run_ffmpeg_command(["ffmpeg", "-i", video_path] + duration_filter + ["-vf", "fps=15,scale=480:-1:flags=lanczos,palettegen", "-y", palette_path])
progress(0.5, desc="Creating GIF"); run_ffmpeg_command(["ffmpeg", "-i", video_path] + duration_filter + ["-i", palette_path, "-filter_complex", "fps=15,scale=480:-1:flags=lanczos[x];[x][1:v]paletteuse", "-y", output_gif_path])
progress(1, desc="Done"); os.remove(palette_path)
return output_gif_path
def get_frame_at_time(video_path, time_in_seconds=0):
if not video_path: return None
try:
command = ['ffmpeg', '-ss', str(time_in_seconds), '-i', video_path, '-vframes', '1', '-f', 'image2pipe', '-c:v', 'png', '-']
pipe = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
return Image.open(io.BytesIO(pipe.stdout)).convert("RGB")
except Exception as e:
print(f"Error extracting frame for crop preview: {e}")
cap = cv2.VideoCapture(video_path); cap.set(cv2.CAP_PROP_POS_MSEC, time_in_seconds * 1000)
success, frame = cap.read(); cap.release()
if success: return Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
return None
def crop_video(video_path, x, y, w, h, do_resize, out_w, out_h):
if not video_path: raise gr.Error("Please upload a video first.")
w, h, x, y = int(w), int(h), int(x), int(y)
w -= w % 2; h -= h % 2
if w <= 0 or h <= 0: raise gr.Error("Crop dimensions must be positive.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_video_path = os.path.join(TEMP_DIR, f"cropped_video_{timestamp}.mp4")
vf_filters = [f"crop={w}:{h}:{x}:{y}"]
if do_resize:
if out_w <= 0 or out_h <= 0: raise gr.Error("Resize dimensions must be positive.")
out_w, out_h = int(out_w), int(out_h)
out_w -= out_w % 2; out_h -= out_h % 2
vf_filters.append(f"scale={out_w}:{out_h}")
cmd = ["ffmpeg", "-i", video_path, "-vf", ",".join(vf_filters), "-c:a", "copy", "-c:v", "libx264", "-pix_fmt", "yuv420p", "-y", output_video_path]
run_ffmpeg_command(cmd, "Cropping video...")
return output_video_path
def trim_video(video_path, start_time, end_time):
if not video_path: raise gr.Error("Please upload a video first.")
if start_time < 0: start_time = 0
if end_time <= start_time: end_time = 0
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_video_path = os.path.join(TEMP_DIR, f"trimmed_video_{timestamp}.mp4")
cmd = ["ffmpeg", "-i", video_path, "-ss", str(start_time)]
if end_time > 0: cmd.extend(["-to", str(end_time)])
cmd.extend(["-c:v", "libx264", "-c:a", "copy", "-pix_fmt", "yuv420p", "-y", output_video_path])
run_ffmpeg_command(cmd, "Trimming Video")
return output_video_path
def apply_video_watermark(video_path, text, position, opacity, size_scale, color):
if not video_path: raise gr.Error("Please upload a video first.")
if not text: raise gr.Error("Watermark text cannot be empty.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_video_path = os.path.join(TEMP_DIR, f"watermarked_video_{timestamp}.mp4")
_ , video_h = get_video_dimensions(video_path)
if video_h == 0:
video_h = 720 # Fallback
escaped_text = text.replace("'", r"'\''").replace(":", r"\:").replace(",", r"\,")
pos_map = {"Top-Left": "x=20:y=20", "Top-Right": "x=w-tw-20:y=20", "Bottom-Left": "x=20:y=h-th-20", "Bottom-Right": "x=w-tw-20:y=h-th-20", "Center": "x=(w-tw)/2:y=(h-th)/2"}
font_opacity = opacity / 100.0
font_size = int(video_h / (50 - (size_scale * 3.5)))
# Cleaned up filter. The pre-calculation of fontsize is the most stable method.
drawtext_filter = (
f"drawtext="
f"text='{escaped_text}':"
f"{pos_map[position]}:"
f"fontsize={font_size}:"
f"fontcolor={color}@{font_opacity}"
)
cmd = [
"ffmpeg", "-i", video_path,
"-vf", drawtext_filter,
"-c:a", "copy",
"-c:v", "libx264",
"-pix_fmt", "yuv420p",
"-y", output_video_path
]
run_ffmpeg_command(cmd, "Applying text watermark...")
return output_video_path
def remove_video_background(video_path, progress=gr.Progress(track_tqdm=True)):
if not video_path: raise gr.Error("Please upload a video first.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
job_temp_dir = os.path.join(TEMP_DIR, f"bg_rem_job_{timestamp}"); input_frames_dir, output_frames_dir = os.path.join(job_temp_dir, "input_frames"), os.path.join(job_temp_dir, "output_frames")
os.makedirs(input_frames_dir, exist_ok=True); os.makedirs(output_frames_dir, exist_ok=True)
cap = cv2.VideoCapture(video_path); frame_count, fps = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), get_video_fps(video_path)
for i in progress.tqdm(range(frame_count), desc="Step 1: Extracting Frames"):
success, frame = cap.read()
if not success: break
cv2.imwrite(os.path.join(input_frames_dir, f"frame_{i:05d}.png"), frame)
cap.release()
for filename in progress.tqdm(sorted(os.listdir(input_frames_dir)), desc="Step 2: Removing Backgrounds"):
with Image.open(os.path.join(input_frames_dir, filename)) as img:
remove(img).save(os.path.join(output_frames_dir, filename))
output_video_path = os.path.join(TEMP_DIR, f"bg_removed_{timestamp}.webm")
progress(0, desc="Step 3: Compiling Video")
cmd = ["ffmpeg", "-framerate", str(fps), "-i", os.path.join(output_frames_dir, "frame_%05d.png"), "-c:v", "libvpx-vp9", "-pix_fmt", "yuva420p", "-auto-alt-ref", "0", "-b:v", "1M", "-y", output_video_path]
run_ffmpeg_command(cmd, "Compiling transparent video...")
shutil.rmtree(job_temp_dir)
return output_video_path
def transcribe_media(media_path, model_name, progress=gr.Progress(track_tqdm=True)):
if media_path is None: raise gr.Error("Please upload a video or audio file first.")
model = load_whisper_model(model_name)
if model is None: raise gr.Error("Whisper model is not available.")
# media_path is now a gr.File object, so we use .name
audio_path = media_path.name
base_name = os.path.splitext(os.path.basename(media_path.name))[0]
# Check if the input is a video file to extract audio from
if audio_path.lower().endswith(('.mp4', '.mov', '.mkv', '.avi', '.webm')):
progress(0, desc="Extracting audio...")
audio_path_temp = os.path.join(TEMP_DIR, f"{base_name}.mp3")
try:
run_ffmpeg_command(["ffmpeg", "-i", audio_path, "-q:a", "0", "-map", "a", "-y", audio_path_temp])
audio_path = audio_path_temp
except gr.Error as e:
if "does not contain any stream" in str(e): raise gr.Error("The uploaded video has no audio track.")
else: raise e
progress(0.2, desc=f"Transcribing with Whisper '{model_name}' model...")
result = model.transcribe(audio_path, verbose=False)
def format_ts(s):
h, r = divmod(s, 3600); m, s = divmod(r, 60)
return f"{int(h):02}:{int(m):02}:{int(s):02},{int((s-int(s))*1000):03}"
srt_path = os.path.join(TEMP_DIR, f"{base_name}.srt")
vtt_path = os.path.join(TEMP_DIR, f"{base_name}.vtt")
with open(srt_path, "w", encoding="utf-8") as srt_f, open(vtt_path, "w", encoding="utf-8") as vtt_f:
vtt_f.write("WEBVTT\n\n")
for i, seg in enumerate(result["segments"]):
start, end, text = seg['start'], seg['end'], seg['text'].strip()
srt_f.write(f"{i + 1}\n{format_ts(start)} --> {format_ts(end)}\n{text}\n\n")
vtt_f.write(f"{format_ts(start).replace(',', '.')} --> {format_ts(end).replace(',', '.')}\n{text}\n\n")
return result["text"], [srt_path, vtt_path]
def transcribe_and_prep_burn(media_file, model_name, progress=gr.Progress(track_tqdm=True)):
if not media_file: raise gr.Error("Please upload a file first.")
is_video = media_file.name.lower().endswith(('.mp4', '.mov', '.mkv', '.avi', '.webm'))
text, files = transcribe_media(media_file, model_name, progress)
# Return the original video path and make the burn-in UI visible only if it was a video
if is_video: return text, files, media_file.name, gr.update(visible=True)
else: return text, files, None, gr.update(visible=False)
def burn_subtitles(video_path, srt_file_obj, font_size_scale, font_color, progress=gr.Progress(track_tqdm=True)):
if not video_path: raise gr.Error("Original video path not found. Please re-transcribe.")
if not srt_file_obj or not srt_file_obj[0].name: raise gr.Error("SRT file not found. Please re-transcribe.")
