Spaces:
Running
on
Zero
Running
on
Zero
File size: 115,070 Bytes
07f1f64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 |
"""Higgs-Audio is an end-to-end multimodal model with the capability to understand and generate text / audio."""
import torch
import torch.nn as nn
import math
import glob
import functools
import os
from collections import defaultdict, OrderedDict
from dataclasses import dataclass
from enum import Enum
from safetensors.torch import load_file
from typing import Optional, Tuple, Union, List, Dict, Any
from transformers import AutoTokenizer
from transformers.modeling_outputs import BaseModelOutput
from transformers.models.whisper.modeling_whisper import WhisperEncoderLayer
from transformers.models.llama.modeling_llama import (
LlamaDecoderLayer,
LlamaRMSNorm,
LlamaRotaryEmbedding,
LLAMA_ATTENTION_CLASSES,
LlamaMLP,
LlamaRMSNorm,
)
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.generation import (
GenerationMixin,
GenerationConfig,
LogitsProcessorList,
StoppingCriteriaList,
)
from transformers.generation.utils import GenerateNonBeamOutput
from transformers.utils import logging, ModelOutput
from .common import HiggsAudioPreTrainedModel
from .utils import (
merge_input_ids_with_audio_features,
count_parameters,
)
from .configuration_higgs_audio import HiggsAudioConfig, HiggsAudioEncoderConfig
from .custom_modules import PartiallyFrozenLinear, PartiallyFrozenEmbedding
from .cuda_graph_runner import CUDAGraphRunner
from .audio_head import HiggsAudioDecoderProjector
logger = logging.get_logger(__name__)
class GenerationMode(Enum):
"""Enum for different generation modes in HiggsAudio model."""
TEXT = 0 # Text generation mode
AUDIO_INIT = 1 # Audio generation mode initialization
AUDIO_IN_PROGRESS = 2 # Audio generation mode in progress
def _whisper_encoder_zero_shape_forward(whisper_encoder, *args, **kwargs):
"""The whisper encoder does not support zero-shape tensor by default due to the following implementations
key_states = self._shape(self.k_proj(current_states), -1, bsz)
If `bsz` is 0, the "-1" dimension will be ambiguous and triggers error in the shape inference pass.
See also: https://github.com/huggingface/transformers/blob/30335093276212ce74938bdfd85bfd5df31a668a/src/transformers/models/whisper/modeling_whisper.py#L306-L307
This function monkey-patches all `_shape` functions in the whisper encoder's self-attention layers to ensure function supports zero-shape tensor.
#FIXME!!!! This is a temporary workaround and should be removed once the upstream issue is resolved.
"""
global _higgs_flash_attention_forward
def _patched_shape(tensor: torch.Tensor, seq_len: int, bsz: int, num_heads: int, head_dim: int):
if seq_len == -1:
return tensor.view(bsz, tensor.shape[1], num_heads, head_dim).transpose(1, 2).contiguous()
else:
return tensor.view(bsz, seq_len, num_heads, head_dim).transpose(1, 2).contiguous()
def _patched_scaled_dot_product_attention(
query,
key,
value,
attn_mask=None,
dropout_p=0.0,
is_causal=False,
scale=None,
enable_gqa=False,
) -> torch.Tensor:
# IMPORTANT! Implementation here is wrong and is only for the purpose of obtaining the correct attn_weight shape
if enable_gqa:
key = key.repeat_interleave(query.size(-3) // key.size(-3), -3)
value = value.repeat_interleave(query.size(-3) // value.size(-3), -3)
attn_weight = query @ key.transpose(-2, -1)
return attn_weight @ value
# Apply monkey-patch
if whisper_encoder.config._attn_implementation != "flash_attention_2":
old_shape_functions = []
for layer in whisper_encoder.layers:
old_shape_functions.append(getattr(layer.self_attn, "_shape"))
layer.self_attn._shape = functools.partial(
_patched_shape,
num_heads=layer.self_attn.num_heads,
head_dim=layer.self_attn.head_dim,
)
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
torch.nn.functional.scaled_dot_product_attention = _patched_scaled_dot_product_attention
out = whisper_encoder(*args, **kwargs)
torch.nn.functional.scaled_dot_product_attention = original_scaled_dot_product_attention
# Restore the original shape functions
if whisper_encoder.config._attn_implementation != "flash_attention_2":
for layer, old_shape_function in zip(whisper_encoder.layers, old_shape_functions):
layer.self_attn._shape = old_shape_function
return out
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
min_dtype: float,
cache_position: torch.Tensor,
batch_size: int,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
min_dtype (`float`):
The minimum value representable with the dtype `dtype`.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
causal_mask = torch.full(
(sequence_length, target_length),
fill_value=min_dtype,
dtype=dtype,
device=device,
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class HiggsAudioFeatureProjector(nn.Module):
"""Projector that maps audio features extracted by Whisper to hidden state of the text model."""
def __init__(self, config: HiggsAudioConfig):
super().__init__()
self.linear = nn.Linear(
config.audio_encoder_config.d_model,
config.text_config.hidden_size,
bias=True,
)
def forward(self, audio_features):
hidden_states = self.linear(audio_features)
return hidden_states
# Revised on top of transformers.models.qwen2_audio.modeling_qwen2_audio with Qwen2AudioEncoder --> HiggsAudioEncoder
# The code was originally borrowed from WhisperEncoder
class HiggsAudioEncoder(HiggsAudioPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`WhisperEncoderLayer`].
Args:
config: HiggsAudioEncoderConfig
"""
# Ignore copy
config_class = HiggsAudioEncoderConfig
main_input_name = "input_features"
_no_split_modules = ["WhisperEncoderLayer"]
def __init__(self, config: HiggsAudioEncoderConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.num_mel_bins = config.num_mel_bins
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_source_positions
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1)
self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1)
self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim)
self.embed_positions.requires_grad_(False)
# Flash Attention 2 does not support zero shape tensor, so we have to use sdpa implementation for the Whisper component.
self.layers = nn.ModuleList([WhisperEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
# Ignore copy
self.avg_pooler = nn.AvgPool1d(2, stride=2)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _freeze_parameters(self):
for param in self.parameters():
param.requires_grad = False
self._requires_grad = False
def get_input_embeddings(self) -> nn.Module:
return self.conv1
def set_input_embeddings(self, value: nn.Module):
self.conv1 = value
def forward(
self,
input_features,
attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
check_seq_length=True,
):
r"""
Args:
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`):
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding
and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
attention_mask (`torch.Tensor`)`, *optional*):
HiggsAudio does not support masking of the `input_features`, this argument is preserved for compatibility,
but it is not used. By default the silence in the input log mel spectrogram are ignored.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
expected_seq_length = self.config.max_source_positions * self.conv1.stride[0] * self.conv2.stride[0]
if check_seq_length and (input_features.shape[-1] != expected_seq_length):
raise ValueError(
f"HiggsAudio expects the mel input features to be of length {expected_seq_length}, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Ignore copy
input_features = input_features.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device)
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
inputs_embeds = inputs_embeds.permute(0, 2, 1)
embed_pos = self.embed_positions.weight
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (len(self.layers)), (
f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
# Ignore copy
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Ignore copy
hidden_states = hidden_states.permute(0, 2, 1)
# If the sequence length after average pooling is not divisible by the sequence parallel size, we would duplicate it across the sequence parallel ranks.
# In this case, gradients need to be scaled up because the subsequent scaling up in the function _apply_audio_tower is skipped.
hidden_states = self.avg_pooler(hidden_states)
hidden_states = hidden_states.permute(0, 2, 1)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
)
# Ignore copy
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers and the output length of the audio encoder
"""
# TODO(sxjscience) Double confirm the formula
input_lengths = (input_lengths - 1) // 2 + 1
output_lengths = (input_lengths - 2) // 2 + 1
return input_lengths, output_lengths
class HiggsAudioDualFFNDecoderLayer(nn.Module):
"""We implement a dual-path FFN decoder layer where the audio tokens and text tokens go through separate FFN layers.
The audio and text tokens share the text-attention layer, but will be encoded with separate feedforward layers.
In addition, the audio tokens can be configured to go through separate attention layer.
Following is an illustration:
t t t a a a t t t
|
| (audio self-attention layer)
v
t t t h'_a h'_a h'_a t t t
|
| (shared attention layer)
v
h_t h_t h_t h_a h_a h_a h_t h_t h_t
|
| (separate text/audio hidden states)
v
[h_t h_t h_t h_t h_t h_t], [h_a, h_a, h_a]
| |
| (separate FFNs) |
v v
[o_t o_t o_t o_t o_t o_t], [o_a, o_a, o_a]
|
| (reorder)
v
o_t o_t o_t o_a o_a o_a o_t o_t o_t
This has a few advantages:
1) We are able to use a smaller FFN, or even bypass the FFN for audio tokens. This accelerates the inference speed.
2) The Audio-FFN introduces more trainable parameters to the model.
This should have the same effect as the mixture-of-expert layer and we may expect better performance due to the scaling law.
3) We can replace the original FFN in LLMs with the dual-path FFN without changing the model architecture.
