Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,569 Bytes
07f1f64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
# Based on code from: https://github.com/zhenye234/xcodec
# Licensed under MIT License
# Modifications by BosonAI
import math
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Union, Sequence
import numpy as np
from transformers import AutoModel
import torchaudio
import json
import librosa
from huggingface_hub import snapshot_download
from vector_quantize_pytorch import ResidualFSQ
from .descriptaudiocodec.dac.model import dac as dac2
from .quantization.vq import ResidualVectorQuantizer
from .semantic_module import Encoder, Decoder
class EncodedResult:
def __init__(self, audio_codes):
self.audio_codes = audio_codes
class HiggsAudioFeatureExtractor(nn.Module):
def __init__(self, sampling_rate=16000):
super().__init__()
self.sampling_rate = sampling_rate
def forward(self, raw_audio, sampling_rate=16000, return_tensors="pt"):
# Convert from librosa to torch
audio_signal = torch.tensor(raw_audio)
audio_signal = audio_signal.unsqueeze(0)
if len(audio_signal.shape) < 3:
audio_signal = audio_signal.unsqueeze(0)
return {"input_values": audio_signal}
class HiggsAudioTokenizer(nn.Module):
def __init__(
self,
n_filters: int = 32,
D: int = 128,
target_bandwidths: Sequence[Union[int, float]] = [1, 1.5, 2, 4, 6],
ratios: Sequence[int] = [8, 5, 4, 2], # downsampling by 320
sample_rate: int = 16000,
bins: int = 1024,
n_q: int = 8,
codebook_dim: int = None,
normalize: bool = False,
causal: bool = False,
semantic_techer: str = "hubert_base_general",
last_layer_semantic: bool = True,
merge_mode: str = "concat",
downsample_mode: str = "step_down",
semantic_mode: str = "classic",
vq_scale: int = 1,
semantic_sample_rate: int = None,
device: str = "cuda",
):
super().__init__()
self.hop_length = np.prod(ratios)
self.semantic_techer = semantic_techer
self.frame_rate = math.ceil(sample_rate / np.prod(ratios)) # 50 Hz
self.target_bandwidths = target_bandwidths
self.n_q = n_q
self.sample_rate = sample_rate
self.encoder = dac2.Encoder(64, ratios, D)
self.decoder_2 = dac2.Decoder(D, 1024, ratios)
self.last_layer_semantic = last_layer_semantic
self.device = device
if semantic_techer == "hubert_base":
self.semantic_model = AutoModel.from_pretrained("facebook/hubert-base-ls960")
self.semantic_sample_rate = 16000
self.semantic_dim = 768
self.encoder_semantic_dim = 768
elif semantic_techer == "wavlm_base_plus":
self.semantic_model = AutoModel.from_pretrained("microsoft/wavlm-base-plus")
self.semantic_sample_rate = 16000
self.semantic_dim = 768
self.encoder_semantic_dim = 768
elif semantic_techer == "hubert_base_general":
self.semantic_model = AutoModel.from_pretrained("ZhenYe234/hubert_base_general_audio")
self.semantic_sample_rate = 16000
self.semantic_dim = 768
self.encoder_semantic_dim = 768
# Overwrite semantic model sr to ensure semantic_downsample_factor is an integer
if semantic_sample_rate is not None:
self.semantic_sample_rate = semantic_sample_rate
self.semantic_model.eval()
# make the semantic model parameters do not need gradient
for param in self.semantic_model.parameters():
param.requires_grad = False
self.semantic_downsample_factor = int(self.hop_length / (self.sample_rate / self.semantic_sample_rate) / 320)
self.quantizer_dim = int((D + self.encoder_semantic_dim) // vq_scale)
self.encoder_semantic = Encoder(input_channels=self.semantic_dim, encode_channels=self.encoder_semantic_dim)