srt_path = srt_file_obj[0].name # srt_file_obj is a list of file objects
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_video_path = os.path.join(TEMP_DIR, f"subtitled_video_{timestamp}.mp4")
_, video_h = get_video_dimensions(video_path)
if video_h == 0: video_h = 720 # Fallback
divisor = 32 - (font_size_scale * 2)
calculated_font_size = int(video_h / divisor)
color_bgr = font_color[5:7] + font_color[3:5] + font_color[1:3]
ffmpeg_color = f"&H00{color_bgr.upper()}"
# This filter requires FFMPEG to be compiled with libass. Escaping is crucial for Windows paths.
escaped_srt_path = srt_path.replace('\\', '/').replace(':', '\\:')
vf_filter = f"subtitles='{escaped_srt_path}':force_style='Fontsize={calculated_font_size},PrimaryColour={ffmpeg_color},BorderStyle=1,Outline=1,Shadow=0.5,MarginV=15'"
cmd = ["ffmpeg", "-i", video_path, "-vf", vf_filter, "-c:a", "copy", "-c:v", "libx264", "-pix_fmt", "yuv420p", "-y", output_video_path]
run_ffmpeg_command(cmd, "Burning subtitles into video...")
return output_video_path
def remove_background_single(input_path, output_path, **kwargs):
with Image.open(input_path) as img:
remove(img).save(output_path)
def remove_background_batch(files, progress=gr.Progress(track_tqdm=True)):
output_paths, zip_path, _ = batch_image_processor(files, remove_background_single, "bg_removed", progress)
return output_paths, zip_path
def resize_convert_single_image(input_path, output_path, **kwargs):
output_format = kwargs.get('output_format', 'JPG')
quality = kwargs.get('quality', 95)
enable_resize = kwargs.get('enable_resize', False)
max_w = kwargs.get('max_w', 1024)
max_h = kwargs.get('max_h', 1024)
resize_mode = kwargs.get('resize_mode', "Fit (preserve aspect ratio)")
with Image.open(input_path) as img:
# Handle transparency for formats that don't support it
if output_format in ['JPG', 'WEBP'] and img.mode in ['RGBA', 'P', 'LA']:
img = img.convert("RGB")
if enable_resize:
if resize_mode == "Fit (preserve aspect ratio)":
img.thumbnail((max_w, max_h), Image.Resampling.LANCZOS)
else: # Stretch
img = img.resize((max_w, max_h), Image.Resampling.LANCZOS)
save_kwargs = {}
# Pillow's format name for JPG is 'JPEG'
pil_format = 'JPEG' if output_format == 'JPG' else output_format
if pil_format in ['JPEG', 'WEBP']:
save_kwargs['quality'] = quality
img.save(output_path, pil_format, **save_kwargs)
def batch_resize_convert_images(files, output_format, quality, enable_resize, max_w, max_h, resize_mode, progress=gr.Progress(track_tqdm=True)):
if not files: raise gr.Error("Please upload at least one image.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
job_name = "resized_converted"
job_temp_dir = os.path.join(TEMP_DIR, f"{job_name}_{timestamp}"); os.makedirs(job_temp_dir, exist_ok=True)
output_paths = []
processing_kwargs = {
'output_format': output_format, 'quality': quality, 'enable_resize': enable_resize,
'max_w': max_w, 'max_h': max_h, 'resize_mode': resize_mode
}
for file_obj in progress.tqdm(files, desc=f"Processing batch for {job_name}"):
try:
base, _ = os.path.splitext(os.path.basename(file_obj.name))
output_filename = f"{base}.{output_format.lower()}"
output_path = os.path.join(job_temp_dir, output_filename)
resize_convert_single_image(file_obj.name, output_path, **processing_kwargs)
output_paths.append(output_path)
except Exception as e: print(f"Skipping file {file_obj.name} due to error: {e}"); continue
if not output_paths: shutil.rmtree(job_temp_dir); raise gr.Error("No images could be processed.")
zip_base_name = os.path.join(TEMP_DIR, f"{job_name}_archive_{timestamp}")
zip_path = shutil.make_archive(zip_base_name, 'zip', job_temp_dir)
return output_paths[:100], zip_path
def apply_watermark_single(input_path, output_path, watermark_text, position, opacity):
with Image.open(input_path).convert("RGBA") as image:
if not watermark_text: raise ValueError("Watermark text cannot be empty.")
txt = Image.new("RGBA", image.size, (255, 255, 255, 0))
try: font = ImageFont.truetype("DejaVuSans.ttf", int(image.width / 20))
except IOError: font = ImageFont.load_default()
d = ImageDraw.Draw(txt); bbox = d.textbbox((0, 0), watermark_text, font=font); w, h = bbox[2]-bbox[0], bbox[3]-bbox[1]
pos_map = {"Top-Left":(10,10), "Top-Right":(image.width-w-10,10), "Bottom-Left":(10,image.height-h-10), "Bottom-Right":(image.width-w-10,image.height-h-10), "Center":((image.width-w)/2,(image.height-h)/2)}
d.text(pos_map[position], watermark_text, font=font, fill=(255, 255, 255, int(255 * (opacity / 100))))
Image.alpha_composite(image, txt).convert("RGB").save(output_path)
def apply_watermark_batch(files, watermark_text, position, opacity, progress=gr.Progress(track_tqdm=True)):
if not watermark_text: raise gr.Error("Please provide watermark text.")
processing_func = lambda input_path, output_path: apply_watermark_single(
input_path, output_path, watermark_text=watermark_text, position=position, opacity=opacity
)
output_paths, zip_path, _ = batch_image_processor(files, processing_func, "watermarked", progress)
return output_paths, zip_path
def convert_compress_video(video_path, out_format, v_codec, crf_value, scale_option, a_codec, a_bitrate, progress=gr.Progress(track_tqdm=True)):
if not video_path: raise gr.Error("Please upload a video to convert.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_filename = f"converted_{timestamp}.{out_format.lower()}"
output_path = os.path.join(TEMP_DIR, output_filename)
cmd = ["ffmpeg", "-i", video_path]
vf_filters = []
if scale_option != "Original":
w, h = get_video_dimensions(video_path)
if w > 0 and h > 0:
target_h = int(scale_option.replace('p', ''))
target_w = round(w * target_h / h / 2) * 2
vf_filters.append(f"scale={target_w}:{target_h}")
if vf_filters: cmd.extend(["-vf", ",".join(vf_filters)])
cmd.extend(["-c:v", v_codec])
if v_codec in ["libx264", "libx265"]: cmd.extend(["-crf", str(crf_value)])
cmd.extend(["-pix_fmt", "yuv420p"])
if a_codec == "copy": cmd.extend(["-c:a", "copy"])
else: cmd.extend(["-c:a", a_codec, "-b:a", f"{a_bitrate}k"])
cmd.extend(["-y", output_path])
run_ffmpeg_command(cmd, "Converting and Compressing Video...")
return output_path
def apply_video_fade(video_path, fade_in_duration, fade_out_duration):
if not video_path: raise gr.Error("Please upload a video.")
video_duration = get_media_duration(video_path)
if fade_in_duration + fade_out_duration > video_duration: raise gr.Error("The sum of fade durations cannot be greater than the video duration.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_video_path = os.path.join(TEMP_DIR, f"faded_video_{timestamp}.mp4")
fade_filters = []
if fade_in_duration > 0: fade_filters.append(f"fade=t=in:st=0:d={fade_in_duration}")
if fade_out_duration > 0: fade_out_start = video_duration - fade_out_duration; fade_filters.append(f"fade=t=out:st={fade_out_start}:d={fade_out_duration}")
if not fade_filters: gr.Info("No fade applied."); return video_path
cmd = ["ffmpeg", "-i", video_path, "-vf", ",".join(fade_filters), "-c:a", "copy", "-c:v", "libx264", "-pix_fmt", "yuv420p", "-y", output_video_path]
run_ffmpeg_command(cmd, "Applying video fade...")
return output_video_path
def trim_and_fade_audio(audio_path, start_time, end_time, fade_in_duration, fade_out_duration):
if not audio_path: raise gr.Error("Please upload an audio file.")
audio_duration = get_media_duration(audio_path)
if start_time < 0: start_time = 0
if end_time <= 0 or end_time > audio_duration: end_time = audio_duration
if start_time >= end_time: raise gr.Error("Start time must be less than end time.")
trimmed_duration = end_time - start_time
if fade_in_duration + fade_out_duration > trimmed_duration: raise gr.Error("Sum of fade durations cannot be greater than the trimmed audio duration.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_audio_path = os.path.join(TEMP_DIR, f"edited_audio_{timestamp}.mp3")
af_filters = []
if fade_in_duration > 0: af_filters.append(f"afade=t=in:st=0:d={fade_in_duration}")
if fade_out_duration > 0: fade_out_start = trimmed_duration - fade_out_duration; af_filters.append(f"afade=t=out:st={fade_out_start}:d={fade_out_duration}")
cmd = ["ffmpeg", "-ss", str(start_time), "-to", str(end_time), "-i", audio_path]
if af_filters: cmd.extend(["-af", ",".join(af_filters)])
cmd.extend(["-y", output_audio_path])
run_ffmpeg_command(cmd, "Trimming and fading audio...")