"""
def __init__(
self,
config: HiggsAudioConfig,
layer_idx: int,
fast_forward: bool = False,
use_audio_attention: bool = False,
):
super().__init__()
text_config = config.text_config
self.hidden_size = text_config.hidden_size
self.layer_idx = layer_idx
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=text_config, layer_idx=layer_idx)
self.mlp = LlamaMLP(text_config)
if not fast_forward:
if use_audio_attention:
self.audio_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](
config=text_config, layer_idx=layer_idx + 1
)
self.audio_post_audio_attn_layer_norm = LlamaRMSNorm(
text_config.hidden_size, eps=text_config.rms_norm_eps
)
self.audio_mlp = LlamaMLP(text_config)
self.audio_input_layernorm = LlamaRMSNorm(text_config.hidden_size, eps=text_config.rms_norm_eps)
self.audio_post_attention_layernorm = LlamaRMSNorm(text_config.hidden_size, eps=text_config.rms_norm_eps)
self.use_audio_attention = use_audio_attention
self.fast_forward = fast_forward
if self.fast_forward:
assert not self.use_audio_attention, (
"We cannot use audio_attention if the layer is marked as fast-forward."
)
self.input_layernorm = LlamaRMSNorm(text_config.hidden_size, eps=text_config.rms_norm_eps)
self.post_attention_layernorm = LlamaRMSNorm(text_config.hidden_size, eps=text_config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
audio_attention_mask: Optional[torch.Tensor] = None,
fast_forward_attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
audio_out_mask: Optional[torch.BoolTensor] = None,
is_decoding_audio_token: Optional[bool] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
is_using_cuda_graph: Optional[bool] = False,
**kwargs,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
position_ids
IDs of positions in the input sequence
audio_out_mask
Mask for identifying the audio tokens. Size (batch_size, sequence_length)
1 --> location contains audio_out
0 --> location does not contain audio_out
When use_cache is True and not in torch compile mode, the audio_out_mask contains audio_out masks for
all tokens up to the current token. That means, it has size (batch_size, sequence_length) while
hidden_states will have size (batch_size, 1). In the torch compile mode, the audio_out_mask will have
size (batch_size, 1).
is_decoding_audio_token
Used in the torch compile mode to determine if the current token is an audio token or not.
past_key_value (`Cache`, *optional*): cached past key and value projection states. We fetch the corresponding cached key/value via the layer_idx.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
is_using_cuda_graph (`bool`, *optional*):
Indicates whether the model is running by cuda graph.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
target_length = hidden_states.shape[1]
use_static_cache = isinstance(past_key_value, StaticCache)
decode_stage = hidden_states.shape[1] == 1
if is_using_cuda_graph:
assert decode_stage and use_static_cache, (
"The CUDA graph mode should only be used in the decoding stage with static cache."
)
# If we are decoding an audio token and the layer is marked as fast-forward,
# we can skip it.
if is_decoding_audio_token and self.fast_forward:
return (hidden_states,)
has_audio_out = audio_out_mask is not None and audio_out_mask.shape[0] > 0
audio_out_mask_sq = audio_out_mask
if self.fast_forward and has_audio_out:
original_hidden_states = hidden_states.clone()
min_dtype = torch.finfo(hidden_states.dtype).min
if attention_mask is None:
attention_mask = ~audio_out_mask
if self.self_attn.config._attn_implementation != "flash_attention_2":
sequence_length = audio_out_mask.shape[1]
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask=attention_mask,
sequence_length=sequence_length,
target_length=sequence_length,
dtype=hidden_states.dtype,
min_dtype=min_dtype,
device=hidden_states.device,
cache_position=cache_position,
batch_size=hidden_states.shape[0],
)
if use_cache:
attention_mask = attention_mask[:, :, -target_length:, :]
elif len(attention_mask.shape) == 2:
# Attention mask has shape (batch_size, sequence_length)
# We should be using flash attention 2
attention_mask = attention_mask * ~audio_out_mask
elif len(attention_mask.shape) == 4:
# When using static cache, the attention mask was already preprocessed in the previous layer
if use_static_cache:
attention_mask = fast_forward_attention_mask
else:
if use_cache:
# Attention mask has shape (batch_size, 1, query_length, key_length)
# In addition, the attention mask should be inverted, that means "1" (attend_to) --> "0", and "0" --> minimal dtype value.
attention_mask = attention_mask.masked_fill(
audio_out_mask[:, -target_length:].reshape(audio_out_mask.shape[0], 1, target_length, 1)
| audio_out_mask.reshape(audio_out_mask.shape[0], 1, 1, audio_out_mask.shape[1]),
min_dtype,
)
else:
attention_mask = attention_mask.masked_fill(
audio_out_mask.reshape(audio_out_mask.shape[0], 1, audio_out_mask.shape[1], 1)
| audio_out_mask.reshape(audio_out_mask.shape[0], 1, 1, audio_out_mask.shape[1]),
min_dtype,
)
else:
raise NotImplementedError(f"Unsupported attention_mask format, attention_mask={attention_mask}")
if (
self.self_attn.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
attention_mask = AttentionMaskConverter._unmask_unattended(attention_mask, min_dtype)
if has_audio_out and not self.fast_forward:
# Apply separate layernorm layers for audio tokens and text tokens
if use_cache:
hidden_states = torch.where(
audio_out_mask_sq[:, -target_length:].unsqueeze(-1),
self.audio_input_layernorm(hidden_states),
self.input_layernorm(hidden_states),
)
else:
hidden_states = torch.where(
audio_out_mask_sq.unsqueeze(-1),
self.audio_input_layernorm(hidden_states),
self.input_layernorm(hidden_states),
)
else:
hidden_states = self.input_layernorm(hidden_states)
# Audio Attention
if self.use_audio_attention and has_audio_out:
if use_static_cache:
assert audio_attention_mask is not None, (
"audio_attention_mask should not be None when using static cache."
)
if audio_attention_mask is None:
no_audio_out_mask = (~audio_out_mask)[:, -target_length:].reshape(
audio_out_mask.shape[0], 1, target_length, 1
) | (~audio_out_mask).reshape(audio_out_mask.shape[0], 1, 1, audio_out_mask.shape[1])
min_dtype = torch.finfo(hidden_states.dtype).min
if attention_mask is None:
audio_attention_mask = audio_out_mask
if self.audio_attn.config._attn_implementation != "flash_attention_2":
sequence_length = audio_out_mask.shape[1]
audio_attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask=audio_attention_mask,
sequence_length=sequence_length,
target_length=sequence_length,
dtype=hidden_states.dtype,
min_dtype=min_dtype,
device=hidden_states.device,
cache_position=cache_position,
batch_size=hidden_states.shape[0],
)
if use_cache:
audio_attention_mask = audio_attention_mask[:, :, -target_length:, :]
audio_attention_mask = audio_attention_mask.masked_fill(no_audio_out_mask, min_dtype)
elif len(attention_mask.shape) == 2:
# Attention mask has shape (batch_size, sequence_length)
audio_attention_mask = attention_mask * audio_out_mask
elif len(attention_mask.shape) == 4:
# Attention mask has shape (batch_size, 1, query_length, key_length)
# In addition, the attention mask should be inverted. This means "1" (attend_to) --> "0", and "0" --> minimal dtype value.
audio_attention_mask = attention_mask.masked_fill(no_audio_out_mask, min_dtype)
else:
raise NotImplementedError(f"Unsupported attention_mask format, attention_mask={attention_mask}")
if (
self.audio_attn.config._attn_implementation == "sdpa"
and audio_attention_mask is not None
and audio_attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
audio_attention_mask = AttentionMaskConverter._unmask_unattended(audio_attention_mask, min_dtype)
audio_attention_mask = audio_attention_mask.contiguous()
audio_hidden_states, audio_self_attn_weights, audio_present_key_value = self.audio_attn(
hidden_states=hidden_states,
attention_mask=audio_attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
audio_hidden_states = residual + audio_hidden_states
if use_cache:
residual = torch.where(
audio_out_mask_sq[:, -target_length:].unsqueeze(-1),
audio_hidden_states,
residual,
)
else:
residual = torch.where(audio_out_mask_sq.unsqueeze(-1), audio_hidden_states, residual)
audio_hidden_states = self.audio_post_audio_attn_layer_norm(audio_hidden_states)
if use_cache:
hidden_states = torch.where(
audio_out_mask_sq[:, -target_length:].unsqueeze(-1),
audio_hidden_states,
hidden_states,
)
else:
hidden_states = torch.where(audio_out_mask_sq.unsqueeze(-1), audio_hidden_states, hidden_states)
# Text Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Apply Dual-path FFN
residual = hidden_states
if has_audio_out and not self.fast_forward:
if use_cache:
real_audio_out_mask = audio_out_mask_sq[:, -target_length:]
else:
real_audio_out_mask = audio_out_mask_sq
# Make whole graph in decode stage
if decode_stage and is_using_cuda_graph:
assert is_decoding_audio_token is not None, (
"is_decoding_audio_token should be present in the decoding stage."
