smiquensi's picture
Update app.py
6d148d5 verified
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent
from smolagents.models import InferenceClientModel
from smolagents.tools import DuckDuckGoSearchTool
# --- Agente Inteligente usando flan-t5-large + DuckDuckGo ---
class BasicAgent:
def __init__(self):
model = InferenceClientModel(model_id="google/flan-t5-large")
tools = [DuckDuckGoSearchTool()]
self.agent = CodeAgent(model=model, tools=tools, add_base_tools=False, max_steps=5)
print("🤖 Agente inteligente inicializado.")
def __call__(self, question: str) -> str:
print(f"❓ Pregunta recibida: {question[:50]}...")
try:
answer = self.agent.run(question).strip()
print(f"✅ Respuesta generada: {answer}")
return answer
except Exception as e:
print(f"❌ Error del agente: {e}")
return f"AGENT ERROR: {e}"
# --- Evaluación y envío GAIA ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"👤 Usuario: {username}")
else:
return "⚠️ Por favor, inicia sesión en Hugging Face antes de enviar.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
agent = BasicAgent()
except Exception as e:
return f"❌ Error al crear el agente: {e}", None
# Descargar preguntas
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"❌ Error al descargar preguntas: {e}", None
# Responder preguntas
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
# Enviar respuestas
submission_data = {
"username": username,
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"✅ ¡Envío realizado con éxito!\n"
f"👤 Usuario: {result_data.get('username')}\n"
f"📊 Puntuación: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correctas)\n"
f"📬 Mensaje: {result_data.get('message', 'Sin mensaje.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"❌ Error durante el envío: {e}", pd.DataFrame(results_log)
# --- Interfaz Gradio ---
with gr.Blocks() as demo:
gr.Markdown("# 🧠 Evaluador Agente GAIA - Curso Hugging Face")
gr.Markdown("""
1. Inicia sesión en Hugging Face.
2. Pulsa el botón para ejecutar tu agente y enviar las respuestas.
3. Espera unos minutos y revisa la puntuación.
""")
gr.LoginButton()
run_button = gr.Button("▶️ Ejecutar y Enviar Respuestas")
status_output = gr.Textbox(label="Resultado", lines=6, interactive=False)
results_table = gr.DataFrame(label="Respuestas Generadas")
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("🚀 Lanzando interfaz...")
demo.launch(debug=True)