return output_audio_path
# --- FLUX API ---
FLUX_MODELS = {"FLUX.1-schnell (Fast)": "black-forest-labs/FLUX.1-schnell", "FLUX.1-dev (High Quality)": "black-forest-labs/FLUX.1-dev"}
def call_flux_api(prompt, model_choice, width, height, hf_token):
if not hf_token: raise gr.Error("Hugging Face User Access Token is required.")
try:
client = Client(FLUX_MODELS[model_choice], hf_token=hf_token)
return client.predict(prompt=prompt, seed=0, randomize_seed=True, width=width, height=height, num_inference_steps=8 if "dev" in model_choice else 4, api_name="/infer")[0]
except Exception as e: raise gr.Error(f"API call failed: {e}")
def get_image_as_base64(path):
try:
with open(path, "rb") as f: return f"data:image/png;base64,{base64.b64encode(f.read()).decode('utf-8')}"
except FileNotFoundError: return None
# --- Transfer Tab Functions (Simplified) ---
def filter_presets(query, all_presets):
"""Filters the preset dropdown based on a search query."""
if not query:
return gr.update(choices=sorted(list(all_presets.keys())))
filtered_keys = [key for key in all_presets.keys() if query.lower() in key.lower()]
return gr.update(choices=sorted(filtered_keys))
def save_preset(presets, name, url):
if not name or not name.strip():
gr.Warning("Preset name cannot be empty."); return presets, gr.update()
if not url or not url.strip():
gr.Warning("Target URL cannot be empty."); return presets, gr.update()
presets[name] = url
gr.Info(f"Preset '{name}' saved!")
return presets, gr.update(choices=sorted(list(presets.keys())))
def delete_preset(presets, name):
if name in presets:
del presets[name]
gr.Info(f"Preset '{name}' deleted!")
return presets, gr.update(choices=sorted(list(presets.keys())), value=None), ""
gr.Warning(f"Preset '{name}' not found.")
return presets, gr.update(), gr.update()
def load_preset(presets, name):
return presets.get(name, "")
# --- Join/Beat-Sync/Etc Video Feature Functions ---
def add_videos_to_join_list(files, current_list, progress=gr.Progress(track_tqdm=True)):
if not files: return current_list
session_id = f"join_session_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
join_session_dir = os.path.join(TEMP_DIR, session_id); os.makedirs(join_session_dir, exist_ok=True)
new_list = list(current_list)
for file in progress.tqdm(files, desc="Processing New Videos"):
fname = os.path.basename(file.name); new_path = os.path.join(join_session_dir, fname)
shutil.copy(file.name, new_path)
duration = get_media_duration(new_path)
if duration > 0:
new_list.append({"path": new_path, "name": fname, "duration": duration})
else:
gr.Warning(f"Could not process or get duration for video: {fname}. Skipping.")
return new_list
def update_video_queue_df(video_list):
if not video_list: return gr.update(value=None)
return gr.update(value=[[i + 1, v['name']] for i, v in enumerate(video_list)])
def handle_video_list_action(video_list, selected_index, action):
if selected_index is None or not (0 <= selected_index < len(video_list)):
gr.Warning("Please select a video from the list first.")
return video_list, None
index = int(selected_index)
new_list = list(video_list)
if action == "up" and index > 0: new_list.insert(index - 1, new_list.pop(index))
elif action == "down" and index < len(new_list) - 1: new_list.insert(index + 1, new_list.pop(index))
elif action == "remove": new_list.pop(index)
return new_list, gr.update(value=None)
def get_video_start_end_frames_for_preview(video_list, evt: gr.SelectData):
"""Universal function to extract first and last frames for a gallery preview."""
if not evt.selected:
return None, -1, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
index = evt.index[0]
if not (0 <= index < len(video_list)):
return None, -1, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
video_path = video_list[index].get("path")
preview_frames = None
if video_path:
try:
frames = extract_first_last_frame(video_path)
preview_frames = frames
except Exception as e:
print(f"Error generating start/end preview for {video_path}: {e}")
preview_frames = None
can_move_up = index > 0
can_move_down = index < len(video_list) - 1
return preview_frames, index, gr.update(interactive=can_move_up), gr.update(interactive=can_move_down), gr.update(interactive=True)
def join_videos_from_list(video_data, audio_path=None, progress=gr.Progress(track_tqdm=True)):
if not video_data:
raise gr.Error("Please add at least one video to the queue.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
job_temp_dir = os.path.join(TEMP_DIR, f"join_{timestamp}")
os.makedirs(job_temp_dir, exist_ok=True)
video_input_path = ""
if len(video_data) > 1:
progress(0.1, desc="Joining video streams...")
file_list_path = os.path.join(job_temp_dir, "files.txt")
with open(file_list_path, 'w', encoding='utf-8') as f:
for video_info in video_data:
f.write(f"file '{os.path.abspath(video_info['path'])}'\n")
concatenated_video_path = os.path.join(job_temp_dir, "concatenated.mp4")
run_ffmpeg_command(["ffmpeg", "-f", "concat", "-safe", "0", "-i", file_list_path, "-c", "copy", "-y", concatenated_video_path], "Joining Videos")
video_input_path = concatenated_video_path
elif len(video_data) == 1:
progress(0.1, desc="Preparing single video...")
video_input_path = video_data[0]['path']
if not audio_path:
final_output_path = os.path.join(TEMP_DIR, f"joined_video_{timestamp}.mp4")
if len(video_data) == 1:
shutil.copy(video_input_path, final_output_path)
else:
shutil.move(video_input_path, final_output_path)
if os.path.exists(job_temp_dir):
shutil.rmtree(job_temp_dir)
return final_output_path
else:
progress(0.7, desc="Adding audio track...")
final_output_path = os.path.join(TEMP_DIR, f"joined_video_with_audio_{timestamp}.mp4")
cmd = [ "ffmpeg", "-i", video_input_path, "-i", audio_path, "-c:v", "copy", "-c:a", "aac", "-map", "0:v:0", "-map", "1:a:0", "-shortest", "-y", final_output_path ]
run_ffmpeg_command(cmd, "Adding Audio to Joined Video")
if os.path.exists(job_temp_dir):
shutil.rmtree(job_temp_dir)
return final_output_path
def ping_pong_video(video_path, audio_option, progress=gr.Progress(track_tqdm=True)):
if not video_path: raise gr.Error("Please upload a video.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
job_temp_dir = os.path.join(TEMP_DIR, f"pingpong_{timestamp}"); os.makedirs(job_temp_dir, exist_ok=True)
progress(0.2, desc="Reversing video...")
reversed_video_path = os.path.join(job_temp_dir, "reversed_temp.mp4")
cmd_reverse = ["ffmpeg", "-i", video_path, "-vf", "reverse"]
if audio_option == "Reverse Audio": cmd_reverse.extend(["-af", "areverse"])
else: cmd_reverse.append("-an")
cmd_reverse.extend(["-c:v", "libx264", "-pix_fmt", "yuv420p", "-y", reversed_video_path])
run_ffmpeg_command(cmd_reverse)
progress(0.6, desc="Joining videos...")
file_list_path = os.path.join(job_temp_dir, "files.txt")
with open(file_list_path, 'w', encoding='utf-8') as f:
f.write(f"file '{os.path.abspath(video_path)}'\n")
f.write(f"file '{os.path.abspath(reversed_video_path)}'\n")
output_video_path = os.path.join(TEMP_DIR, f"pingpong_video_{timestamp}.mp4")
cmd_join = ["ffmpeg", "-f", "concat", "-safe", "0", "-i", file_list_path, "-c", "copy", "-y", output_video_path]
if audio_option == "Original Audio Only":
cmd_join = ["ffmpeg", "-i", video_path, "-i", reversed_video_path, "-filter_complex", "[0:v][1:v]concat=n=2:v=1[v]", "-map", "[v]", "-map", "0:a?", "-c:a", "copy", "-y", output_video_path]
run_ffmpeg_command(cmd_join)
shutil.rmtree(job_temp_dir)
return output_video_path
def create_beat_sync_video(video_data, audio_path, rhythm_source, beat_sensitivity, cuts_per_measure, min_clip_duration, loop_videos, slicing_method, max_slowdown_clip_duration, progress=gr.Progress(track_tqdm=True)):
if not video_data: raise gr.Error("Please upload at least one video.")
if not audio_path: raise gr.Error("Please upload a music track.")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S"); job_temp_dir = os.path.join(TEMP_DIR, f"beatsync_{timestamp}"); os.makedirs(job_temp_dir, exist_ok=True)
progress(0, desc="Step 1: Analyzing audio..."); beat_times = []
try:
y, sr = librosa.load(audio_path)
if rhythm_source == "Detect Beats (dynamic)": _, beat_frames = librosa.beat.beat_track(y=y, sr=sr, tightness=beat_sensitivity); beat_times = librosa.frames_to_time(beat_frames, sr=sr)
elif rhythm_source == "Generate Rhythmic Grid (BPM-based)":
tempo, _ = librosa.beat.beat_track(y=y, sr=sr); audio_duration = librosa.get_duration(y=y, sr=sr)
if tempo == 0: raise ValueError("Could not determine BPM.")