)
if is_decoding_audio_token:
hidden_states = self.audio_post_attention_layernorm(hidden_states)
hidden_states = self.audio_mlp(hidden_states)
else:
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
residual = residual + hidden_states
else:
text_hidden_states = self.post_attention_layernorm(hidden_states[~real_audio_out_mask])
audio_hidden_states = self.audio_post_attention_layernorm(hidden_states[real_audio_out_mask])
text_hidden_states = self.mlp(text_hidden_states)
residual[~real_audio_out_mask] += text_hidden_states
audio_hidden_states = self.audio_mlp(audio_hidden_states)
residual[real_audio_out_mask] += audio_hidden_states
hidden_states = residual
else:
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
if self.fast_forward and has_audio_out:
if use_cache:
hidden_states = torch.where(
audio_out_mask_sq[:, -target_length:].unsqueeze(-1),
original_hidden_states,
hidden_states,
)
else:
hidden_states = torch.where(
audio_out_mask_sq.unsqueeze(-1),
original_hidden_states,
hidden_states,
)
outputs = (hidden_states,)
if output_attentions:
if self.use_audio_attention:
# The returned attn weights have shape (batch_size, num_heads + num_audio_attn_heads, seq_length, seq_length)
outputs += (torch.concat([self_attn_weights, audio_self_attn_weights], dim=1),)
else:
# The returned attn weights have shape (batch_size, num_heads, seq_length, seq_length)
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
@dataclass
class HiggsAudioModelOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
llm_loss: Optional[torch.FloatTensor] = None
audio_loss: Optional[torch.FloatTensor] = None
codebook_losses: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
expanded_input_ids: Optional[torch.LongTensor] = None
expanded_labels: Optional[torch.LongTensor] = None
audio_in_mask: Optional[torch.BoolTensor] = None
audio_in_discrete_codes_mask: Optional[torch.BoolTensor] = None
audio_out_mask: Optional[torch.BoolTensor] = None
attention_mask: Optional[torch.BoolTensor] = None
audio_logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[Cache] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
audio_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class HiggsAudioGenerationOutput(ModelOutput):
"""
Outputs of HiggsAudio generation models, when using non-beam methods.
Args:
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
audio_sequences (`tuple(torch.LongTensor)` *optional*):
The generated discrete audio codes. These codes can be used to fill-in related locations of <|AUDIO_OUT|> at input sequences.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
each generated token).
If the generated token is a text token, the tensor will have shape `(batch_size, config.vocab_size)`.
If the generated token is an audio token, the tensor will have shape `(config.audio_num_codebooks, self.audio_codebook_size)`
logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`):
Unprocessed prediction scores of the language modeling head or the audio head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
each generated token).
If the generated token is a text token, the tensor will have shape `(batch_size, config.vocab_size)`.
If the generated token is an audio token, the tensor will have shape `(config.audio_num_codebooks, self.audio_codebook_size)`
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True`):
Returns the model cache, used to speed up decoding. Different models have a different cache format, check
the model's documentation. Usually, a [`~cache_utils.Cache`] instance.
"""
sequences: torch.LongTensor = None
audio_sequences: Optional[List[torch.LongTensor]] = None
scores: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
class HiggsAudioModel(HiggsAudioPreTrainedModel, GenerationMixin):
"""Higgs-Audio is an end-to-end multimodal model with the capability to understand and generate text / audio.
Consider the following example for mixed text/audio understanding / generation:
- input_tokens: <text_token1><|audio_bos|>[AUDIO]<|audio_eos|><text_token2><|audio_bos|>[AUDIO]<|audio_eos|><text_token4>
- input_tokens: <text_token1><|audio_bos|>[AUDIO]<|audio_eos|><text_token2><|audio_out_bos|>[AUDIO_OUT]<|audio_eos|><text_token4>
We will fill [AUDIO] with the audio features extracted by Whisper and fill [AUDIO_OUT] with the audio tokens.
Consider the following example for mixed text/audio generation:
text: <|audio_out_bos|> MASK MASK MASK MASK MASK <|audio_eos|> [text_token1]
audio: MASK <|audio_stream_bos|> [audio_token1] [audio_token2] [audio_token3] <|audio_stream_eos|> MASK MASK
token_type: 0 1 1 1 1 1 0 0
"""
_supports_cache_class = True
_supports_static_cache = True
def __init__(self, config: HiggsAudioConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.audio_in_token_idx = config.audio_in_token_idx
self.audio_out_token_idx = config.audio_out_token_idx
self.audio_out_bos_token_id = config.audio_out_bos_token_id if "audio_out_bos_token_id" in config else None
self.audio_eos_token_id = config.audio_eos_token_id if "audio_eos_token_id" in config else None
self.vocab_size = config.text_config.vocab_size
self.audio_num_codebooks = config.audio_num_codebooks
self.use_delay_pattern = config.use_delay_pattern
self.use_audio_out_embed_projector = config.use_audio_out_embed_projector
self.use_audio_out_self_attention = config.use_audio_out_self_attention
self.embed_tokens = nn.Embedding(self.vocab_size, config.text_config.hidden_size, self.padding_idx)
if config.audio_adapter_type == "dual_ffn":
layer_idx = 0
layers = []
for j in range(config.text_config.num_hidden_layers):
if j in config.audio_dual_ffn_layers:
layers.append(
HiggsAudioDualFFNDecoderLayer(
config,
layer_idx,
use_audio_attention=self.use_audio_out_self_attention,
)
)
layer_idx += 2 if self.use_audio_out_self_attention else 1
else:
layers.append(LlamaDecoderLayer(config.text_config, layer_idx))
layer_idx += 1
self.layers = nn.ModuleList(layers)
elif config.audio_adapter_type == "dual_ffn_fast_forward":
layer_idx = 0
layers = []
for j in range(config.text_config.num_hidden_layers):
if j in config.audio_dual_ffn_layers:
layers.append(
HiggsAudioDualFFNDecoderLayer(
config,
layer_idx,
fast_forward=False,
use_audio_attention=self.use_audio_out_self_attention,
)
)
layer_idx += 2 if self.use_audio_out_self_attention else 1
else:
layers.append(
HiggsAudioDualFFNDecoderLayer(
config,
layer_idx,
fast_forward=True,
use_audio_attention=False,
)
)
layer_idx += 1
self.layers = nn.ModuleList(layers)
elif config.audio_adapter_type == "stack":
self.layers = nn.ModuleList(
[
LlamaDecoderLayer(config.text_config, layer_idx)
for layer_idx in range(config.text_config.num_hidden_layers)
]
)
layer_idx = config.text_config.num_hidden_layers
else:
raise NotImplementedError(f"Audio adapter type {config.audio_adapter_type} not implemented.")
self.num_activation_checkpointing_layers = len(self.layers)
self.decode_graph_runners = defaultdict(dict[bool, CUDAGraphRunner])
self.norm = LlamaRMSNorm(config.text_config.hidden_size, eps=config.text_config.rms_norm_eps)
self.rotary_emb = LlamaRotaryEmbedding(config=config.text_config)
if not config.skip_audio_tower:
self.audio_tower = HiggsAudioEncoder(config.audio_encoder_config)
self.audio_encoder_proj = HiggsAudioFeatureProjector(config)
else:
self.audio_tower = None
self.audio_encoder_proj = None
self.audio_decoder_proj = HiggsAudioDecoderProjector(config, layer_idx=layer_idx)
self.audio_codebook_size = (
config.audio_codebook_size + 2
) # We add 1 for the audio_stream_bos token and 1 for the audio_stream_eos token
if config.use_audio_out_embed_projector:
self.audio_out_embed_projector = nn.Linear(
config.text_config.hidden_size,
config.text_config.hidden_size,
bias=False,
)
self.audio_codebook_embeddings = nn.Embedding(
config.audio_num_codebooks * self.audio_codebook_size,
config.text_config.hidden_size,
)
self.audio_codebook_weights = (
torch.ones(config.audio_num_codebooks) / config.audio_num_codebooks
) # default to equal weights
self.post_init()
def set_num_activation_checkpointing_layers(self, num_layers):
self.num_activation_checkpointing_layers = num_layers
def set_delay_pattern(self):
self.config.use_delay_pattern = True
self.use_delay_pattern = True
def set_audio_special_tokens(self, tokenizer: AutoTokenizer):
self.audio_out_bos_token_id = tokenizer.convert_tokens_to_ids("<|audio_out_bos|>")
self.audio_eos_token_id = tokenizer.convert_tokens_to_ids("<|audio_eos|>")
def _embed_audio_ids(self, audio_ids):
"""Embed the audio ids
Args:
audio_ids: torch.LongTensor of shape (num_codebooks, audio_in_total_length)
Returns:
audio_embed: torch.LongTensor of shape (audio_in_total_length, hidden_size)
"""
codebook_shift = (
torch.arange(self.config.audio_num_codebooks, device=audio_ids.device) * self.audio_codebook_size
)
audio_embed = self.audio_codebook_embeddings(audio_ids + codebook_shift.unsqueeze(-1))
if self.config.audio_embed_avg:
audio_embed = torch.mean(audio_embed, dim=0)
else:
audio_embed = torch.sum(audio_embed, dim=0)
if self.use_audio_out_embed_projector:
audio_embed = self.audio_out_embed_projector(audio_embed)
return audio_embed
def _apply_audio_tower(self, audio_features, audio_feature_attention_mask):
"""Apply the audio tower to the audio features"""
if audio_features.shape[0] == 0:
if torch.is_grad_enabled():
