File size: 30,819 Bytes
07f1f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
import contextlib
from contextlib import contextmanager
from functools import wraps
import torch
from transformers.integrations import is_deepspeed_available

if is_deepspeed_available():
    from deepspeed.utils import groups as deepspeed_groups
    from deepspeed.sequence.layer import _SeqAllToAll
else:
    deepspeed_groups = None
    _SeqAllToAll = None


def _ceil_to_nearest(n, round_to):
    return (n + round_to - 1) // round_to * round_to


def count_parameters(model, trainable_only=True):
    if trainable_only:
        return sum(p.numel() for p in model.parameters() if p.requires_grad)
    else:
        return sum(p.numel() for p in model.parameters())


# TODO(sxjscience) Consider to move the function to audio_processing/utils.py
def build_delay_pattern_mask(
    input_ids: torch.LongTensor,
    bos_token_id: int,
    pad_token_id: int,
):
    """Implement the delay pattern proposed in "Simple and Controllable Music Generation", https://arxiv.org/pdf/2306.05284

    In the delay pattern, each codebook is offset by the previous codebook by
    one. We insert a special delay token at the start of the sequence if its delayed, and append pad token once the sequence finishes.

    Take the example where there are 4 codebooks and audio sequence length=5. After shifting, the output should have length seq_len + num_codebooks - 1

    - [ *,  *,  *,  *,  *,  P,  P,  P]
    - [ B,  *,  *,  *,  *,  *,  P,  P]
    - [ B,  B,  *,  *,  *,  *,  *,  P]
    - [ B,  B,  B,  *,  *,  *,  *,  *]

    where B indicates the delay token id, P is the special padding token id and `*` indicates that the original audio token.

    Now let's consider the case where we have a sequence of audio tokens to condition on.
    The audio tokens were originally in the following non-delayed form:

    - [a, b]
    - [c, d]
    - [e, f]
    - [g, h]

    After conversion, we get the following delayed form:
    - [a, b, -1, -1, -1]
    - [B, c,  d, -1, -1]
    - [B, B,  e,  f, -1]
    - [B, B,  B,  g,  h]

    Note that we have a special token `-1` that indicates it should be replaced by a new token we see in the generation phase.
    In that case, we should override the `-1` tokens in auto-regressive generation.

    Args:
        input_ids (:obj:`torch.LongTensor`):
            The input ids of the prompt. It will have shape (bsz, num_codebooks, seq_len).
        bos_token_id (:obj:`int`):
            The id of the special delay token
        pad_token_id (:obj:`int`):
            The id of the padding token. Should be the same as eos_token_id.

    Returns:
        input_ids (:obj:`torch.LongTensor`):
            The transformed input ids with delay pattern applied. It will have shape (bsz, num_codebooks, seq_len + num_codebooks - 1).
        input_ids_with_gen_mask (:obj:`torch.LongTensor`):
            The transformed input ids with delay pattern applied. The -1 in the output indicates new tokens that should be generated.

    """
    bsz, num_codebooks, seq_len = input_ids.shape

    new_seq_len = seq_len + num_codebooks - 1
    input_ids_with_gen_mask = torch.ones((bsz, num_codebooks, new_seq_len), dtype=torch.long, device=input_ids.device)
    bos_mask = torch.tril(input_ids_with_gen_mask, -1) > 0
    eos_mask = torch.triu(input_ids_with_gen_mask, seq_len) > 0
    input_ids_with_gen_mask[bos_mask] = bos_token_id
    input_ids_with_gen_mask[(~bos_mask) & (~eos_mask)] = input_ids.reshape(-1)
    input_ids = input_ids_with_gen_mask.clone()
    input_ids[eos_mask] = pad_token_id
    input_ids_with_gen_mask[eos_mask] = -1
    return input_ids, input_ids_with_gen_mask


def revert_delay_pattern(data):
    """Convert samples encoded with delay pattern back to the original form.

    Args:
        data (:obj:`torch.Tensor`):
            The data with delay pattern applied. It will have shape (num_codebooks, seq_len + num_codebooks - 1).