cut_interval = (60.0 / tempo) * 4 / cuts_per_measure
beat_times = list(np.arange(0, audio_duration, cut_interval))
except Exception as e: raise gr.Error(f"Failed to analyze audio: {e}")
if len(beat_times) < 2: raise gr.Error("Could not determine enough rhythm points.")
progress(0.2, desc="Step 2: Refining intervals..."); intervals = []
if beat_times[0] > min_clip_duration: intervals.append((0.0, beat_times[0]))
for i in range(len(beat_times) - 1):
start_beat, end_beat = beat_times[i], beat_times[i+1]; duration = end_beat - start_beat
if duration >= min_clip_duration: intervals.append((start_beat, end_beat))
if not intervals: raise gr.Error("No beat intervals found meeting minimum duration.")
progress(0.3, desc="Step 3: Slicing video clips..."); clip_paths = []; video_idx = 0; current_video_time = 0.0
for i, (start_beat, end_beat) in enumerate(progress.tqdm(intervals, desc="Slicing video clips")):
target_clip_duration = end_beat - start_beat; found_clip = False
for _ in range(len(video_data)):
video_info = video_data[video_idx]; input_video_path = video_info['path']; output_clip_path = os.path.join(job_temp_dir, f"clip_{i:05d}.mp4")
if slicing_method == "Cut to Fit":
if (video_info['duration'] - current_video_time) >= target_clip_duration:
run_ffmpeg_command(["ffmpeg", "-ss", str(current_video_time), "-i", input_video_path, "-t", str(target_clip_duration), "-c", "copy", "-an", "-y", output_clip_path])
clip_paths.append(output_clip_path); current_video_time += target_clip_duration; found_clip = True; break
elif slicing_method == "Slowdown to Fit":
original_clip_duration = min(target_clip_duration, max_slowdown_clip_duration)
if (video_info['duration'] - current_video_time) >= original_clip_duration:
speed_multiplier = original_clip_duration / target_clip_duration
run_ffmpeg_command(["ffmpeg", "-ss", str(current_video_time), "-i", input_video_path, "-t", str(original_clip_duration), "-vf", f"setpts={1/speed_multiplier:.4f}*PTS", "-an", "-c:v", "libx264", "-pix_fmt", "yuv420p", "-y", output_clip_path])
clip_paths.append(output_clip_path); current_video_time += original_clip_duration; found_clip = True; break
video_idx = (video_idx + 1) % len(video_data); current_video_time = 0.0
if loop_videos == "End when videos run out" and video_idx == 0: break
if not found_clip: gr.Warning("Ran out of video footage."); break
if not clip_paths: raise gr.Error("Failed to create any video clips.")
progress(0.7, desc="Step 4: Joining clips..."); file_list_path = os.path.join(job_temp_dir, "files.txt")
with open(file_list_path, 'w', encoding='utf-8') as f:
for path in clip_paths: f.write(f"file '{os.path.abspath(path)}'\n")
silent_video_path = os.path.join(job_temp_dir, "silent_final.mp4")
run_ffmpeg_command(["ffmpeg", "-f", "concat", "-safe", "0", "-i", file_list_path, "-c", "copy", "-y", silent_video_path])
progress(0.9, desc="Step 5: Adding music..."); output_video_path = os.path.join(TEMP_DIR, f"beatsynced_video_{timestamp}.mp4")
run_ffmpeg_command(["ffmpeg", "-i", silent_video_path, "-i", audio_path, "-c:v", "copy", "-c:a", "aac", "-shortest", "-y", output_video_path])
shutil.rmtree(job_temp_dir)
return output_video_path
# --- CSS and JS ---
footer_css = """
#custom-footer {
text-align: center !important;
padding: 20px 0 5px 0 !important;
font-size: .9em;
color: #a0aec0;
}
"""
jkl_video_control_js = """()=>{document.addEventListener("keydown",e=>{const t=document.activeElement;if(t&&("INPUT"===t.tagName||"TEXTAREA"===t.tagName))return;const n=document.querySelector("#video-trim-input video");if(!n)return;const o=document.querySelector("#video-trim-fps input"),a=o?parseFloat(o.value):24,i=1/a;let r=!1;switch(e.key.toLowerCase()){case"k":n.paused?n.play():n.pause(),r=!0;break;case"j":n.currentTime=Math.max(0,n.currentTime-i),r=!0;break;case"l":n.currentTime+=i,r=!0}r&&e.preventDefault()})}"""
with gr.Blocks(
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"),
title="Skriptz - Universal Tool",
css=footer_css,
js=jkl_video_control_js
) as demo:
logo_b64 = get_image_as_base64("logo.png")
if logo_b64: gr.HTML(f"""<div style="display: flex; justify-content: center; align-items: center; text-align: center; margin-bottom: 20px;"><a href="https://linktr.ee/skylinkd" target="_blank" rel="noopener noreferrer"><img src="{logo_b64}" alt="Skriptz Banner" style="max-width: 100%; max-height: 100px; height: auto;"></a></div>""")
else: gr.Markdown("# Skriptz Universal Tool")
gr.Markdown("<h3 style='text-align: center;'>Your one-stop shop for video and image processing</h3>")
with gr.Tabs():
with gr.TabItem("Image Utilities"):
gr.Markdown("## Tools for processing and generating single images.")
with gr.Tabs():
with gr.TabItem("Manipulate Image"):
gr.Markdown("### Simple Image Manipulation")
gr.Info("Apply a single transformation like inverting colors, flipping, or rotating.")
with gr.Row():
with gr.Column():
manip_input_image = gr.Image(type="numpy", label="Input Image")
manip_operation_radio = gr.Radio(
["Invert Colors", "Flip Horizontal", "Flip Vertical", "Rotate 90Β° Right", "Rotate 90Β° Left"],
label="Select Operation", value="Invert Colors"
)
manip_apply_btn = gr.Button("β¨ Apply Manipulation", variant="primary")
with gr.Column():
manip_output_image = gr.Image(label="Output Image", interactive=True)
manip_apply_btn.click(fn=manipulate_image, inputs=[manip_input_image, manip_operation_radio], outputs=manip_output_image)
with gr.TabItem("Image to Looping Video"):
gr.Markdown("### Create a short, looping video from a single static image.")
with gr.Row():
with gr.Column():
input_image_i2v = gr.Image(type="numpy", label="Input Image")
duration_slider_i2v = gr.Slider(1, 30, 5, step=0.1, label="Duration (s)")
input_audio_i2v = gr.Audio(label="Add Music (Optional)", type="filepath")
compile_i2v_btn = gr.Button("πΉ Create Looping Video", variant="primary")
with gr.Column():
output_video_i2v = gr.Video(label="Output Looping Video", interactive=True, show_download_button=True)
compile_i2v_btn.click(image_to_looping_video, [input_image_i2v, duration_slider_i2v, input_audio_i2v], output_video_i2v)
with gr.TabItem("Image to Zoom Video"):
gr.Markdown("### Create a 'Ken Burns' style zoom/pan video from an image.")
gr.Info("Upload one or more images. The output will be a gallery of videos, or a single combined video if you check the box.")
with gr.Row():
with gr.Column():
i2zv_input_images = gr.File(label="Upload Images", file_count="multiple", file_types=["image"])
i2zv_duration = gr.Slider(1, 30, 5, step=0.5, label="Video Duration (s) per Image")
i2zv_zoom_ratio = gr.Slider(1.0, 2.0, 1.25, step=0.05, label="Zoom Ratio")
i2zv_zoom_dir = gr.Dropdown(
["Center", "Top", "Bottom", "Left", "Right", "Top-Left", "Top-Right", "Bottom-Left", "Bottom-Right"],
value="Center", label="Zoom Direction"
)
i2zv_combine = gr.Checkbox(label="Combine all videos into one", value=False)
i2zv_audio = gr.Audio(label="Add Music (Optional)", type="filepath")
i2zv_btn = gr.Button("π Create Zoom Video(s)", variant="primary")
with gr.Column():
i2zv_output_gallery = gr.Gallery(label="Output Video Previews", columns=2, object_fit="contain", visible=True)
i2zv_output_video = gr.Video(label="Combined Output Video", interactive=True, show_download_button=True, visible=False)
i2zv_output_zip = gr.File(label="Download All as .zip", interactive=False)
i2zv_combine.change(
fn=lambda x: [gr.update(visible=not x), gr.update(visible=x)],
inputs=i2zv_combine,
outputs=[i2zv_output_gallery, i2zv_output_video]
)
i2zv_btn.click(
fn=create_zoom_videos,
inputs=[i2zv_input_images, i2zv_duration, i2zv_zoom_ratio, i2zv_zoom_dir, i2zv_combine, i2zv_audio],
outputs=[i2zv_output_gallery, i2zv_output_video, i2zv_output_zip]
)
with gr.TabItem("Batch Background Remover"):
gr.Markdown("### Remove the background from a batch of images.")
with gr.Row():
with gr.Column():
input_images_bg = gr.File(label="Upload Images", file_count="multiple", file_types=["image"])
remove_bg_btn = gr.Button("βοΈ Remove Backgrounds", variant="primary")
with gr.Column():
output_gallery_bg = gr.Gallery(label="Images with Transparent Background", show_label=True, columns=4, object_fit="contain", height="auto")
output_zip_bg = gr.File(label="Download All as .zip", interactive=False)
remove_bg_btn.click(remove_background_batch, input_images_bg, [output_gallery_bg, output_zip_bg])
with gr.TabItem("Batch Watermarker"):
gr.Markdown("### Apply a text watermark to a batch of images.")
