File size: 12,569 Bytes
07f1f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# Based on code from: https://github.com/zhenye234/xcodec
# Licensed under MIT License
# Modifications by BosonAI

import math
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Union, Sequence
import numpy as np
from transformers import AutoModel
import torchaudio
import json
import librosa
from huggingface_hub import snapshot_download

from vector_quantize_pytorch import ResidualFSQ
from .descriptaudiocodec.dac.model import dac as dac2
from .quantization.vq import ResidualVectorQuantizer
from .semantic_module import Encoder, Decoder


class EncodedResult:
    def __init__(self, audio_codes):
        self.audio_codes = audio_codes


class HiggsAudioFeatureExtractor(nn.Module):
    def __init__(self, sampling_rate=16000):
        super().__init__()
        self.sampling_rate = sampling_rate

    def forward(self, raw_audio, sampling_rate=16000, return_tensors="pt"):
        # Convert from librosa to torch
        audio_signal = torch.tensor(raw_audio)
        audio_signal = audio_signal.unsqueeze(0)
        if len(audio_signal.shape) < 3:
            audio_signal = audio_signal.unsqueeze(0)
        return {"input_values": audio_signal}


class HiggsAudioTokenizer(nn.Module):
    def __init__(
        self,
        n_filters: int = 32,
        D: int = 128,
        target_bandwidths: Sequence[Union[int, float]] = [1, 1.5, 2, 4, 6],
        ratios: Sequence[int] = [8, 5, 4, 2],  #  downsampling by 320
        sample_rate: int = 16000,
        bins: int = 1024,
        n_q: int = 8,
        codebook_dim: int = None,
        normalize: bool = False,
        causal: bool = False,
        semantic_techer: str = "hubert_base_general",
        last_layer_semantic: bool = True,
        merge_mode: str = "concat",
        downsample_mode: str = "step_down",
        semantic_mode: str = "classic",
        vq_scale: int = 1,
        semantic_sample_rate: int = None,
        device: str = "cuda",
    ):
        super().__init__()
        self.hop_length = np.prod(ratios)
        self.semantic_techer = semantic_techer

        self.frame_rate = math.ceil(sample_rate / np.prod(ratios))  # 50 Hz

        self.target_bandwidths = target_bandwidths
        self.n_q = n_q
        self.sample_rate = sample_rate
        self.encoder = dac2.Encoder(64, ratios, D)

        self.decoder_2 = dac2.Decoder(D, 1024, ratios)
        self.last_layer_semantic = last_layer_semantic
        self.device = device
        if semantic_techer == "hubert_base":
            self.semantic_model = AutoModel.from_pretrained("facebook/hubert-base-ls960")
            self.semantic_sample_rate = 16000
            self.semantic_dim = 768
            self.encoder_semantic_dim = 768

        elif semantic_techer == "wavlm_base_plus":
            self.semantic_model = AutoModel.from_pretrained("microsoft/wavlm-base-plus")
            self.semantic_sample_rate = 16000
            self.semantic_dim = 768
            self.encoder_semantic_dim = 768

        elif semantic_techer == "hubert_base_general":
            self.semantic_model = AutoModel.from_pretrained("ZhenYe234/hubert_base_general_audio")
            self.semantic_sample_rate = 16000
            self.semantic_dim = 768
            self.encoder_semantic_dim = 768

        # Overwrite semantic model sr to ensure semantic_downsample_factor is an integer
        if semantic_sample_rate is not None:
            self.semantic_sample_rate = semantic_sample_rate

        self.semantic_model.eval()

        # make the semantic model parameters do not need gradient
        for param in self.semantic_model.parameters():
            param.requires_grad = False

        self.semantic_downsample_factor = int(self.hop_length / (self.sample_rate / self.semantic_sample_rate) / 320)

        self.quantizer_dim = int((D + self.encoder_semantic_dim) // vq_scale)
        self.encoder_semantic = Encoder(input_channels=self.semantic_dim, encode_channels=self.encoder_semantic_dim)
        self.decoder_semantic = Decoder(
            code_dim=self.encoder_semantic_dim,
            output_channels=self.semantic_dim,
            decode_channels=self.semantic_dim,
        )