    Returns:
        ret (:obj:`torch.Tensor`):
            Recovered data with delay pattern removed. It will have shape (num_codebooks, seq_len).
    """
    assert len(data.shape) == 2
    out_l = []
    num_codebooks = data.shape[0]
    for i in range(num_codebooks):
        out_l.append(data[i : (i + 1), i : (data.shape[1] - num_codebooks + 1 + i)])
    return torch.cat(out_l, dim=0)


def merge_input_ids_with_audio_features(
    audio_features_embed,
    audio_features_length,
    audio_in_embed,
    audio_in_ids_start,
    audio_out_embed,
    audio_out_ids_start,
    audio_in_token_idx,
    audio_out_token_idx,
    inputs_embeds,
    input_ids,
    attention_mask,
    label_ids,
    pad_token_id,
    ignore_index=-100,
    round_to=8,
    left_padding=True,
):
    """
    Merge input_ids with audio features into final embeddings.

    Args:
        audio_features_embed (`torch.Tensor` of shape `(num_audios, max_audio_tokens, embed_dim)`):
            Encoded vectors of all audios in the batch (obtained from the semantic encoder)
        audio_features_length (`torch.LongTensor` of shape `(num_audios,)`):
            The length of audio embeddings of each audio as stacked in `audio_features_embed`
        audio_in_embed (`torch.Tensor` of shape `(total_num_audio_in_tokens, embed_dim)`):
            The embeddings of audio-in tokens
        audio_in_ids_start (`torch.LongTensor` of shape `(num_audios,)`):
            The start index of the audio-in tokens for each audio
        audio_out_embed (`torch.Tensor` of shape `(total_num_audio_out_tokens, embed_dim)`):
            The embeddings of audio-out tokens
        audio_out_ids_start (`torch.LongTensor` of shape `(num_audios,)`):
            The start index of the audio-out tokens for each audio
        audio_in_token_idx
            The index of the audio-in token in the vocabulary
        audio_out_token_idx
            The index of the audio-out token in the vocabulary
        inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`):
            Token embeddings before merging with audio embeddings
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Input_ids of tokens, possibly filled with audio token
        attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Mask to avoid performing attention on padding token indices.
        label_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*)
            labels need to be recalculated to support training (if provided)
        pad_token_id (`int`):
            The index of the pad token in the vocabulary
        ignore_index
            The index to ignore in the loss calculation
        round_to
            The number to round to for padding
        left_padding
            Whether to apply left padding

    Returns:
        final_embedding
            The final embeddings after merging audio embeddings with text embeddings.
        final_attention_mask
            The final attention mask after merging audio embeddings with text embeddings.
        final_labels
            The labels for the text stream
        position_ids
            Positional ids for the merged data
        final_input_ids
            The final input_ids after merging audio embeddings with text embeddings.
        final_audio_in_mask
            Mask for audio-in embeddings
        final_audio_in_discrete_codes_mask
            Mask for audio-in discrete tokens
        final_audio_out_mask
            Mask for audio-out embeddings

    Explanation:
        each audio has variable length embeddings, with length specified by
        - audio_features_length
        - audio_in_ids_start
        - audio_out_ids_start

        Task:
        - fill each <|AUDIO|> with audio embeddings (it can be the combination of embeddings extracted by WhisperEncoder and embeddings from audio codebooks)
        - fill each <|AUDIO_OUT|> with the audio-out embeddings

        Example:
            <|AUDIO_OUT|>: X (5 tokens), Y (3 tokens)
            <|AUDIO|>: Z (8 tokens)

            X, Y are in the same sequence (in-context voice-clone). Z is in a different sequence (audio understanding).
        if right padding
            input_ids: [
                a b c d e f X g h i j k Y l m
                o p q r Z s t u v _ _ _ _ _ _
            ]
            input_ids should be: [
                a b c d e f X X X X X g h i j k Y Y Y l m
                o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _
            ]
            labels should be: [
                a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
                o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _
            ]
        elif left padding
            input_ids: [
                a b c d e f X g h i j k Y l m
                _ _ _ _ _ _ o p q r Z s t u v
            ]
            input_ids should be: [
                a b c d e f X X X X X g h i j k Y Y Y l m
                _ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v
            ]
            labels should be: [
                a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
                _ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v
            ]