# FIXME!!!!!!!!
# This is a hack to ensure that the forward+backward pass of audio_tower and audio_encoder_proj get triggered.
# The monkey patch won't overwrite the backward pass of nn.Module.
audio_outputs = _whisper_encoder_zero_shape_forward(
self.audio_tower,
audio_features,
attention_mask=None,
check_seq_length=False,
)
selected_audio_feature = audio_outputs.last_hidden_state
audio_features_embed = self.audio_encoder_proj(selected_audio_feature)
audio_feat_out_lengths = None
return audio_features_embed, audio_feat_out_lengths
else:
return None, None
audio_feat_lengths, audio_feat_out_lengths = self.audio_tower._get_feat_extract_output_lengths(
audio_feature_attention_mask.sum(-1)
)
batch_size, _, max_mel_seq_len = audio_features.shape
max_seq_len = (max_mel_seq_len - 1) // 2 + 1
# Create a sequence tensor of shape (batch_size, max_seq_len)
seq_range = (
torch.arange(
0,
max_seq_len,
dtype=audio_feat_lengths.dtype,
device=audio_feat_lengths.device,
)
.unsqueeze(0)
.expand(batch_size, max_seq_len)
)
lengths_expand = audio_feat_lengths.unsqueeze(1).expand(batch_size, max_seq_len)
# Create mask
padding_mask = seq_range < lengths_expand
if self.config._attn_implementation != "flash_attention_2":
audio_attention_mask = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
batch_size, 1, max_seq_len, max_seq_len
)
else:
audio_attention_mask = padding_mask
audio_outputs = self.audio_tower(audio_features, attention_mask=audio_attention_mask)
selected_audio_feature = audio_outputs.last_hidden_state
audio_features_embed = self.audio_encoder_proj(selected_audio_feature)
return audio_features_embed, audio_feat_out_lengths
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_length()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
def _prepare_all_static_kv_cache_masks(self, hidden_states, attention_mask, audio_out_mask, past_key_values):
target_length = hidden_states.shape[1]
cur_pos = audio_out_mask.shape[1]
min_dtype = torch.finfo(hidden_states.dtype).min
assert len(attention_mask.shape) == 4, "Only support SDPA for now"
kv_cache_len = past_key_values.get_max_cache_shape()
audio_out_mask_padded = torch.nn.functional.pad(audio_out_mask, (0, kv_cache_len - cur_pos), value=True)
fast_forward_attention_mask = attention_mask.masked_fill(
audio_out_mask_padded[:, audio_out_mask.shape[1] - target_length : audio_out_mask.shape[1]].reshape(
audio_out_mask_padded.shape[0], 1, target_length, 1
)
| audio_out_mask_padded.reshape(audio_out_mask_padded.shape[0], 1, 1, audio_out_mask_padded.shape[1]),
min_dtype,
)
no_audio_out_mask = ~audio_out_mask
no_audio_out_mask = torch.nn.functional.pad(
no_audio_out_mask, (0, kv_cache_len - audio_out_mask.shape[1]), value=False
)
no_audio_out_mask = no_audio_out_mask[
:, audio_out_mask.shape[1] - target_length : audio_out_mask.shape[1]
].reshape(audio_out_mask.shape[0], 1, target_length, 1) | no_audio_out_mask.reshape(
audio_out_mask.shape[0], 1, 1, kv_cache_len
)
audio_attention_mask = attention_mask.masked_fill(no_audio_out_mask, min_dtype)
return fast_forward_attention_mask, audio_attention_mask
def _forward_core(
self,
hidden_states: torch.Tensor,
causal_mask: torch.Tensor,
position_ids: torch.Tensor,
audio_discrete_codes_mask: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]],
use_cache: bool,
audio_attention_mask: torch.Tensor,
fast_forward_attention_mask: torch.Tensor,
output_attentions: bool,
output_hidden_states: bool,
is_decoding_audio_token: Optional[bool] = None,
is_using_cuda_graph: Optional[bool] = False,
):
# create position embeddings to be shared across the decoder layers
# When past_key_values is passed in, we need to offset the position ids when calculating the position embeddings.
# Therefore, cache_position is used.
position_id_offset = cache_position[0] if use_cache else 0
position_embeddings = self.rotary_emb(hidden_states, position_ids + position_id_offset)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if isinstance(decoder_layer, HiggsAudioDualFFNDecoderLayer):
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
audio_attention_mask=audio_attention_mask,
fast_forward_attention_mask=fast_forward_attention_mask,
position_ids=position_ids,
audio_out_mask=audio_discrete_codes_mask,
is_decoding_audio_token=is_decoding_audio_token,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
is_using_cuda_graph=is_using_cuda_graph,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
return hidden_states, all_hidden_states, all_self_attns
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
audio_features: Optional[torch.FloatTensor] = None,
audio_feature_attention_mask: Optional[torch.BoolTensor] = None,
audio_in_ids: Optional[torch.LongTensor] = None,
audio_in_ids_start: Optional[torch.LongTensor] = None,
audio_out_ids: Optional[torch.LongTensor] = None,
audio_out_ids_start: Optional[torch.LongTensor] = None,
audio_out_ids_start_group_loc: Optional[torch.LongTensor] = None,
label_ids: Optional[torch.LongTensor] = None,
label_audio_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_audio_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
cache_audio_discrete_codes_mask: Optional[torch.LongTensor] = None,
past_key_values_buckets: Optional[OrderedDict[int, Cache]] = None,
reward: Optional[torch.FloatTensor] = None,
):
"""Forward pass for the Higgs-Audio model.
Args:
input_ids (:obj:`torch.LongTensor`):
The input ids of the prompt. It will have shape (bsz, seq_len).
When use_cache is enabled, the input_ids will have
shape (bsz, 1) for incremental decode or None
inputs_embeds:
Input embeddings. This flag won't be used.
attention_mask (:obj:`torch.LongTensor`):
The attention mask of the prompt. It will have shape (bsz, seq_len).
audio_features (:obj:`torch.FloatTensor`):
The audio features extracted by Whisper. It will have shape (num_audio_in, feature_dim, max_mel_seq_len).
audio_feature_attention_mask (:obj:`torch.LongTensor`):
The attention mask of the audio features. It will have shape (num_audio_in, max_mel_seq_len).
audio_in_ids (:obj:`torch.LongTensor`):
The discretized audio tokens. It will have shape (num_codebooks, audio_in_total_length).
audio_in_ids_start (:obj:`torch.LongTensor`):
The start indices for each audio in audio_in_ids. It will have shape (num_audio_in,)
audio_out_ids (:obj:`torch.LongTensor`):
The discretized audio tokens. It will have shape (num_codebooks, audio_out_total_length).
audio_out_ids_start (:obj:`torch.LongTensor`):
The start indices for each audio in audio_out_ids. It will have shape (num_audio_out,)
audio_out_ids_start_group_loc (:obj:`torch.LongTensor`):
The sample indices in a batch that map to each element in the audio_out_ids_start. It will have shape (num_audio_out,)
label_text_ids (:obj:`torch.LongTensor`):
The labels of the prompt. It will have shape (bsz, seq_len).
label_audio_ids (:obj:`torch.LongTensor`):
The labels of the audio tokens. It will have the same shape as audio_out_ids, i.e., (num_codebooks, audio_out_total_length)
past_key_values (:obj:`Tuple`):
Tuple of past key values.
use_cache (:obj:`bool`):
Whether to use cache.
output_attentions (:obj:`bool`):
Whether to output attentions.
output_hidden_states (:obj:`bool`):
Whether to output hidden states.
output_audio_hidden_states (:obj:`bool`):
Whether to output audio hidden states.
return_dict (:obj:`bool`):
Whether to return a dictionary.
cache_position (:obj:`torch.LongTensor`):
The position of the cache.
cache_audio_discrete_codes_mask (:obj:`torch.LongTensor`):
The cached audio discrete codes mask. It will only be used when use_cache is turned on.
past_key_values_buckets (:obj:`OrderedDict`):
The buckets of past key values.