self.decoder_semantic = Decoder(
code_dim=self.encoder_semantic_dim,
output_channels=self.semantic_dim,
decode_channels=self.semantic_dim,
)
# out_D=D+768
if isinstance(bins, int): # RVQ
self.quantizer = ResidualVectorQuantizer(
dimension=self.quantizer_dim,
codebook_dim=codebook_dim,
n_q=n_q,
bins=bins,
)
self.quantizer_type = "RVQ"
else: # RFSQ
self.quantizer = ResidualFSQ(dim=self.quantizer_dim, levels=bins, num_quantizers=n_q)
self.quantizer_type = "RFSQ"
self.fc_prior = nn.Linear(D + self.encoder_semantic_dim, self.quantizer_dim)
self.fc_post1 = nn.Linear(self.quantizer_dim, self.encoder_semantic_dim)
self.fc_post2 = nn.Linear(self.quantizer_dim, D)
self.downsample_mode = downsample_mode
if downsample_mode == "avg":
self.semantic_pooling = nn.AvgPool1d(
kernel_size=self.semantic_downsample_factor,
stride=self.semantic_downsample_factor,
)
self.audio_tokenizer_feature_extractor = HiggsAudioFeatureExtractor(sampling_rate=self.sample_rate)
@property
def tps(self):
return self.frame_rate
@property
def sampling_rate(self):
return self.sample_rate
@property
def num_codebooks(self):
return self.n_q
@property
def codebook_size(self):
return self.quantizer_dim
def get_last_layer(self):
return self.decoder.layers[-1].weight
def calculate_rec_loss(self, rec, target):
target = target / target.norm(dim=-1, keepdim=True)
rec = rec / rec.norm(dim=-1, keepdim=True)
rec_loss = (1 - (target * rec).sum(-1)).mean()
return rec_loss
@torch.no_grad()
def get_regress_target(self, x):
x = torchaudio.functional.resample(x, self.sample_rate, self.semantic_sample_rate)
if (
self.semantic_techer == "hubert_base"
or self.semantic_techer == "hubert_base_general"
or self.semantic_techer == "wavlm_base_plus"
):
x = x[:, 0, :]
x = F.pad(x, (160, 160))
target = self.semantic_model(x, output_hidden_states=True).hidden_states
target = torch.stack(target, dim=1) # .transpose(-1, -2)#.flatten(start_dim=1, end_dim=2)
# average for all layers
target = target.mean(1)
# target = target[9]
# if self.hop_length > 320:
# target = self.semantic_pooling(target.transpose(1, 2)).transpose(1, 2)
elif self.semantic_techer == "w2v_bert2":
target = self.semantic_model(x)
elif self.semantic_techer.startswith("whisper"):
if self.last_layer_semantic:
target = self.semantic_model(x, avg_layers=False)
else:
target = self.semantic_model(x, avg_layers=True)
elif self.semantic_techer.startswith("mert_music"):
if self.last_layer_semantic:
target = self.semantic_model(x, avg_layers=False)
else:
target = self.semantic_model(x, avg_layers=True)
elif self.semantic_techer.startswith("qwen_audio_omni"):
target = self.semantic_model(x)
if self.downsample_mode == "step_down":
if self.semantic_downsample_factor > 1:
target = target[:, :: self.semantic_downsample_factor, :]
elif self.downsample_mode == "avg":
target = self.semantic_pooling(target.transpose(1, 2)).transpose(1, 2)
return target
def forward(self, x: torch.Tensor, bw: int):
e_semantic_input = self.get_regress_target(x).detach()
e_semantic = self.encoder_semantic(e_semantic_input.transpose(1, 2))
e_acoustic = self.encoder(x)
e = torch.cat([e_acoustic, e_semantic], dim=1)
e = self.fc_prior(e.transpose(1, 2))
if self.quantizer_type == "RVQ":
e = e.transpose(1, 2)
quantized, codes, bandwidth, commit_loss = self.quantizer(e, self.frame_rate, bw)
quantized = quantized.transpose(1, 2)
else:
quantized, codes = self.quantizer(e)