    """
    if label_ids is None:
        skip_labels = True
    else:
        skip_labels = False
    if audio_features_embed is not None and audio_features_embed.shape[0] == 0:
        audio_features_embed = None
    if audio_in_embed is not None and audio_in_embed.shape[0] == 0:
        audio_in_embed = None
    if audio_out_embed is not None and audio_out_embed.shape[0] == 0:
        audio_out_embed = None

    batch_size, sequence_length, embed_dim = inputs_embeds.shape

    target_device = inputs_embeds.device
    if left_padding is None:
        left_padding = torch.any(attention_mask[:, 0] == 0)

    audio_in_token_mask = input_ids == audio_in_token_idx
    audio_out_token_mask = input_ids == audio_out_token_idx
    text_token_mask = (input_ids != audio_in_token_idx) & (input_ids != audio_out_token_idx)

    # 1. Calculate the number of tokens for each placeholder (like [<|AUDIO|>, <|AUDIO_OUT|>]).
    token_placeholder_num = torch.ones_like(input_ids)

    if audio_features_embed is not None:
        num_audios, max_audio_tokens, _ = audio_features_embed.shape
        audio_in_features_mask = torch.arange(max_audio_tokens).expand(num_audios, max_audio_tokens).to(
            audio_features_length.device
        ) < audio_features_length.unsqueeze(1)
        masked_audio_in_features = audio_features_embed[audio_in_features_mask].view(-1, embed_dim)
        token_placeholder_num[audio_in_token_mask] = audio_features_length.long()

    if audio_in_embed is not None:
        audio_in_codes_length = torch.concat(
            [
                audio_in_ids_start[1:] - audio_in_ids_start[:-1],
                torch.tensor(
                    [audio_in_embed.shape[0] - audio_in_ids_start[-1]],
                    device=audio_in_ids_start.device,
                    dtype=torch.long,
                ),
            ],
            dim=0,
        )
        if audio_features_embed is not None:
            token_placeholder_num[audio_in_token_mask] += audio_in_codes_length.long()
        else:
            token_placeholder_num[audio_in_token_mask] = audio_in_codes_length.long()

    if audio_out_embed is not None:
        audio_out_codes_length = torch.concat(
            [
                audio_out_ids_start[1:] - audio_out_ids_start[:-1],
                torch.tensor(
                    [audio_out_embed.shape[0] - audio_out_ids_start[-1]],
                    device=audio_out_ids_start.device,
                    dtype=torch.long,
                ),
            ],
            dim=0,
        )
        token_placeholder_num[audio_out_token_mask] = audio_out_codes_length.long()

    new_token_positions = torch.cumsum(token_placeholder_num, -1) - 1
    max_token_num = _ceil_to_nearest(token_placeholder_num.sum(-1).max(), round_to)
    nb_audio_pad = max_token_num - 1 - new_token_positions[:, -1]

    if left_padding:
        new_token_positions += nb_audio_pad[:, None]  # offset for left padding

    # 2. Create the full embedding, already padded to the maximum position
    final_embedding = torch.zeros(
        (batch_size, max_token_num, embed_dim),
        dtype=inputs_embeds.dtype,
        device=inputs_embeds.device,
    )
    final_attention_mask = torch.zeros(
        (batch_size, max_token_num),
        dtype=attention_mask.dtype,
        device=inputs_embeds.device,
    )
    final_input_ids = torch.full(
        (batch_size, max_token_num),
        pad_token_id,
        dtype=input_ids.dtype,
        device=inputs_embeds.device,
    )
    if skip_labels:
        final_labels = None
    else:
        final_labels = torch.full(
            (batch_size, max_token_num),
            ignore_index,
            dtype=label_ids.dtype,
            device=inputs_embeds.device,
        )

    final_audio_in_mask = torch.full(
        (batch_size, max_token_num),
        False,
        dtype=torch.bool,
        device=inputs_embeds.device,
    )
    final_audio_in_discrete_codes_mask = torch.full(
        (batch_size, max_token_num),
        False,
        dtype=torch.bool,
        device=inputs_embeds.device,
    )
    final_audio_out_mask = torch.full(
        (batch_size, max_token_num),
        False,
        dtype=torch.bool,
        device=inputs_embeds.device,
    )
    # 3. Get the audio-in token positions and audio-out token positions
    batch_id = torch.arange(batch_size, device=target_device).unsqueeze(1).expand(batch_size, sequence_length)
    audio_in_batch_id = batch_id[audio_in_token_mask]  # Shape (num_audio_in,)
    audio_out_batch_id = batch_id[audio_out_token_mask]  # Shape (num_audio_out,)
    audio_features_token_ends = new_token_positions[audio_in_token_mask]  # Shape (num_audio_in,)
    audio_out_embed_ends = new_token_positions[audio_out_token_mask]  # Shape (num_audio_out,)