"""
target_device = input_ids.device
# not used
del inputs_embeds
if audio_features is not None:
audio_features = audio_features.to(target_device)
audio_feature_attention_mask = audio_feature_attention_mask.to(target_device)
# 1. Extract the input embeddings
inputs_embeds = self.embed_tokens(input_ids)
# 2. Extract audio embeddings
if self.config.skip_audio_tower:
audio_features_embed = audio_features_length = None
else:
audio_features_embed, audio_features_length = self._apply_audio_tower(
audio_features, audio_feature_attention_mask
)
if self.config.encode_audio_in_tokens:
if audio_in_ids is not None and audio_in_ids.shape[-1] > 0:
audio_in_ids = audio_in_ids.to(target_device)
else:
audio_in_ids = torch.zeros(
(self.audio_num_codebooks, 0),
device=target_device,
dtype=torch.long,
)
audio_in_embed = self._embed_audio_ids(audio_in_ids)
else:
audio_in_embed = None
if audio_out_ids is not None and audio_out_ids.shape[-1] > 0:
audio_out_ids = audio_out_ids.to(target_device)
else:
audio_out_ids = torch.zeros((self.audio_num_codebooks, 0), device=target_device, dtype=torch.long)
audio_out_embed = self._embed_audio_ids(audio_out_ids)
# 3. Merge text, audio-in embeddings, and audio-out embeddings
# use_cache is turned on during inference time, we should set round_to to 1 to avoid extra padding in the end.
round_to = 1 if use_cache else 8
left_padding = True if use_cache or input_ids.shape[0] == 1 else False
(
inputs_embeds,
attention_mask,
labels,
position_ids,
input_ids,
audio_in_mask,
audio_in_discrete_codes_mask,
audio_out_mask,
) = merge_input_ids_with_audio_features(
audio_features_embed,
audio_features_length,
audio_in_embed,
audio_in_ids_start,
audio_out_embed,
audio_out_ids_start,
self.audio_in_token_idx,
self.audio_out_token_idx,
inputs_embeds,
input_ids,
attention_mask,
label_ids,
pad_token_id=self.padding_idx,
round_to=round_to,
left_padding=left_padding,
)
# re-check if we use the correct kv cache bucket after
# the input_embeds has been merged with audio features
if past_key_values_buckets is not None and inputs_embeds.shape[1] > past_key_values.get_max_cache_shape():
past_key_values, self.current_past_key_values_bucket = self._prepare_kv_cache(
inputs_embeds.shape[1], None, past_key_values_buckets
)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
if isinstance(past_key_values, StaticCache) and past_seen_tokens >= past_key_values.get_max_cache_shape():
raise ValueError(
f"The current sequence length ({past_seen_tokens}) exceeds "
f"the maximum cache shape. "
f"Please consider increasing the cache size."
)
# Use torch compile
use_static_cache = isinstance(past_key_values, StaticCache)
# Apply the LLM component
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values,
output_attentions,
)
hidden_states = inputs_embeds
audio_discrete_codes_mask = audio_in_discrete_codes_mask | audio_out_mask
if cache_audio_discrete_codes_mask is not None and use_cache:
audio_discrete_codes_mask = torch.concat(
[cache_audio_discrete_codes_mask, audio_discrete_codes_mask], dim=1
)
# Generate the audio attention mask outside the layer to avoid recompilation
if use_static_cache:
fast_forward_attention_mask, audio_attention_mask = self._prepare_all_static_kv_cache_masks(
hidden_states,
causal_mask,
audio_discrete_codes_mask,
past_key_values,
)
# Set the audio out mask to the last token
if hidden_states.shape[1] == 1:
audio_discrete_codes_mask = audio_discrete_codes_mask[:, -1:]
audio_discrete_codes_mask = audio_discrete_codes_mask.reshape((-1, 1)).contiguous()
is_decoding_audio_token = audio_discrete_codes_mask.item()
else:
is_decoding_audio_token = False
# Use the captured cuda graph runner for decoding
# if it exists, otherwise use the normal forward pass
if (
past_key_values is not None
and past_key_values.get_max_cache_shape() in self.decode_graph_runners
and (input_ids.shape[-1] == 1)
):
_forward_core = self.decode_graph_runners[past_key_values.get_max_cache_shape()][is_decoding_audio_token]
is_using_cuda_graph = True
else:
_forward_core = self._forward_core
is_using_cuda_graph = False
hidden_states, all_hidden_states, all_self_attns = _forward_core(
hidden_states=hidden_states,
causal_mask=causal_mask,
position_ids=position_ids,
audio_discrete_codes_mask=audio_discrete_codes_mask,
is_decoding_audio_token=is_decoding_audio_token if use_static_cache else None,
cache_position=cache_position,
past_key_values=past_key_values,
use_cache=use_cache,
audio_attention_mask=audio_attention_mask if use_static_cache else None,
fast_forward_attention_mask=fast_forward_attention_mask if use_static_cache else None,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
is_using_cuda_graph=is_using_cuda_graph,
)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
# Apply the audio decoder projector
(
logits,
audio_logits,
decoder_all_self_attns,
decoder_all_hidden_states,
audio_hidden_states,
_,
) = self.audio_decoder_proj(
hidden_states,
audio_out_mask,
label_audio_ids=label_audio_ids,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_audio_hidden_states=output_audio_hidden_states,
cache_position=cache_position,
)
if audio_logits is not None:
audio_logits = audio_logits.view(
audio_logits.shape[0],
self.audio_num_codebooks,
self.audio_codebook_size,
).float()
if output_hidden_states:
if decoder_all_hidden_states is not None and len(decoder_all_hidden_states) > 1:
all_hidden_states += decoder_all_hidden_states[1:]
if output_attentions:
all_self_attns += decoder_all_self_attns
next_cache = past_key_values if use_cache else None
ret = HiggsAudioModelOutputWithPast(
logits=logits,
audio_logits=audio_logits,
expanded_input_ids=input_ids,
expanded_labels=labels,
audio_in_mask=audio_in_mask,
audio_in_discrete_codes_mask=audio_in_discrete_codes_mask,
audio_out_mask=audio_out_mask,
attention_mask=attention_mask,
past_key_values=next_cache,
hidden_states=all_hidden_states,
audio_hidden_states=audio_hidden_states,
attentions=all_self_attns,
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if not return_dict:
outputs = ret.to_tuple()
return outputs
return ret
# Overwrite GenerationMixin._update_model_kwargs_for_generation
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
num_new_tokens: int = 1,
extend_attention_mask: bool = True,
) -> Dict[str, Any]:
"""Update the model kwargs for each step."""
model_kwargs["past_key_values"] = outputs.past_key_values
# update attention mask
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
if extend_attention_mask:
model_kwargs["attention_mask"] = torch.cat(
[
attention_mask,
attention_mask.new_ones((attention_mask.shape[0], 1)),
],
dim=-1,
)
if "cache_audio_discrete_codes_mask" in model_kwargs:
if model_kwargs["cache_audio_discrete_codes_mask"] is None:
model_kwargs["cache_audio_discrete_codes_mask"] = (
outputs.audio_in_discrete_codes_mask | outputs.audio_out_mask
)
else:
model_kwargs["cache_audio_discrete_codes_mask"] = torch.concat(
[
model_kwargs["cache_audio_discrete_codes_mask"],
outputs.audio_in_discrete_codes_mask | outputs.audio_out_mask,
],
1,
)
return model_kwargs
def _copy_kv_cache(self, from_cache: Cache, to_cache: Cache):
num_layers = self.config.text_config.num_hidden_layers
if self.config.audio_dual_ffn_layers is not None:
num_layers += len(self.config.audio_dual_ffn_layers)
""" Copy the key-value pairs from one cache to another. """
for layer_idx in range(num_layers):
from_cache_size = from_cache.get_max_cache_shape()
assert to_cache.get_max_cache_shape() >= from_cache_size, (
f"The target cache size {to_cache.get_max_cache_shape()} is smaller than the source cache size {from_cache_size}."
)
to_cache.key_cache[layer_idx][:, :, :from_cache_size, :] = from_cache.key_cache[layer_idx]
to_cache.value_cache[layer_idx][:, :, :from_cache_size, :] = from_cache.value_cache[layer_idx]
def _prepare_kv_cache(
self,
current_sequence_length: int,
current_past_key_values_bucket: Optional[int],
past_key_values_buckets: OrderedDict[int, Cache],
) -> Tuple[Optional[Cache], Optional[int]]:
"""Prepare the KV cache for the current sequence length."""
for cache_length in past_key_values_buckets.keys():
if cache_length >= current_sequence_length:
# Promote to the next KV cache bucket, copy the current KV cache bucket
# to the new one.
if current_past_key_values_bucket is not None and cache_length != current_past_key_values_bucket:
self._copy_kv_cache(
past_key_values_buckets[current_past_key_values_bucket],
past_key_values_buckets[cache_length],
)
return past_key_values_buckets[cache_length], cache_length
raise ValueError(
f"The current sequence length {current_sequence_length} is larger than "
f"all past key values buckets {past_key_values_buckets.keys()}."
)
def _sample_audio_tokens(
self,
hidden_states: torch.Tensor,
audio_logits: torch.Tensor,
audio_out_ids: torch.Tensor,
do_sample: bool,
logits_processor: LogitsProcessorList,
device: torch.device,
torch_generator: Optional[torch.Generator],
generation_config: GenerationConfig,
num_delay: int,
num_remaining_delays: Optional[int],
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, int, Optional[int]]:
"""Sample audio tokens and its corresponding text tokens from the logits"""
# parameters related to repetition aware sampling
ras_win_len = generation_config.generation_kwargs.get("ras_win_len", None)
ras_win_max_num_repeat = generation_config.generation_kwargs.get("ras_win_max_num_repeat", 2)
audio_eos_token_id = generation_config.generation_kwargs.get("audio_eos_token_id", None)
# In the audio generation mode, we sample from audio_logits and keep updating audio_out_ids.
next_audio_token_logits = audio_logits.clone()[-1, :, :].float().to(device)
# TopP, TopK logits processor supports empty input_ids
next_audio_token_scores = logits_processor(None, next_audio_token_logits)
# token selection
if do_sample:
# next_audio_token_scores has been applied top_p, top_k, and temperature.
probs = nn.functional.softmax(next_audio_token_scores, dim=-1)
# TODO (joao): this OP throws "skipping cudagraphs due to ['incompatible ops']", find solution
next_audio_tokens = torch.multinomial(probs, num_samples=1, generator=torch_generator).squeeze(1)
else:
next_audio_tokens = torch.argmax(next_audio_token_scores, dim=-1)
# next_tokens: (num_codebooks, )
if ras_win_len is not None:
# check if there are repetitions over a window of tokens.
rep_num = (audio_out_ids[:, -ras_win_len:] == next_audio_tokens.unsqueeze(1)).sum(dim=1)
# if we saw repeated tokens in the most recent window of tokens, resample without temperature.
row_indices = torch.nonzero(rep_num >= ras_win_max_num_repeat).squeeze(1)
resampled_next_tokens = (
next_audio_token_logits[row_indices]
.softmax(dim=-1)
.multinomial(1, replacement=True, generator=torch_generator)
.squeeze(1)
)
next_audio_tokens[row_indices] = resampled_next_tokens
# Force the next text tokens to be <|AUDIO_OUT|> in audio generation mode
next_tokens = torch.full(
(audio_logits.shape[0],),
self.config.audio_out_token_idx,
dtype=torch.long,
device=device,
)
# Handle delay_pattern
if self.use_delay_pattern:
if num_delay + 1 < next_audio_tokens.shape[0]:
next_audio_tokens[(num_delay + 1) :] = self.config.audio_stream_bos_id
num_delay += 1
if num_remaining_delays is not None:
next_audio_tokens[: (self.audio_num_codebooks - num_remaining_delays)] = (
self.config.audio_stream_eos_id
)
num_remaining_delays -= 1
else:
all_eos_indices = (next_audio_tokens == self.config.audio_stream_eos_id).nonzero()
if torch.numel(all_eos_indices) > 0:
all_eos_indices = all_eos_indices[0]
last_eos_idx = all_eos_indices[-1]
next_audio_tokens[:last_eos_idx] = self.config.audio_stream_eos_id
num_remaining_delays = self.audio_num_codebooks - last_eos_idx - 1
if num_remaining_delays is not None and num_remaining_delays <= 0:
next_tokens[...] = audio_eos_token_id
num_delay = 0
num_remaining_delays = None
return (
next_tokens,
next_audio_tokens,
next_audio_token_logits,
next_audio_token_scores,
num_delay,
num_remaining_delays,
)
def _sample_text_tokens(
self,
logits: torch.Tensor,
input_ids: torch.Tensor,
do_sample: bool,
logits_processor: LogitsProcessorList,
device: torch.device,
generation_mode: GenerationMode,
torch_generator: Optional[torch.Generator],
) -> torch.Tensor:
"""Sample text tokens from the logits"""
# Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
# (the clone itself is always small)
next_token_logits = logits.clone()[:, -1, :].float()
next_token_logits = next_token_logits.to(input_ids.device)
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
if generation_mode == GenerationMode.AUDIO_INIT:
# See the audio bos token, we should start generating audio tokens
next_tokens = torch.full(
(input_ids.shape[0],),
self.audio_out_token_idx,
dtype=torch.long,
device=device,
)
next_audio_tokens = torch.full(
(self.config.audio_num_codebooks,),
self.config.audio_stream_bos_id,
dtype=torch.long,
device=device,
)
else:
if do_sample:
probs = nn.functional.softmax(next_token_scores, dim=-1)
# TODO (joao): this OP throws "skipping cudagraphs due to ['incompatible ops']", find solution
next_tokens = torch.multinomial(probs, num_samples=1, generator=torch_generator).squeeze(1)
else:
next_tokens = torch.argmax(next_token_scores, dim=-1)
next_audio_tokens = None
return next_tokens, next_audio_tokens, next_token_logits, next_token_scores
# Built on top of GenerationMixin._sample.
# We revise the implementation to support generating both audio / text.
def _sample(
self,
input_ids: torch.LongTensor,
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
streamer: Optional["BaseStreamer"],
past_key_values_buckets: Optional[OrderedDict[int, Cache]],
**model_kwargs,
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for joint text/audio models using **multinomial sampling**.
This function may also be revised to support generating samples from HiggsAudio-like end-to-end text/audio models built on top of LLMs.
If the input_ids ends with <|audio_out_bos|>, we will switch to the audio-generation mode.
```
...<|start_header_id|>assistant<|end_header_id|>\n\n<|audio_out_bos|>
```
Otherwise, we will keep generating the text tokens.
Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
stopping_criteria (`StoppingCriteriaList`):
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
used to tell if the generation loop should stop.
generation_config ([`~generation.GenerationConfig`]):
The generation configuration to be used as parametrization of the decoding method.
synced_gpus (`bool`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
model_kwargs:
Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`:
A `torch.LongTensor` containing the generated tokens (default behaviour) or a
[`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
"""
assert input_ids.shape[0] == 1, "Only support batch_size=1 in _sample()"
audio_out_bos_token_id = generation_config.generation_kwargs.get("audio_out_bos_token_id", None)
# torch generator for sampling
seed = generation_config.generation_kwargs.get("seed", None)
if seed is not None:
torch_generator = torch.Generator(device=input_ids.device).manual_seed(seed)
else:
torch_generator = None
# init values
pad_token_id = generation_config._pad_token_tensor
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
max_length = generation_config.max_length
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
do_sample = generation_config.do_sample
# Used to track which past_key_va
self.current_past_key_values_bucket = None
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# keep track of which sequences are already finished
batch_size, cur_len = input_ids.shape
this_peer_finished = False
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
if generation_config.use_cache:
model_kwargs["cache_audio_discrete_codes_mask"] = None
init_model_input = True
num_delay = 0
num_remaining_delays = None
audio_sequences = []
# A tensor to keep track of all the audio placeholder tokens.
input_ids_full = input_ids.clone()
# Initialize the audio variables based on the input prompt.
if input_ids[0][-1] == self.config.audio_out_token_idx:
audio_sequences = [model_kwargs["audio_out_ids"][:, model_kwargs["audio_out_ids_start"][-1] :]]
if self.use_delay_pattern:
num_delay = (
self.audio_num_codebooks
- (model_kwargs["audio_out_ids"][:, -1] == self.config.audio_stream_bos_id).sum()
)
all_eos_indices = (model_kwargs["audio_out_ids"][:, -1] == self.config.audio_stream_eos_id).nonzero()
if torch.numel(all_eos_indices) > 0:
all_eos_indices = all_eos_indices[0]
last_eos_idx = all_eos_indices[-1]
num_remaining_delays = self.audio_num_codebooks - last_eos_idx - 1
while self._has_unfinished_sequences(
this_peer_finished,
synced_gpus,
device=input_ids.device,
cur_len=cur_len,
max_length=max_length,
):
# Check which multimodal stage we are in
# FIXME: Assume single input generation
if input_ids[0][-1] == audio_out_bos_token_id:
generation_mode = GenerationMode.AUDIO_INIT
elif input_ids[0][-1] == self.audio_out_token_idx:
generation_mode = GenerationMode.AUDIO_IN_PROGRESS
else:
generation_mode = GenerationMode.TEXT
is_audio_generation_mode = generation_mode == GenerationMode.AUDIO_IN_PROGRESS
if init_model_input or not generation_config.use_cache:
model_inputs = {"input_ids": input_ids, **model_kwargs}
else:
model_inputs = {"input_ids": input_ids[:, -1:], **model_kwargs}
if is_audio_generation_mode and generation_config.use_cache:
model_inputs["audio_out_ids"] = model_kwargs["audio_out_ids"][:, -1:]
model_inputs["audio_out_ids_start"] = torch.tensor([0], dtype=torch.long, device=input_ids.device)
elif not is_audio_generation_mode:
del model_inputs["audio_out_ids"]
del model_inputs["audio_out_ids_start"]
if generation_config.use_cache:
if "audio_features" in model_inputs and model_inputs["audio_features"] is not None:
model_inputs["audio_features"] = model_inputs["audio_features"][:0, ...]
model_inputs["audio_feature_attention_mask"] = model_inputs["audio_feature_attention_mask"][
:0, ...