        # out_D=D+768
        if isinstance(bins, int):  # RVQ
            self.quantizer = ResidualVectorQuantizer(
                dimension=self.quantizer_dim,
                codebook_dim=codebook_dim,
                n_q=n_q,
                bins=bins,
            )
            self.quantizer_type = "RVQ"
        else:  # RFSQ
            self.quantizer = ResidualFSQ(dim=self.quantizer_dim, levels=bins, num_quantizers=n_q)
            self.quantizer_type = "RFSQ"

        self.fc_prior = nn.Linear(D + self.encoder_semantic_dim, self.quantizer_dim)
        self.fc_post1 = nn.Linear(self.quantizer_dim, self.encoder_semantic_dim)
        self.fc_post2 = nn.Linear(self.quantizer_dim, D)

        self.downsample_mode = downsample_mode
        if downsample_mode == "avg":
            self.semantic_pooling = nn.AvgPool1d(
                kernel_size=self.semantic_downsample_factor,
                stride=self.semantic_downsample_factor,
            )

        self.audio_tokenizer_feature_extractor = HiggsAudioFeatureExtractor(sampling_rate=self.sample_rate)

    @property
    def tps(self):
        return self.frame_rate

    @property
    def sampling_rate(self):
        return self.sample_rate

    @property
    def num_codebooks(self):
        return self.n_q

    @property
    def codebook_size(self):
        return self.quantizer_dim

    def get_last_layer(self):
        return self.decoder.layers[-1].weight

    def calculate_rec_loss(self, rec, target):
        target = target / target.norm(dim=-1, keepdim=True)
        rec = rec / rec.norm(dim=-1, keepdim=True)
        rec_loss = (1 - (target * rec).sum(-1)).mean()

        return rec_loss

    @torch.no_grad()
    def get_regress_target(self, x):
        x = torchaudio.functional.resample(x, self.sample_rate, self.semantic_sample_rate)

        if (
            self.semantic_techer == "hubert_base"
            or self.semantic_techer == "hubert_base_general"
            or self.semantic_techer == "wavlm_base_plus"
        ):
            x = x[:, 0, :]
            x = F.pad(x, (160, 160))
            target = self.semantic_model(x, output_hidden_states=True).hidden_states
            target = torch.stack(target, dim=1)  # .transpose(-1, -2)#.flatten(start_dim=1, end_dim=2)

            # average for all layers
            target = target.mean(1)
            # target = target[9]
            # if self.hop_length > 320:
            #     target = self.semantic_pooling(target.transpose(1, 2)).transpose(1, 2)

        elif self.semantic_techer == "w2v_bert2":
            target = self.semantic_model(x)

        elif self.semantic_techer.startswith("whisper"):
            if self.last_layer_semantic:
                target = self.semantic_model(x, avg_layers=False)
            else:
                target = self.semantic_model(x, avg_layers=True)

        elif self.semantic_techer.startswith("mert_music"):
            if self.last_layer_semantic:
                target = self.semantic_model(x, avg_layers=False)
            else:
                target = self.semantic_model(x, avg_layers=True)

        elif self.semantic_techer.startswith("qwen_audio_omni"):
            target = self.semantic_model(x)

        if self.downsample_mode == "step_down":
            if self.semantic_downsample_factor > 1:
                target = target[:, :: self.semantic_downsample_factor, :]

        elif self.downsample_mode == "avg":
            target = self.semantic_pooling(target.transpose(1, 2)).transpose(1, 2)
        return target

    def forward(self, x: torch.Tensor, bw: int):
        e_semantic_input = self.get_regress_target(x).detach()

        e_semantic = self.encoder_semantic(e_semantic_input.transpose(1, 2))
        e_acoustic = self.encoder(x)

        e = torch.cat([e_acoustic, e_semantic], dim=1)

        e = self.fc_prior(e.transpose(1, 2))

        if self.quantizer_type == "RVQ":
            e = e.transpose(1, 2)
            quantized, codes, bandwidth, commit_loss = self.quantizer(e, self.frame_rate, bw)
            quantized = quantized.transpose(1, 2)
        else:
            quantized, codes = self.quantizer(e)
            commit_loss = torch.tensor(0.0)

        quantized_semantic = self.fc_post1(quantized).transpose(1, 2)
        quantized_acoustic = self.fc_post2(quantized).transpose(1, 2)