    if audio_in_embed is not None:
        # Fill in the audio-in embeddings
        seq_indices = (
            torch.arange(max_token_num, device=target_device)
            .unsqueeze(0)
            .expand(audio_in_ids_start.shape[0], max_token_num)
        )
        audio_in_embed_token_starts = audio_features_token_ends - audio_in_codes_length + 1
        batch_indices, col_indices = torch.where(
            (seq_indices >= audio_in_embed_token_starts.unsqueeze(1))
            & (seq_indices <= audio_features_token_ends.unsqueeze(1))
        )
        batch_indices = audio_in_batch_id[batch_indices]
        final_embedding[batch_indices, col_indices] = audio_in_embed
        final_input_ids[batch_indices, col_indices] = audio_in_token_idx
        if not skip_labels:
            final_labels[batch_indices, col_indices] = ignore_index
        final_audio_in_mask[batch_indices, col_indices] = True
        final_audio_in_discrete_codes_mask[batch_indices, col_indices] = True
        audio_features_token_ends = audio_features_token_ends - audio_in_codes_length

    if audio_features_embed is not None:
        # Fill in the audio features
        seq_indices = (
            torch.arange(max_token_num, device=target_device)
            .unsqueeze(0)
            .expand(audio_features_embed.shape[0], max_token_num)
        )
        audio_features_token_starts = audio_features_token_ends - audio_features_length + 1
        batch_indices, col_indices = torch.where(
            (seq_indices >= audio_features_token_starts.unsqueeze(1))
            & (seq_indices <= audio_features_token_ends.unsqueeze(1))
        )
        batch_indices = audio_in_batch_id[batch_indices]
        final_embedding[batch_indices, col_indices] = masked_audio_in_features
        final_input_ids[batch_indices, col_indices] = audio_in_token_idx
        if not skip_labels:
            final_labels[batch_indices, col_indices] = ignore_index
        final_audio_in_mask[batch_indices, col_indices] = True

    if audio_out_embed is not None:
        # Fill in the audio-out embeddings
        seq_indices = (
            torch.arange(max_token_num, device=target_device)
            .unsqueeze(0)
            .expand(audio_out_ids_start.shape[0], max_token_num)
        )
        audio_out_embed_token_starts = audio_out_embed_ends - audio_out_codes_length + 1
        batch_indices, col_indices = torch.where(
            (seq_indices >= audio_out_embed_token_starts.unsqueeze(1))
            & (seq_indices <= audio_out_embed_ends.unsqueeze(1))
        )
        batch_indices = audio_out_batch_id[batch_indices]
        final_embedding[batch_indices, col_indices] = audio_out_embed
        final_input_ids[batch_indices, col_indices] = audio_out_token_idx
        if not skip_labels:
            final_labels[batch_indices, col_indices] = ignore_index
        final_audio_out_mask[batch_indices, col_indices] = True

    # Fill in the original text embeddings and labels
    batch_indices, non_audio_indices = torch.where(text_token_mask)
    text_to_overwrite = new_token_positions[batch_indices, non_audio_indices]
    final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_audio_indices]
    if not skip_labels:
        final_labels[batch_indices, text_to_overwrite] = label_ids[batch_indices, non_audio_indices]
    final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_audio_indices]
    final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_audio_indices]
    final_attention_mask = final_attention_mask | final_audio_in_mask | final_audio_out_mask