]
if "audio_in_ids" in model_inputs and model_inputs["audio_in_ids"] is not None:
model_inputs["audio_in_ids"] = None
model_inputs["audio_in_ids_start"] = None
# prepare variable output controls (note: some models won't accept all output controls)
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
if past_key_values_buckets is not None:
past_key_values, self.current_past_key_values_bucket = self._prepare_kv_cache(
cur_len,
self.current_past_key_values_bucket,
past_key_values_buckets,
)
if past_key_values is not None:
model_inputs.update({"past_key_values": past_key_values})
model_inputs["past_key_values_buckets"] = past_key_values_buckets
# forward pass to get next token
outputs = self(**model_inputs, return_dict=True)
# Update the actual sequence length after the first forward pass
if init_model_input and past_key_values_buckets is not None:
cur_len = past_key_values_buckets[self.current_past_key_values_bucket].get_seq_length().item()
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
model_kwargs = self._update_model_kwargs_for_generation(
outputs,
model_kwargs,
is_encoder_decoder=self.config.is_encoder_decoder,
extend_attention_mask=True,
)
# After the first forward pass, we can set init_model_input to False.
init_model_input = False
if synced_gpus and this_peer_finished:
continue
if is_audio_generation_mode:
# In audio generation mode, we sample the audio tokens from audio logits.
# It might also generate the audio eos token to end the audio generation.
(
next_tokens,
next_audio_tokens,
next_audio_token_logits,
next_audio_token_scores,
num_delay,
num_remaining_delays,
) = self._sample_audio_tokens(
hidden_states=outputs.audio_hidden_states,
audio_logits=outputs.audio_logits,
audio_out_ids=model_kwargs["audio_out_ids"],
do_sample=do_sample,
logits_processor=logits_processor,
device=input_ids.device,
torch_generator=torch_generator,
generation_config=generation_config,
num_delay=num_delay,
num_remaining_delays=num_remaining_delays,
)
# update generated ids, model inputs, and length for next step
model_kwargs["audio_out_ids"] = torch.cat(
[model_kwargs["audio_out_ids"], next_audio_tokens[:, None]], dim=-1
)
audio_sequences[-1] = torch.cat([audio_sequences[-1], next_audio_tokens[:, None]], dim=-1)
if streamer is not None:
streamer.put(next_audio_tokens.cpu())
else:
# In text generation mode, we sample the text tokens from text logits.
# It might also generate the audio placeholder token to start the audio generation.
next_tokens, next_audio_tokens, next_token_logits, next_token_scores = self._sample_text_tokens(
input_ids=input_ids,
logits=outputs.logits,
do_sample=do_sample,
logits_processor=logits_processor,
device=input_ids.device,
generation_mode=generation_mode,
torch_generator=torch_generator,
)
if streamer is not None:
streamer.put(next_tokens.cpu())
if next_audio_tokens is not None:
# If the token is audio bos token, we will generate the audio placeholder token
# and the corrensponding audio stream bos token to start the audio generation.
audio_sequences.append(next_audio_tokens[:, None])
if streamer is not None:
streamer.put(next_audio_tokens.cpu())
if model_kwargs["audio_out_ids"] is None or model_kwargs["audio_out_ids"].shape[0] == 0:
# Initialize audio_out_ids
model_kwargs["audio_out_ids"] = next_audio_tokens[:, None]
model_kwargs["audio_out_ids_start"] = torch.tensor(
[0], dtype=torch.long, device=input_ids.device
)
else:
model_kwargs["audio_out_ids_start"] = torch.concat(
[
model_kwargs["audio_out_ids_start"],
torch.tensor(
[model_kwargs["audio_out_ids"].shape[1]],
dtype=torch.long,
device=input_ids.device,
),
],
dim=0,
)
model_kwargs["audio_out_ids"] = torch.concat(
[model_kwargs["audio_out_ids"], next_audio_tokens[:, None]],
dim=1,
)
if return_dict_in_generate:
if output_scores:
if is_audio_generation_mode:
scores += (next_audio_token_scores,)
else:
scores += (next_token_scores,)
if output_logits:
if is_audio_generation_mode:
raw_logits += (next_audio_token_logits,)
else:
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += (outputs.attentions,)
if output_hidden_states:
decoder_hidden_states += (outputs.hidden_states,)
# finished sentences should have their next token be a padding token
if has_eos_stopping_criteria:
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
if "tokenizer_length" in generation_config.generation_kwargs:
tokenizer_length = generation_config.generation_kwargs["tokenizer_length"]
if torch.max(next_tokens) >= tokenizer_length:
raise ValueError(
f"Next generated token has max value {torch.max(next_tokens)} which is greater than the tokenizer's vocabulary size {tokenizer_length}, this is undesired behavior."
)
# update generated ids, model inputs, and length for next step
if not is_audio_generation_mode or next_tokens[0] != self.audio_out_token_idx:
# We only add one <|AUDIO_OUT|> token to the input_ids for simplicity.
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
input_ids_full = torch.cat([input_ids_full, next_tokens[:, None]], dim=-1)
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids_full, scores)
this_peer_finished = unfinished_sequences.max() == 0
cur_len += 1
# This is needed to properly delete outputs.logits which may be very large for first iteration
# Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
del outputs
if streamer is not None:
streamer.end()
if return_dict_in_generate:
return HiggsAudioGenerationOutput(
sequences=input_ids,
audio_sequences=audio_sequences,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return input_ids, audio_sequences
@torch.inference_mode()
def generate(
self,
input_ids: Optional[torch.LongTensor] = None,
audio_features: Optional[torch.FloatTensor] = None,
audio_feature_attention_mask: Optional[torch.BoolTensor] = None,
audio_in_ids: Optional[torch.LongTensor] = None,
audio_in_ids_start: Optional[torch.LongTensor] = None,
audio_out_ids: Optional[torch.LongTensor] = None,
audio_out_ids_start: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
audio_out_bos_token_id: int = None,
audio_eos_token_id: int = None,
past_key_values_buckets: Optional[OrderedDict[int, Cache]] = None,
seed: Optional[int] = None,
**kwargs,
):
"""
The generate function in huggingface generally follows these steps:
for sample_step in 1, 2, 3, 4, 5, ...
...
"""
# Right now, it's a very simplified version of generate, we should revisit this after our model architecture stabilizes.
assert input_ids.shape[0] == 1, (
"Currently HiggsAudioModel.generate() only supports batch_size=1. See the implementation of "
)
generation_config, kwargs = self._prepare_generation_config(kwargs.pop("generation_config", None), **kwargs)
if audio_out_bos_token_id is not None:
generation_config.generation_kwargs["audio_out_bos_token_id"] = audio_out_bos_token_id
else:
try:
generation_config.generation_kwargs["audio_out_bos_token_id"] = self.audio_out_bos_token_id
except:
generation_config.generation_kwargs["audio_out_bos_token_id"] = None
if audio_eos_token_id is not None:
generation_config.generation_kwargs["audio_eos_token_id"] = audio_eos_token_id
else:
try:
generation_config.generation_kwargs["audio_eos_token_id"] = self.audio_eos_token_id
except:
generation_config.generation_kwargs["audio_eos_token_id"] = None
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
generation_config.generation_kwargs["ras_win_len"] = kwargs.pop("ras_win_len", None)
generation_config.generation_kwargs["ras_win_max_num_repeat"] = kwargs.pop("ras_win_max_num_repeat", 2)
# Set generation seed if determinstic generation is required
if seed is not None:
generation_config.generation_kwargs["seed"] = seed
# Store tokenizer in generation config if it is in kwargs without popping it
if "tokenizer" in kwargs:
generation_config.generation_kwargs["tokenizer_length"] = len(kwargs["tokenizer"])
# input_ids: [bsz, seq_len]
# The merging of audio features happens inside the forward path. The input_ids does not need to change.
# TODO: prepare the final input embeddings to improve generation performance
input_ids_length = input_ids.shape[-1]
generation_config = self._prepare_generated_length(
generation_config=generation_config,
has_default_max_length=has_default_max_length,
has_default_min_length=has_default_min_length,
model_input_name=None,
inputs_tensor=None,
input_ids_length=input_ids_length,
)
assert generation_config.num_beams == 1, "Currently, we only support beam search with num_beams=1"
return_dict_in_generate = generation_config.return_dict_in_generate
output_scores = generation_config.output_scores
# When attn_implement is spda or flash-attention, it will create causal mask automatically.
attention_mask = kwargs.pop("attention_mask", None)
return super().generate(
input_ids=input_ids,
attention_mask=attention_mask,
audio_features=audio_features,
audio_feature_attention_mask=audio_feature_attention_mask,
audio_in_ids=audio_in_ids,
audio_in_ids_start=audio_in_ids_start,
audio_out_ids=audio_out_ids,
audio_out_ids_start=audio_out_ids_start,
past_key_values=past_key_values,
generation_config=generation_config,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
past_key_values_buckets=past_key_values_buckets,
**kwargs,
)
def parameter_count_per_component(self):
"""Count the number of parameters per component in the model.