with gr.Row():
with gr.Column():
input_images_wm = gr.File(label="Upload Images", file_count="multiple", file_types=["image"])
watermark_text = gr.Textbox(label="Watermark Text", placeholder="(c) My Awesome Project")
watermark_pos = gr.Radio(["Top-Left", "Top-Right", "Bottom-Left", "Bottom-Right", "Center"], value="Bottom-Right", label="Position")
watermark_opacity = gr.Slider(0, 100, 50, step=1, label="Opacity (%)")
watermark_btn = gr.Button("ποΈ Apply Watermarks", variant="primary")
with gr.Column():
output_gallery_wm = gr.Gallery(label="Watermarked Images", show_label=True, columns=4, object_fit="contain", height="auto")
output_zip_wm = gr.File(label="Download All as .zip", interactive=False)
watermark_btn.click(apply_watermark_batch, [input_images_wm, watermark_text, watermark_pos, watermark_opacity], [output_gallery_wm, output_zip_wm])
with gr.TabItem("Batch Resizer & Converter"):
gr.Markdown("### Convert, resize, and compress a batch of images.")
with gr.Row():
with gr.Column():
brc_input_images = gr.File(label="Upload Images", file_count="multiple", file_types=["image"])
with gr.Accordion("βοΈ Output Settings", open=True):
brc_format = gr.Dropdown(["JPG", "PNG", "WEBP"], value="JPG", label="Output Format")
brc_quality = gr.Slider(1, 100, 90, step=1, label="JPG/WEBP Quality", interactive=True)
brc_enable_resize = gr.Checkbox(label="Enable Resizing", value=False)
with gr.Row():
brc_max_w = gr.Number(label="Max Width", value=1920, interactive=False)
brc_max_h = gr.Number(label="Max Height", value=1080, interactive=False)
brc_resize_mode = gr.Radio(["Fit (preserve aspect ratio)", "Stretch to Fit"], value="Fit (preserve aspect ratio)", label="Resize Mode", interactive=False)
brc_btn = gr.Button("β¨ Process Images", variant="primary")
with gr.Column():
brc_output_gallery = gr.Gallery(label="Processed Images Preview", show_label=True, columns=4, object_fit="contain", height="auto")
brc_output_zip = gr.File(label="Download All as .zip", interactive=False)
brc_format.change(lambda f: gr.update(visible=f in ["JPG", "WEBP"]), brc_format, brc_quality)
brc_enable_resize.change(lambda x: [gr.update(interactive=x), gr.update(interactive=x), gr.update(interactive=x)], brc_enable_resize, [brc_max_w, brc_max_h, brc_resize_mode])
brc_btn.click(
batch_resize_convert_images,
[brc_input_images, brc_format, brc_quality, brc_enable_resize, brc_max_w, brc_max_h, brc_resize_mode],
[brc_output_gallery, brc_output_zip]
)
with gr.TabItem("FLUX.1 API Caller (Experimental)"):
gr.Markdown("### Generate an image using `FLUX.1` models via Gradio Client.")
gr.Info("Requires a Hugging Face User Access Token.")
with gr.Row():
with gr.Column():
hf_token_input = gr.Textbox(label="HF Token", type="password", placeholder="Enter hf_... token")
flux_model_dropdown = gr.Dropdown(list(FLUX_MODELS.keys()), value="FLUX.1-schnell (Fast)", label="Select FLUX Model")
prompt_input_flux = gr.Textbox(label="Prompt", lines=3, placeholder="A cinematic photo...")
with gr.Row():
flux_width_slider = gr.Slider(256, 2048, 1024, step=64, label="Width")
flux_height_slider = gr.Slider(256, 2048, 1024, step=64, label="Height")
flux_btn = gr.Button("π Generate Image", variant="primary")
with gr.Column():
output_image_flux = gr.Image(label="Generated Image", interactive=True)
flux_btn.click(call_flux_api, [prompt_input_flux, flux_model_dropdown, flux_width_slider, flux_height_slider, hf_token_input], output_image_flux)
with gr.TabItem("Video Utilities"):
# This section remains unchanged
gr.Markdown("## A collection of useful video tools.")
with gr.Tabs():
with gr.TabItem("Frame Tools"):
with gr.Tabs():
with gr.TabItem("Extract First & Last"):
gr.Markdown("### Extract the very first and very last frames of a video.")
with gr.Row():
with gr.Column():
input_video_fl = gr.Video(label="Input Video")
extract_fl_btn = gr.Button("π¬ Extract Frames", variant="primary")
with gr.Column():
output_gallery_fl = gr.Gallery(label="Output Frames (First, Last)", show_label=True, columns=2, object_fit="contain", height="auto")
extract_fl_btn.click(fn=extract_first_last_frame, inputs=input_video_fl, outputs=output_gallery_fl)
with gr.TabItem("Extract All Frames"):
gr.Markdown("### Extract all individual frames from a video file.")
with gr.Row():
with gr.Column():
input_video_v2f = gr.Video(label="Input Video")
v2f_fps_display = gr.Textbox(label="Detected FPS", interactive=False, value="N/A")
with gr.Accordion("βοΈ Advanced Options", open=False):
v2f_skip_rate = gr.Slider(1, 30, 1, step=1, label="Extract Every Nth Frame")
v2f_rotation = gr.Dropdown(["None", "90 Degrees Clockwise", "90 Degrees Counter-Clockwise", "180 Degrees"], value="None", label="Rotation")
v2f_format = gr.Radio(["PNG", "JPG"], value="PNG", label="Output Format")
v2f_jpg_quality = gr.Slider(1, 100, 95, step=1, label="JPG Quality", interactive=False)
v2f_resize = gr.Checkbox(label="Resize all extracted frames", value=False)
with gr.Row():
v2f_width = gr.Number(label="Output Width", value=1024, interactive=False)
v2f_height = gr.Number(label="Output Height", value=576, interactive=False)
extract_v2f_btn = gr.Button("ποΈ Extract All Frames", variant="primary")
with gr.Column():
output_gallery_v2f = gr.Gallery(label="Extracted Frames Preview (max 100 shown)", show_label=True, columns=8, object_fit="contain", height="auto")
output_zip_v2f = gr.File(label="Download All Frames (.zip)", interactive=False)
input_video_v2f.upload(lambda v: f"{get_video_fps(v):.2f} FPS", input_video_v2f, v2f_fps_display)
v2f_resize.change(lambda x: [gr.update(interactive=x), gr.update(interactive=x)], v2f_resize, [v2f_width, v2f_height])
v2f_format.change(lambda x: gr.update(interactive=(x=="JPG")), v2f_format, v2f_jpg_quality)
extract_v2f_btn.click(video_to_frames_extractor, [input_video_v2f, v2f_skip_rate, v2f_rotation, v2f_resize, v2f_width, v2f_height, v2f_format, v2f_jpg_quality], [output_gallery_v2f, output_zip_v2f])
with gr.TabItem("Frames to Video"):
gr.Markdown("### Compile a sequence of image frames into a video file.")
with gr.Row():
with gr.Column():
input_frames_f2v = gr.File(label="Upload Frames", file_count="multiple", file_types=["image"])
fps_slider_f2v = gr.Slider(1, 60, 24, step=1, label="FPS")
with gr.Accordion("βοΈ Advanced Options", open=False):
f2v_rotation = gr.Dropdown(["None", "90 Degrees Clockwise", "90 Degrees Counter-Clockwise", "180 Degrees"], value="None", label="Rotation")
f2v_resize = gr.Checkbox(label="Resize all frames", value=False)
with gr.Row():
f2v_width = gr.Number(label="Output Width", value=1024, interactive=False)
f2v_height = gr.Number(label="Output Height", value=576, interactive=False)
compile_f2v_btn = gr.Button("π½οΈ Create Video", variant="primary")
with gr.Column():
output_video_f2v = gr.Video(label="Compiled Video", interactive=True, show_download_button=True)
f2v_resize.change(lambda x: [gr.update(interactive=x), gr.update(interactive=x)], f2v_resize, [f2v_width, f2v_height])
compile_f2v_btn.click(create_video_from_frames, [input_frames_f2v, fps_slider_f2v, f2v_rotation, f2v_resize, f2v_width, f2v_height], output_video_f2v)
with gr.TabItem("Join Videos"):
gr.Markdown("### Concatenate multiple video files into one.")
gr.Info("Add one or more videos to the queue. You can optionally add a new audio track, which will replace any existing audio.")