        o = self.decoder_2(quantized_acoustic)

        o_semantic = self.decoder_semantic(quantized_semantic)
        semantic_recon_loss = F.mse_loss(e_semantic_input.transpose(1, 2).detach(), o_semantic)

        return o, commit_loss, semantic_recon_loss, None

    def encode(
        self,
        audio_path_or_wv,
        sr=None,
        loudness_normalize=False,
        loudness_threshold=-23.0,
    ):
        if isinstance(audio_path_or_wv, str):
            wv, sr = librosa.load(audio_path_or_wv, mono=True, sr=None)
        else:
            wv = audio_path_or_wv
            assert sr is not None
        if loudness_normalize:
            import pyloudnorm as pyln

            meter = pyln.Meter(sr)
            l = meter.integrated_loudness(wv)
            wv = pyln.normalize.loudness(wv, l, loudness_threshold)
        if sr != self.sampling_rate:
            wv = librosa.resample(wv, orig_sr=sr, target_sr=self.sampling_rate)
        if self.audio_tokenizer_feature_extractor is not None:
            inputs = self.audio_tokenizer_feature_extractor(
                raw_audio=wv,
                sampling_rate=self.audio_tokenizer_feature_extractor.sampling_rate,
                return_tensors="pt",
            )
            input_values = inputs["input_values"].to(self.device)
        else:
            input_values = torch.from_numpy(wv).float().unsqueeze(0)
        with torch.no_grad():
            encoder_outputs = self._xcodec_encode(input_values)
            vq_code = encoder_outputs.audio_codes[0]
        return vq_code

    def _xcodec_encode(self, x: torch.Tensor, target_bw: Optional[int] = None) -> torch.Tensor:
        bw = target_bw

        e_semantic_input = self.get_regress_target(x).detach()

        e_semantic = self.encoder_semantic(e_semantic_input.transpose(1, 2))
        e_acoustic = self.encoder(x)

        if e_acoustic.shape[2] != e_semantic.shape[2]:
            pad_size = 160 * self.semantic_downsample_factor
            e_acoustic = self.encoder(F.pad(x[:, 0, :], (pad_size, pad_size)).unsqueeze(0))

        if e_acoustic.shape[2] != e_semantic.shape[2]:
            if e_acoustic.shape[2] > e_semantic.shape[2]:
                e_acoustic = e_acoustic[:, :, : e_semantic.shape[2]]
            else:
                e_semantic = e_semantic[:, :, : e_acoustic.shape[2]]

        e = torch.cat([e_acoustic, e_semantic], dim=1)

        e = self.fc_prior(e.transpose(1, 2))

        if self.quantizer_type == "RVQ":
            e = e.transpose(1, 2)
            quantized, codes, bandwidth, commit_loss = self.quantizer(e, self.frame_rate, bw)
            codes = codes.permute(1, 0, 2)
        else:
            quantized, codes = self.quantizer(e)
            codes = codes.permute(0, 2, 1)

        # return codes
        return EncodedResult(codes)

    def decode(self, vq_code: torch.Tensor) -> torch.Tensor:
        if self.quantizer_type == "RVQ":
            vq_code = vq_code.permute(1, 0, 2)
            quantized = self.quantizer.decode(vq_code)
            quantized = quantized.transpose(1, 2)
        else:
            vq_code = vq_code.permute(0, 2, 1)
            quantized = self.quantizer.get_output_from_indices(vq_code)
        quantized_acoustic = self.fc_post2(quantized).transpose(1, 2)

        o = self.decoder_2(quantized_acoustic)
        return o.cpu().numpy()


def load_higgs_audio_tokenizer(tokenizer_name_or_path, device="cuda"):
    is_local = os.path.exists(tokenizer_name_or_path)
    if not is_local:
        tokenizer_path = snapshot_download(tokenizer_name_or_path)
    else:
        tokenizer_path = tokenizer_name_or_path
    config_path = os.path.join(tokenizer_path, "config.json")
    model_path = os.path.join(tokenizer_path, "model.pth")
    config = json.load(open(config_path))
    model = HiggsAudioTokenizer(
        **config,
        device=device,
    )
    parameter_dict = torch.load(model_path, map_location=device)
    model.load_state_dict(parameter_dict, strict=False)
    model.to(device)
    model.eval()
    return model