HiggsAudio has the following main components:
audio_tower: For mapping audio features to hidden states),
llm_embed: The size of embedding layer of the LLM
llm_non_embed: The size of non-embedding layer of the LLM
audio_adapter: The overall size of additional layers for audio generation
"""
trainable_stats = {
"audio_tower": 0,
"llm_embed": 0,
"llm_non_embed": 0,
"audio_embed": 0,
"audio_adapter": 0,
"overall": 0,
}
total_stats = {
"audio_tower": 0,
"llm_embed": 0,
"llm_non_embed": 0,
"audio_embed": 0,
"audio_adapter": 0,
"overall": 0,
}
total_stats["overall"] = count_parameters(self, trainable_only=False)
trainable_stats["overall"] = count_parameters(self, trainable_only=True)
for mod in [self.audio_tower]:
if mod is not None:
total_stats["audio_tower"] += count_parameters(mod, trainable_only=False)
trainable_stats["audio_tower"] += count_parameters(mod, trainable_only=True)
total_stats["llm_embed"] = count_parameters(self.embed_tokens, trainable_only=False)
trainable_stats["llm_embed"] = count_parameters(self.embed_tokens, trainable_only=True)
total_stats["audio_embed"] = count_parameters(self.audio_codebook_embeddings, trainable_only=False)
trainable_stats["audio_embed"] = count_parameters(self.audio_codebook_embeddings, trainable_only=True)
# Calculate number of parameters for LLM
for layer in self.layers:
if isinstance(layer, HiggsAudioDualFFNDecoderLayer):
total_param_count = count_parameters(layer, trainable_only=False)
total_trainable_param_count = count_parameters(layer, trainable_only=True)
total_stats["llm_non_embed"] += total_param_count
trainable_stats["llm_non_embed"] += total_trainable_param_count
if not layer.fast_forward:
audio_mlp_param_count = count_parameters(layer.audio_mlp, trainable_only=False)
audio_mlp_trainable_param_count = count_parameters(layer.audio_mlp, trainable_only=True)
audio_norm_param_count = count_parameters(
layer.audio_post_attention_layernorm, trainable_only=False
) + count_parameters(layer.audio_input_layernorm, trainable_only=False)
audio_norm_trainable_param_count = count_parameters(
layer.audio_post_attention_layernorm, trainable_only=True
) + count_parameters(layer.audio_input_layernorm, trainable_only=True)
total_stats["llm_non_embed"] -= audio_mlp_param_count + audio_norm_param_count
trainable_stats["llm_non_embed"] -= (
audio_mlp_trainable_param_count + audio_norm_trainable_param_count
)
total_stats["audio_adapter"] += audio_mlp_param_count + audio_norm_param_count
trainable_stats["audio_adapter"] += (
audio_mlp_trainable_param_count + audio_norm_trainable_param_count
)
if layer.use_audio_attention:
audio_attn_param_count = count_parameters(
layer.audio_attn, trainable_only=False
) + count_parameters(layer.audio_post_audio_attn_layer_norm, trainable_only=False)
audio_attn_trainable_param_count = count_parameters(
layer.audio_attn, trainable_only=True
) + count_parameters(layer.audio_post_audio_attn_layer_norm, trainable_only=True)
total_stats["llm_non_embed"] -= audio_attn_param_count
trainable_stats["llm_non_embed"] -= audio_attn_trainable_param_count
total_stats["audio_adapter"] += audio_attn_param_count
trainable_stats["audio_adapter"] += audio_attn_trainable_param_count
else:
total_stats["llm_non_embed"] += count_parameters(layer, trainable_only=False)
trainable_stats["llm_non_embed"] += count_parameters(layer, trainable_only=True)
total_stats["llm_non_embed"] += count_parameters(self.norm, trainable_only=False)
trainable_stats["llm_non_embed"] += count_parameters(self.norm, trainable_only=True)
total_stats["audio_adapter"] += count_parameters(self.audio_decoder_proj.audio_lm_head, trainable_only=False)
trainable_stats["audio_adapter"] += count_parameters(
self.audio_decoder_proj.audio_lm_head, trainable_only=True
)
total_stats["llm_embed"] += count_parameters(self.audio_decoder_proj.text_lm_head, trainable_only=False)
trainable_stats["llm_embed"] += count_parameters(self.audio_decoder_proj.text_lm_head, trainable_only=True)
other_audio_modules = [self.audio_encoder_proj]
if self.use_audio_out_embed_projector:
other_audio_modules.append(self.audio_out_embed_projector)
for mod in other_audio_modules:
if mod is not None:
total_stats["audio_adapter"] += count_parameters(mod, trainable_only=False)
trainable_stats["audio_adapter"] += count_parameters(mod, trainable_only=True)
return {"trainable": trainable_stats, "total": total_stats}
def set_skip_audio_tower(self):
self.config.skip_audio_tower = True
self.config.encode_whisper_embed = False
def set_encode_audio_in_tokens(self):
self.config.encode_audio_in_tokens = True
def freeze_audio_tower(self):
if self.audio_tower is not None:
for param in self.audio_tower.parameters():
param.requires_grad = False
def freeze_audio_encoder_proj(self):
if self.audio_encoder_proj is not None:
for param in self.audio_encoder_proj.parameters():
param.requires_grad = False
def freeze_llm(self, freeze_embed=True, freeze_embed_until_idx: Optional[int] = None):
for layer in self.layers:
if isinstance(layer, HiggsAudioDualFFNDecoderLayer):
for param in layer.self_attn.parameters():
param.requires_grad = False
for param in layer.mlp.parameters():
param.requires_grad = False
for param in layer.post_attention_layernorm.parameters():
param.requires_grad = False
for param in layer.input_layernorm.parameters():
param.requires_grad = False
else:
for param in layer.parameters():
param.requires_grad = False
for param in self.norm.parameters():
param.requires_grad = False
if freeze_embed:
if freeze_embed_until_idx is None:
for param in self.embed_tokens.parameters():
param.requires_grad = False
else:
assert isinstance(self.embed_tokens, nn.Embedding)
self.embed_tokens = PartiallyFrozenEmbedding(
original_embedding=self.embed_tokens,
freeze_until_idx=freeze_embed_until_idx,
)
def freeze_text_head(self, freeze_text_head_until_idx: Optional[int] = None):
"""Freeze the final text head"""
if freeze_text_head_until_idx is None:
for param in self.audio_decoder_proj.text_lm_head.parameters():
param.requires_grad = False
else:
assert isinstance(self.audio_decoder_proj.text_lm_head, nn.Linear)
self.audio_decoder_proj.text_lm_head = PartiallyFrozenLinear(
original_linear=self.audio_decoder_proj.text_lm_head,
freeze_until_idx=freeze_text_head_until_idx,
)
@classmethod
def merge_weights_from_checkpoint(cls, checkpoint_dir: str, merged_output_dir: str, *model_args, **kwargs):
# For users' convenience, we merge back embedding and text_lm_head if they are splitted
splitted_model = super().from_pretrained(
checkpoint_dir,
*model_args,
torch_dtype=torch.bfloat16,
device_map="cpu",
**{**kwargs, "state_dict": None}, # Prevent auto-loading state_dict
)
# Load all safetensor shards
state_dict = {}
shard_paths = sorted(glob.glob(os.path.join(checkpoint_dir, "*.safetensors")))
for shard_path in shard_paths:
shard_dict = load_file(shard_path) # Load each shard
state_dict.update(shard_dict) # Merge into a single dict
# Merge weights
if (
"audio_decoder_proj.text_lm_head.linear_frozen.weight" in state_dict
and "audio_decoder_proj.text_lm_head.linear_trainable.weight" in state_dict
):
state_dict["audio_decoder_proj.text_lm_head.weight"] = torch.cat(
[
state_dict["audio_decoder_proj.text_lm_head.linear_frozen.weight"],
state_dict["audio_decoder_proj.text_lm_head.linear_trainable.weight"],
],
dim=0,
)
del state_dict["audio_decoder_proj.text_lm_head.linear_frozen.weight"]
del state_dict["audio_decoder_proj.text_lm_head.linear_trainable.weight"]
if (
"embed_tokens.embedding_frozen.weight" in state_dict
and "embed_tokens.embedding_trainable.weight" in state_dict
):
state_dict["embed_tokens.weight"] = torch.cat(
[
state_dict["embed_tokens.embedding_frozen.weight"],
state_dict["embed_tokens.embedding_trainable.weight"],
],
dim=0,
)
del state_dict["embed_tokens.embedding_frozen.weight"]
del state_dict["embed_tokens.embedding_trainable.weight"]
# Load the final state_dict
splitted_model.load_state_dict(state_dict, strict=True)
if merged_output_dir:
splitted_model.save_pretrained(merged_output_dir, is_main_process=True, state_dict=state_dict)
@torch.inference_mode()
def capture_model(self, past_key_values: list[Union[Cache, List[torch.FloatTensor]]]) -> None:
"""Capture CUDA graphs for the model's forward pass with different KV cache lengths.
Args:
past_key_values: List of KV caches to capture graphs for
"""
for past_key_value in past_key_values:
kv_cache_length = past_key_value.get_max_cache_shape()
# We capture two graphs, one for decoding audio tokens and one for decoding text tokens
for is_decoding_audio_token in [True, False]:
runner = CUDAGraphRunner(self._forward_core)
# Create dummy inputs for graph capture
batch_size = 1
hidden_dim = self.config.hidden_size
hidden_states = torch.zeros(
(batch_size, 1, hidden_dim),
dtype=self.config.torch_dtype,
device="cuda",
)
causal_mask = torch.ones(
(batch_size, 1, 1, kv_cache_length),
dtype=self.config.torch_dtype,
device="cuda",
)
position_ids = torch.zeros((batch_size, 1), dtype=torch.long, device="cuda")
audio_discrete_codes_mask = torch.tensor([[is_decoding_audio_token]], dtype=torch.bool, device="cuda")
cache_position = torch.tensor([kv_cache_length - 1], dtype=torch.long, device="cuda")
audio_attention_mask = torch.ones_like(causal_mask)
fast_forward_attention_mask = torch.ones_like(causal_mask)
runner.capture(
hidden_states=hidden_states,
causal_mask=causal_mask,
position_ids=position_ids,
audio_discrete_codes_mask=audio_discrete_codes_mask,
cache_position=cache_position,
past_key_values=past_key_value,
use_cache=True,
audio_attention_mask=audio_attention_mask,
fast_forward_attention_mask=fast_forward_attention_mask,
output_attentions=False,
output_hidden_states=False,
is_decoding_audio_token=is_decoding_audio_token,
is_using_cuda_graph=True,
)
self.decode_graph_runners[kv_cache_length][is_decoding_audio_token] = runner
|