join_video_list_state = gr.State([])
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("#### Video Queue")
join_video_df = gr.DataFrame(headers=["Order", "Filename"], datatype=["number", "str"], interactive=False)
with gr.Row():
join_up_btn = gr.Button("β¬οΈ Move Up", interactive=False)
join_down_btn = gr.Button("β¬οΈ Move Down", interactive=False)
join_remove_btn = gr.Button("ποΈ Remove Selected", interactive=False)
join_selected_index_state = gr.State(-1)
with gr.Column(scale=1):
gr.Markdown("#### Controls & Preview")
input_videos_join = gr.File(label="Upload Videos to Add", file_count="multiple", file_types=["video"])
join_preview_gallery = gr.Gallery(label="Selection Preview (First & Last Frame)", columns=2, height=150, object_fit="contain", interactive=False)
input_audio_join = gr.Audio(label="Add Audio Track (Optional)", type="filepath")
join_btn = gr.Button("π€ Join Videos", variant="primary")
clear_join_btn = gr.Button("Clear List")
output_video_join = gr.Video(label="Joined Video", interactive=True, show_download_button=True)
input_videos_join.upload(add_videos_to_join_list, [input_videos_join, join_video_list_state], join_video_list_state)
join_video_list_state.change(update_video_queue_df, join_video_list_state, join_video_df)
join_video_df.select(get_video_start_end_frames_for_preview, [join_video_list_state], [join_preview_gallery, join_selected_index_state, join_up_btn, join_down_btn, join_remove_btn])
join_up_btn.click(handle_video_list_action, [join_video_list_state, join_selected_index_state, gr.State("up")], [join_video_list_state, join_preview_gallery])
join_down_btn.click(handle_video_list_action, [join_video_list_state, join_selected_index_state, gr.State("down")], [join_video_list_state, join_preview_gallery])
join_remove_btn.click(handle_video_list_action, [join_video_list_state, join_selected_index_state, gr.State("remove")], [join_video_list_state, join_preview_gallery])
clear_join_btn.click(lambda: ([], None, None, None), outputs=[join_video_list_state, join_video_df, join_preview_gallery, input_audio_join])
join_btn.click(join_videos_from_list, [join_video_list_state, input_audio_join], output_video_join)
with gr.TabItem("Editing & Effects"):
with gr.Tabs():
with gr.TabItem("Manipulate Video"):
gr.Markdown("### Simple Video Manipulation")
gr.Info("Apply a single transformation like inverting colors, flipping, or rotating to every frame of a video.")
with gr.Row():
with gr.Column():
vmanip_input_video = gr.Video(label="Input Video")
vmanip_operation_radio = gr.Radio(
["Invert Colors", "Flip Horizontal", "Flip Vertical", "Rotate 90Β° Right", "Rotate 90Β° Left"],
label="Select Operation", value="Invert Colors"
)
vmanip_apply_btn = gr.Button("β¨ Apply Manipulation", variant="primary")
with gr.Column():
vmanip_output_video = gr.Video(label="Output Video", interactive=True)
vmanip_apply_btn.click(fn=manipulate_video, inputs=[vmanip_input_video, vmanip_operation_radio], outputs=vmanip_output_video)
with gr.TabItem("Beat Sync Editor"):
gr.Markdown("### Automatically edit video clips to the beat of a song.")
gr.Info("Add videos, select to see a preview. Choose rhythm and slicing strategy.")
beatsync_video_list_state = gr.State([])
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("#### Video Source Queue (in order)")
bs_video_df = gr.DataFrame(headers=["Order", "Filename"], datatype=["number", "str"], interactive=False)
with gr.Row():
bs_up_btn = gr.Button("β¬οΈ Move Up", interactive=False)
bs_down_btn = gr.Button("β¬οΈ Move Down", interactive=False)
bs_remove_btn = gr.Button("ποΈ Remove Selected", interactive=False)
bs_selected_index_state = gr.State(-1)
with gr.Column(scale=1):
gr.Markdown("#### Controls, Settings & Preview")
input_videos_bs = gr.File(label="Upload Videos to Add", file_count="multiple", file_types=["video"])
bs_preview_gallery = gr.Gallery(label="Selection Preview (First & Last Frame)", columns=2, height=150, object_fit="contain", interactive=False)
input_audio_bs = gr.Audio(label="Upload Music Track", type="filepath")
with gr.Accordion("βοΈ Advanced Sync & Slicing Settings", open=True):
gr.Markdown("##### Step 1: Choose Rhythm Source")
rhythm_source_bs = gr.Radio(["Detect Beats (dynamic)", "Generate Rhythmic Grid (BPM-based)"], value="Detect Beats (dynamic)", label="Rhythm Source")
with gr.Group(visible=True) as beat_detect_group:
beat_sensitivity_bs = gr.Slider(50, 200, 100, step=10, label="Beat Detection Sensitivity")
with gr.Group(visible=False) as rhythmic_grid_group:
cuts_per_measure_bs = gr.Dropdown([("1 (Whole Note)", 1), ("2 (Half Notes)", 2), ("3 (Triplets)", 3), ("4 (Quarter Notes/Beat)", 4), ("8 (Eighth Notes)", 8)], value=4, label="Cuts Per Measure")
gr.Markdown("##### Step 2: Choose Slicing Strategy")
slicing_method_bs = gr.Radio(["Cut to Fit", "Slowdown to Fit"], value="Cut to Fit", label="Clip Slicing Method")
max_slowdown_clip_duration_bs = gr.Slider(0.2, 5.0, 1.5, step=0.1, label="Max Original Clip Duration for Slowdown (s)", visible=False)
gr.Markdown("##### Step 3: General Options")
min_clip_duration_bs = gr.Slider(0.1, 2.0, 0.4, step=0.05, label="Minimum Beat Interval (s)")
loop_videos_bs = gr.Radio(["Loop videos", "End when videos run out"], value="Loop videos", label="If Music is Longer")
with gr.Row():
bs_generate_btn = gr.Button("πΆ Generate Beat-Synced Video", variant="primary", scale=2)
bs_clear_btn = gr.Button("Clear List")
output_video_bs = gr.Video(label="Beat-Synced Video", interactive=True, show_download_button=True)
input_videos_bs.upload(add_videos_to_join_list, [input_videos_bs, beatsync_video_list_state], beatsync_video_list_state)
beatsync_video_list_state.change(update_video_queue_df, beatsync_video_list_state, bs_video_df)
bs_video_df.select(get_video_start_end_frames_for_preview, [beatsync_video_list_state], [bs_preview_gallery, bs_selected_index_state, bs_up_btn, bs_down_btn, bs_remove_btn])
bs_up_btn.click(handle_video_list_action, [beatsync_video_list_state, bs_selected_index_state, gr.State("up")], [beatsync_video_list_state, bs_preview_gallery])
bs_down_btn.click(handle_video_list_action, [beatsync_video_list_state, bs_selected_index_state, gr.State("down")], [beatsync_video_list_state, bs_preview_gallery])
bs_remove_btn.click(handle_video_list_action, [beatsync_video_list_state, bs_selected_index_state, gr.State("remove")], [beatsync_video_list_state, bs_preview_gallery])
def toggle_rhythm_ui(c): return gr.update(visible=(c=="Detect Beats (dynamic)")), gr.update(visible=(c!="Detect Beats (dynamic)"))
rhythm_source_bs.change(toggle_rhythm_ui, rhythm_source_bs, [beat_detect_group, rhythmic_grid_group])
slicing_method_bs.change(lambda c: gr.update(visible=(c=="Slowdown to Fit")), slicing_method_bs, max_slowdown_clip_duration_bs)
bs_clear_btn.click(lambda: ([], None, None), outputs=[beatsync_video_list_state, bs_video_df, bs_preview_gallery])
bs_generate_btn.click(fn=create_beat_sync_video, inputs=[beatsync_video_list_state, input_audio_bs, rhythm_source_bs, beat_sensitivity_bs, cuts_per_measure_bs, min_clip_duration_bs, loop_videos_bs, slicing_method_bs, max_slowdown_clip_duration_bs], outputs=output_video_bs)
with gr.TabItem("Ping-Pong Effect"):
gr.Markdown("### Create a forward-then-reverse video loop (Boomerang).")
with gr.Row():
with gr.Column():
input_video_pingpong = gr.Video(label="Input Video")
audio_option_pingpong = gr.Radio(["Remove Audio", "Original Audio Only", "Reverse Audio"], value="Remove Audio", label="Audio Handling")
pingpong_btn = gr.Button("π Create Ping-Pong Video", variant="primary")
with gr.Column():
output_video_pingpong = gr.Video(label="Ping-Pong Video", interactive=True, show_download_button=True)
pingpong_btn.click(fn=ping_pong_video, inputs=[input_video_pingpong, audio_option_pingpong], outputs=output_video_pingpong)
with gr.TabItem("Reverse Video"):
gr.Markdown("### Reverse a video clip.")
with gr.Row():
with gr.Column():
input_video_reverse = gr.Video(label="Input Video")
audio_option_reverse = gr.Radio(["Remove Audio", "Reverse Audio"], value="Remove Audio", label="Audio Handling")
reverse_btn = gr.Button("π Reverse Video", variant="primary")
with gr.Column():
output_video_reverse = gr.Video(label="Reversed Video", interactive=True, show_download_button=True)
reverse_btn.click(fn=reverse_video, inputs=[input_video_reverse, audio_option_reverse], outputs=output_video_reverse)
with gr.TabItem("Visual Trimmer"):
gr.Markdown("### Visually trim a video. Use the player to find a frame, then set it as the start or end point.")