commit_loss = torch.tensor(0.0)
quantized_semantic = self.fc_post1(quantized).transpose(1, 2)
quantized_acoustic = self.fc_post2(quantized).transpose(1, 2)
o = self.decoder_2(quantized_acoustic)
o_semantic = self.decoder_semantic(quantized_semantic)
semantic_recon_loss = F.mse_loss(e_semantic_input.transpose(1, 2).detach(), o_semantic)
return o, commit_loss, semantic_recon_loss, None
def encode(
self,
audio_path_or_wv,
sr=None,
loudness_normalize=False,
loudness_threshold=-23.0,
):
if isinstance(audio_path_or_wv, str):
wv, sr = librosa.load(audio_path_or_wv, mono=True, sr=None)
else:
wv = audio_path_or_wv
assert sr is not None
if loudness_normalize:
import pyloudnorm as pyln
meter = pyln.Meter(sr)
l = meter.integrated_loudness(wv)
wv = pyln.normalize.loudness(wv, l, loudness_threshold)
if sr != self.sampling_rate:
wv = librosa.resample(wv, orig_sr=sr, target_sr=self.sampling_rate)
if self.audio_tokenizer_feature_extractor is not None:
inputs = self.audio_tokenizer_feature_extractor(
raw_audio=wv,
sampling_rate=self.audio_tokenizer_feature_extractor.sampling_rate,
return_tensors="pt",
)
input_values = inputs["input_values"].to(self.device)
else:
input_values = torch.from_numpy(wv).float().unsqueeze(0)
with torch.no_grad():
encoder_outputs = self._xcodec_encode(input_values)
vq_code = encoder_outputs.audio_codes[0]
return vq_code
def _xcodec_encode(self, x: torch.Tensor, target_bw: Optional[int] = None) -> torch.Tensor:
bw = target_bw
e_semantic_input = self.get_regress_target(x).detach()
e_semantic = self.encoder_semantic(e_semantic_input.transpose(1, 2))
e_acoustic = self.encoder(x)
if e_acoustic.shape[2] != e_semantic.shape[2]:
pad_size = 160 * self.semantic_downsample_factor
e_acoustic = self.encoder(F.pad(x[:, 0, :], (pad_size, pad_size)).unsqueeze(0))
if e_acoustic.shape[2] != e_semantic.shape[2]:
if e_acoustic.shape[2] > e_semantic.shape[2]:
e_acoustic = e_acoustic[:, :, : e_semantic.shape[2]]
else:
e_semantic = e_semantic[:, :, : e_acoustic.shape[2]]
e = torch.cat([e_acoustic, e_semantic], dim=1)
e = self.fc_prior(e.transpose(1, 2))
if self.quantizer_type == "RVQ":
e = e.transpose(1, 2)
quantized, codes, bandwidth, commit_loss = self.quantizer(e, self.frame_rate, bw)
codes = codes.permute(1, 0, 2)
else:
quantized, codes = self.quantizer(e)
codes = codes.permute(0, 2, 1)
# return codes
return EncodedResult(codes)
def decode(self, vq_code: torch.Tensor) -> torch.Tensor:
if self.quantizer_type == "RVQ":
vq_code = vq_code.permute(1, 0, 2)
quantized = self.quantizer.decode(vq_code)
quantized = quantized.transpose(1, 2)
else:
vq_code = vq_code.permute(0, 2, 1)
quantized = self.quantizer.get_output_from_indices(vq_code)
quantized_acoustic = self.fc_post2(quantized).transpose(1, 2)
o = self.decoder_2(quantized_acoustic)
return o.cpu().numpy()
def load_higgs_audio_tokenizer(tokenizer_name_or_path, device="cuda"):
is_local = os.path.exists(tokenizer_name_or_path)
if not is_local:
tokenizer_path = snapshot_download(tokenizer_name_or_path)
else:
tokenizer_path = tokenizer_name_or_path
config_path = os.path.join(tokenizer_path, "config.json")
model_path = os.path.join(tokenizer_path, "model.pth")
config = json.load(open(config_path))
model = HiggsAudioTokenizer(
**config,
device=device,
)
parameter_dict = torch.load(model_path, map_location=device)
model.load_state_dict(parameter_dict, strict=False)
model.to(device)
model.eval()
return model
|