gr.Info("Keyboard hotkeys enabled: K = Play/Pause, J = Back 1 Frame, L = Forward 1 Frame")
with gr.Row():
with gr.Column(scale=2):
input_video_trim = gr.Video(label="Input Video", elem_id="video-trim-input")
with gr.Row():
set_start_btn = gr.Button("Set Current Frame as START")
set_end_btn = gr.Button("Set Current Frame as END")
trim_btn = gr.Button("βοΈ Trim Video", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Trim Points")
start_frame_img = gr.Image(label="Start Frame", interactive=False)
trim_start_time_display = gr.Textbox(label="Start Time (s)", interactive=False)
end_frame_img = gr.Image(label="End Frame", interactive=False)
trim_end_time_display = gr.Textbox(label="End Time (s)", interactive=False)
trim_start_time = gr.Number(value=0, visible=False)
trim_end_time = gr.Number(value=0, visible=False)
trim_video_fps = gr.Number(value=24.0, visible=False, elem_id="video-trim-fps")
with gr.Row():
output_video_trim = gr.Video(label="Trimmed Video", interactive=True, show_download_button=True)
get_current_time_js = """()=>{const e=document.querySelector("#video-trim-input video");return e?e.currentTime:0}"""
def get_frame_from_time_wrapper(v,t): return get_frame_at_time(v,t), f"{t:.3f}"
input_video_trim.upload(fn=get_video_fps, inputs=input_video_trim, outputs=trim_video_fps)
set_start_btn.click(fn=None, js=get_current_time_js, outputs=[trim_start_time])
set_end_btn.click(fn=None, js=get_current_time_js, outputs=[trim_end_time])
trim_start_time.change(fn=get_frame_from_time_wrapper, inputs=[input_video_trim, trim_start_time], outputs=[start_frame_img, trim_start_time_display])
trim_end_time.change(fn=get_frame_from_time_wrapper, inputs=[input_video_trim, trim_end_time], outputs=[end_frame_img, trim_end_time_display])
trim_btn.click(fn=trim_video, inputs=[input_video_trim, trim_start_time, trim_end_time], outputs=output_video_trim)
input_video_trim.clear(fn=lambda: (None, "0.00", None, "0.00", 0, 0, 24.0), outputs=[start_frame_img, trim_start_time_display, end_frame_img, trim_end_time_display, trim_start_time, trim_end_time, trim_video_fps])
with gr.TabItem("Crop & Resize"):
gr.Markdown("### Visually crop a video.")
with gr.Row():
with gr.Column(scale=2):
crop_input_video = gr.Video(label="Input Video")
crop_preview_image = gr.Image(label="Frame Preview", interactive=False)
with gr.Column(scale=1):
gr.Markdown("#### Crop Settings")
with gr.Row():
crop_w = gr.Number(label="Width", value=1280)
crop_h = gr.Number(label="Height", value=720)
with gr.Row():
crop_x = gr.Number(label="Offset X", value=0)
crop_y = gr.Number(label="Offset Y", value=0)
gr.Markdown("#### Options")
crop_btn = gr.Button("βοΈ Crop Video", variant="primary")
with gr.Accordion("Optional: Resize after cropping", open=False):
crop_do_resize = gr.Checkbox(label="Enable Resizing", value=False)
crop_resize_w = gr.Number(label="Output Width", value=1024, interactive=False)
crop_resize_h = gr.Number(label="Output Height", value=576, interactive=False)
output_video_crop = gr.Video(label="Cropped Video", interactive=True, show_download_button=True)
crop_input_video.upload(fn=get_frame_at_time, inputs=crop_input_video, outputs=crop_preview_image)
crop_do_resize.change(lambda x: [gr.update(interactive=x), gr.update(interactive=x)], inputs=crop_do_resize, outputs=[crop_resize_w, crop_resize_h])
crop_btn.click(fn=crop_video, inputs=[crop_input_video, crop_x, crop_y, crop_w, crop_h, crop_do_resize, crop_resize_w, crop_resize_h], outputs=output_video_crop)
with gr.TabItem("Change Speed"):
gr.Markdown("### Create slow-motion or fast-forward videos.")
with gr.Row():
with gr.Column():
input_video_speed = gr.Video(label="Input Video")
speed_multiplier = gr.Slider(0.1, 10.0, 1.0, step=0.1, label="Speed Multiplier")
speed_btn = gr.Button("π Change Speed", variant="primary")
with gr.Column():
output_video_speed = gr.Video(label="Modified Video", interactive=True, show_download_button=True)
speed_btn.click(fn=change_video_speed, inputs=[input_video_speed, speed_multiplier], outputs=output_video_speed)
with gr.TabItem("Effects & Overlays"):
with gr.Tabs():
with gr.TabItem("Video Fader"):
gr.Markdown("### Apply Fade-In and/or Fade-Out to a Video")
with gr.Row():
with gr.Column():
fade_input_video = gr.Video(label="Input Video")
with gr.Row():
fade_in_slider = gr.Slider(0.0, 10.0, 1.0, step=0.1, label="Fade-In Duration (s)")
fade_out_slider = gr.Slider(0.0, 10.0, 1.0, step=0.1, label="Fade-Out Duration (s)")
fade_video_btn = gr.Button("β¨ Apply Fade", variant="primary")
with gr.Column():
fade_output_video = gr.Video(label="Faded Video", interactive=True)
fade_video_btn.click(apply_video_fade, [fade_input_video, fade_in_slider, fade_out_slider], fade_output_video)
with gr.TabItem("Background Remover"):
gr.Markdown("## Video Background Remover")
gr.Warning("This is a very slow process. A short video can take several minutes. Output is a .webm file.")
with gr.Row():
with gr.Column():
vbg_input_video = gr.Video(label="Input Video")
vbg_btn = gr.Button("βοΈ Remove Video Background", variant="primary")
with gr.Column():
vbg_output_video = gr.Video(label="Output Video with Transparency (.webm)", interactive=True)
vbg_btn.click(remove_video_background, vbg_input_video, vbg_output_video)
with gr.TabItem("Text Watermark"):
gr.Markdown("### Apply a text watermark to a video.")
with gr.Row():
with gr.Column():
wm_input_video = gr.Video(label="Input Video")
wm_text = gr.Textbox(label="Watermark Text", placeholder="(c) My Video 2025")
wm_pos = gr.Radio(["Top-Left", "Top-Right", "Bottom-Left", "Bottom-Right", "Center"], value="Bottom-Right", label="Position")
wm_opacity = gr.Slider(0, 100, 70, step=1, label="Opacity (%)")
with gr.Accordion("Advanced Options", open=False):
wm_size = gr.Slider(1, 10, 5, step=1, label="Relative Font Size")
wm_color = gr.ColorPicker(value="#FFFFFF", label="Font Color")
wm_btn = gr.Button("ποΈ Apply Watermark", variant="primary")
with gr.Column():
wm_output_video = gr.Video(label="Watermarked Video", interactive=True)
wm_btn.click(apply_video_watermark, [wm_input_video, wm_text, wm_pos, wm_opacity, wm_size, wm_color], wm_output_video)
with gr.TabItem("Create GIF"):
gr.Markdown("### Convert a video clip into a high-quality animated GIF.")
with gr.Row():
with gr.Column():
input_video_gif = gr.Video(label="Input Video")
with gr.Row():
gif_start_time = gr.Number(value=0, label="Start Time (s)")
gif_end_time = gr.Number(value=0, label="End Time (s)", info="Set to 0 for full duration")
gif_btn = gr.Button("πΌοΈ Create GIF", variant="primary")
with gr.Column():
output_gif = gr.Image(label="Output GIF", interactive=True)
gif_btn.click(create_gif_from_video, [input_video_gif, gif_start_time, gif_end_time], output_gif)
with gr.TabItem("Audio & Transcription"):
with gr.Tabs():
with gr.TabItem("Add Audio to Video"):
gr.Markdown("### Combine a silent video with an audio file.")
with gr.Row():
with gr.Column():
input_video_audio = gr.Video(label="Input Video")
input_audio = gr.Audio(type="filepath", label="Input Audio")
add_audio_btn = gr.Button("πΆ Add Audio", variant="primary")
with gr.Column():
output_video_audio = gr.Video(label="Final Video with Audio", interactive=True, show_download_button=True)
add_audio_btn.click(add_audio_to_video, [input_video_audio, input_audio], output_video_audio)
with gr.TabItem("Extract Audio from Video"):
gr.Markdown("### Strip the audio track from a video file.")
with gr.Row():
with gr.Column():
extract_audio_input_video = gr.Video(label="Input Video")
extract_audio_format = gr.Dropdown(["mp3", "wav", "aac"], value="mp3", label="Output Audio Format")
extract_audio_btn = gr.Button("π΅ Extract Audio", variant="primary")
with gr.Column():
extract_audio_output = gr.Audio(label="Extracted Audio", type="filepath")
extract_audio_btn.click(extract_audio, [extract_audio_input_video, extract_audio_format], extract_audio_output)
with gr.TabItem("Audio Trimmer & Fader"):
gr.Markdown("### Trim and Apply Fades to an Audio File")
gr.Info("Set start/end times to trim the clip, then apply optional fades.")
with gr.Row():
with gr.Column():
audio_trim_input = gr.Audio(type="filepath", label="Input Audio")
with gr.Row():
audio_start_time = gr.Number(label="Start Time (s)", value=0)
audio_end_time = gr.Number(label="End Time (s)", info="Set to 0 for full duration")
with gr.Row():
audio_fade_in = gr.Slider(0.0, 10.0, 0.5, step=0.1, label="Fade-In Duration (s)")
audio_fade_out = gr.Slider(0.0, 10.0, 1.0, step=0.1, label="Fade-Out Duration (s)")
audio_trim_fade_btn = gr.Button("βοΈ Process Audio", variant="primary")
with gr.Column():
audio_trim_output = gr.Audio(label="Processed Audio", type="filepath")
audio_trim_fade_btn.click(trim_and_fade_audio, [audio_trim_input, audio_start_time, audio_end_time, audio_fade_in, audio_fade_out], audio_trim_output)
with gr.TabItem("Transcribe Audio/Video", visible=(whisper is not None)):
gr.Markdown("## Transcribe Speech and Burn Subtitles")
gr.Info("Uses OpenAI's Whisper model. First run will download model files. After transcribing a video, options to burn subtitles will appear.")
transcribed_video_path_state = gr.State(None)
with gr.Row():
with gr.Column():
transcribe_input = gr.File(label="Upload Video or Audio File", file_types=["video", "audio"])
transcribe_model = gr.Dropdown(["tiny", "base", "small", "medium", "large"], value="base", label="Whisper Model Size")
transcribe_btn = gr.Button("ποΈ Transcribe", variant="primary")
with gr.Column():
transcribe_text = gr.Textbox(label="Transcription Result", lines=10, interactive=True)
transcribe_files = gr.File(label="Download Subtitle Files (.srt, .vtt)", file_count="multiple", interactive=False)
with gr.Accordion("π₯ Burn Subtitles onto Video", open=True, visible=False) as burn_accordion:
gr.Markdown("Set styling and burn the generated subtitles into the video.")
with gr.Row():
burn_font_size = gr.Slider(1, 10, 5, step=1, label="Relative Font Size")
burn_font_color = gr.ColorPicker(value="#FFFFFF", label="Font Color")
burn_btn = gr.Button("π₯ Burn Subtitles", variant="primary")
burn_output_video = gr.Video(label="Video with Burned-in Subtitles", interactive=True)
transcribe_btn.click(
fn=transcribe_and_prep_burn,
inputs=[transcribe_input, transcribe_model],
outputs=[transcribe_text, transcribe_files, transcribed_video_path_state, burn_accordion]
)
burn_btn.click(
fn=burn_subtitles,
inputs=[transcribed_video_path_state, transcribe_files, burn_font_size, burn_font_color],
outputs=burn_output_video
)
with gr.TabItem("ControlNet Tools"):
gr.Markdown("## ControlNet Preprocessing")
with gr.Tabs():
with gr.TabItem("Process a Video"):
gr.Markdown("### Convert a Video into a ControlNet-Ready Map")
with gr.Row():
with gr.Column():
input_video_cn = gr.Video(label="Input Video")
detector_dropdown_cn = gr.Dropdown(choices=list(DETECTOR_CONFIG.keys()), value="Canny", label="Choose Detector")
process_btn_cn = gr.Button("β¨ Process Video", variant="primary")
with gr.Column():
output_video_cn = gr.Video(label="Output ControlNet Video", interactive=True, show_download_button=True)
process_btn_cn.click(fn=process_video_with_detector, inputs=[input_video_cn, detector_dropdown_cn], outputs=output_video_cn)
with gr.TabItem("Process Batch Images"):
gr.Markdown("### Generate ControlNet Maps from one or more images.")
with gr.Row():
with gr.Column():
input_images_cn = gr.File(label="Upload Images or Folder", file_count="multiple", file_types=["image"])
detector_dropdown_img = gr.Dropdown(choices=list(DETECTOR_CONFIG.keys()), value="Canny", label="Choose Detector")
process_btn_img = gr.Button("β¨ Process Images", variant="primary")
with gr.Column():
output_gallery_cn = gr.Gallery(label="Output ControlNet Images", show_label=True, columns=4, object_fit="contain", height="auto")
output_zip_cn = gr.File(label="Download All as .zip", interactive=False)
process_btn_img.click(fn=process_batch_images_with_detector, inputs=[input_images_cn, detector_dropdown_img], outputs=[output_gallery_cn, output_zip_cn])
with gr.TabItem("Converter & Compressor"):
gr.Markdown("## Universal Video Converter & Compressor")
gr.Info("Convert your video to a different format, change the codec, reduce the quality to save space, or downscale the resolution.")
with gr.Row():
with gr.Column():
conv_input_video = gr.Video(label="Input Video")
conv_btn = gr.Button("βοΈ Convert & Compress", variant="primary")
conv_output_video = gr.Video(label="Converted Video", interactive=True, show_download_button=True)
with gr.Column():
gr.Markdown("#### Output Settings")
with gr.Row():
conv_format = gr.Dropdown(["mp4", "mkv", "webm", "mov"], value="mp4", label="Output Format")
conv_vcodec = gr.Dropdown(["libx264", "libx265", "vp9"], value="libx264", label="Video Codec")
conv_crf = gr.Slider(minimum=18, maximum=30, value=23, step=1, label="Quality (CRF)", info="Lower = higher quality/size, Higher = lower quality/size. 23 is a good default.")
conv_scale = gr.Dropdown(["Original", "1080p", "720p", "480p"], value="Original", label="Downscale Resolution (optional)")
gr.Markdown("##### Audio Settings")
with gr.Row():
conv_acodec = gr.Dropdown(["copy", "aac", "opus"], value="copy", label="Audio Codec", info="'copy' is fastest and preserves quality.")
conv_abitrate = gr.Dropdown([96, 128, 192, 256, 320], value=192, label="Audio Bitrate (kbps)", interactive=False)
conv_acodec.change(lambda x: gr.update(interactive=(x != "copy")), conv_acodec, conv_abitrate)
conv_btn.click(fn=convert_compress_video, inputs=[conv_input_video, conv_format, conv_vcodec, conv_crf, conv_scale, conv_acodec, conv_abitrate], outputs=conv_output_video)
with gr.TabItem("Transfer"):
gr.Markdown("## Image & Link Transfer Utility")
gr.Info("Drop images below, manage URL presets, and open the target application in a new tab.")
link_presets = gr.State(DEFAULT_LINK_PRESETS.copy())
with gr.Row():
with gr.Column(scale=1):
transfer_gallery = gr.Gallery(label="Drop Images Here", height=300, columns=3, object_fit="contain")
with gr.Column(scale=2):
gr.Markdown("### Link Preset Management")
target_url = gr.Textbox(label="Target URL", value="https://huggingface.co/spaces/bep40/FramePack_rotate_landscape", interactive=True, elem_id="transfer_target_url")
search_bar = gr.Textbox(label="Search Presets", placeholder="Type to filter...", interactive=True)
with gr.Row():
preset_dropdown = gr.Dropdown(
label="Load Link Preset",
choices=sorted(list(DEFAULT_LINK_PRESETS.keys())),
interactive=True
)
delete_preset_btn = gr.Button("ποΈ Delete", variant="stop")
with gr.Accordion("Create a new preset", open=False):
with gr.Row():
new_preset_name = gr.Textbox(label="New Preset Name", placeholder="e.g., My Favorite App")
save_preset_btn = gr.Button("πΎ Save")
open_link_btn = gr.Button("π Open in New Tab", variant="primary")
search_bar.input(fn=filter_presets, inputs=[search_bar, link_presets], outputs=[preset_dropdown])
preset_dropdown.change(fn=load_preset, inputs=[link_presets, preset_dropdown], outputs=[target_url])
save_preset_btn.click(
fn=save_preset, inputs=[link_presets, new_preset_name, target_url], outputs=[link_presets, preset_dropdown]
).then(lambda: ("", ""), outputs=[new_preset_name, search_bar])
delete_confirm_js = """(name) => { if (!name) { alert('Please select a preset to delete.'); return false; } return confirm(`Are you sure you want to delete the preset: '` + name + `'?`); }"""
delete_preset_btn.click(fn=None, js=delete_confirm_js, inputs=[preset_dropdown]).then(
fn=delete_preset, inputs=[link_presets, preset_dropdown], outputs=[link_presets, preset_dropdown, target_url]
).then(lambda: "", outputs=[search_bar])
open_link_btn.click(fn=None, js="()=>{const url=document.getElementById('transfer_target_url').querySelector('textarea').value;if(url){window.open(url,'_blank')}else{alert('Target URL is empty.')}}")
gr.HTML('<a href="https://linktr.ee/skylinkd" target="_blank" style="color: #a0aec0; text-decoration: none;">skylinkd production 2025 (c)</a>', elem_id="custom-footer")
if __name__ == "__main__":
if os.path.exists(TEMP_DIR):
try: shutil.rmtree(TEMP_DIR)
except OSError as e: print(f"Error removing temp directory {TEMP_DIR}: {e}")
os.makedirs(TEMP_DIR, exist_ok=True)
demo.launch(inbrowser=True)
|