    # Trim the tensor if there are redundant padding tokens
    if left_padding:
        first_non_zero_loc = final_attention_mask.sum(0).nonzero()[0]
        first_non_zero_loc = (first_non_zero_loc // round_to) * round_to
        if first_non_zero_loc > 0:
            final_attention_mask = final_attention_mask[:, first_non_zero_loc:]
            final_embedding = final_embedding[:, first_non_zero_loc:]
            if not skip_labels:
                final_labels = final_labels[:, first_non_zero_loc:]
            final_input_ids = final_input_ids[:, first_non_zero_loc:]
            final_audio_in_mask = final_audio_in_mask[:, first_non_zero_loc:]
            final_audio_in_discrete_codes_mask = final_audio_in_discrete_codes_mask[:, first_non_zero_loc:]
            final_audio_out_mask = final_audio_out_mask[:, first_non_zero_loc:]
    else:
        # We have done right padding, so we need to trim the mask
        last_non_zero_loc = final_attention_mask.sum(0).nonzero()[-1] + 1
        last_non_zero_loc = ((last_non_zero_loc + round_to - 1) // round_to) * round_to
        if last_non_zero_loc < max_token_num:
            final_attention_mask = final_attention_mask[:, :last_non_zero_loc]
            final_embedding = final_embedding[:, :last_non_zero_loc]
            if not skip_labels:
                final_labels = final_labels[:, :last_non_zero_loc]
            final_input_ids = final_input_ids[:, :last_non_zero_loc]
            final_audio_in_mask = final_audio_in_mask[:, :last_non_zero_loc]
            final_audio_in_discrete_codes_mask = final_audio_in_discrete_codes_mask[:, :last_non_zero_loc]
            final_audio_out_mask = final_audio_out_mask[:, :last_non_zero_loc]

    position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
    return (
        final_embedding,
        final_attention_mask,
        final_labels,
        position_ids,
        final_input_ids,
        final_audio_in_mask,
        final_audio_in_discrete_codes_mask,
        final_audio_out_mask,
    )


def is_deepspeed_ulysses_enabled():
    if deepspeed_groups is None:
        return False

    """Check if sequence parallelism is enabled."""
    return deepspeed_groups._get_sequence_parallel_world_size() > 1


def support_deepspeed_ulysses(module):
    """A decorator around Pytorch module. It is needed for the module that needs access to sequence parallel info."""
    module._sp_size = None
    module._sp_rank = None
    module._sp_group = None

    @property
    def sp_size(self):
        if self._sp_size is None:
            self._sp_size = 1
            if is_deepspeed_ulysses_enabled():
                self._sp_size = deepspeed_groups._get_sequence_parallel_group().size()
        return self._sp_size

    @property
    def sp_rank(self):
        if self._sp_rank is None:
            self._sp_rank = 0
            if is_deepspeed_ulysses_enabled():
                self._sp_rank = deepspeed_groups._get_sequence_parallel_rank()
        return self._sp_rank

    @property
    def sp_group(self):
        if self._sp_group is None and is_deepspeed_ulysses_enabled():
            self._sp_group = deepspeed_groups._get_sequence_parallel_group()
        return self._sp_group

    module.sp_size = sp_size
    module.sp_rank = sp_rank
    module.sp_group = sp_group

    return module


def deepspeed_ulysses_attention(seq_dim=1, head_dim=2):
    """Perform all-to-all before and after the attention function."""

    def attention_decorator(attn_func=None):
        def wrapped(*args, **kwargs):
            if is_deepspeed_ulysses_enabled():
                sp_group = deepspeed_groups._get_sequence_parallel_group()
                scatter_idx = head_dim  # Scatter on num_heads dimension
                gather_idx = seq_dim  # Gather on seq_len dimension
                batch_dim_idx = 0
                args = list(args)
                args[0] = _SeqAllToAll.apply(sp_group, args[0], scatter_idx, gather_idx, batch_dim_idx)
                args[1] = _SeqAllToAll.apply(sp_group, args[1], scatter_idx, gather_idx, batch_dim_idx)
                args[2] = _SeqAllToAll.apply(sp_group, args[2], scatter_idx, gather_idx, batch_dim_idx)
                args = tuple(args)

            attn_output = attn_func(*args, **kwargs)

            if is_deepspeed_ulysses_enabled():
                scatter_idx = seq_dim  # Scatter back on seq_len dimension
                gather_idx = head_dim  # Gather on num_heads dimension
                batch_dim_idx = 0
                attn_output = _SeqAllToAll.apply(sp_group, attn_output, scatter_idx, gather_idx, batch_dim_idx)

            return attn_output

        return wrapped

    return attention_decorator


def deepspeed_ulysses_rope(state_seq_dim=2, trig_seq_dim=1):
    """Slice the corresponding cos and sin chunks for rope."""

    def rope_decorator(rope_func=None):
        def wrapped(*args, **kwargs):
            if is_deepspeed_ulysses_enabled():
                sp_rank = deepspeed_groups._get_sequence_parallel_rank()
                args = list(args)
                seq_chunk_size = args[0].size(state_seq_dim)
                args[2] = torch.narrow(args[2], trig_seq_dim, sp_rank * seq_chunk_size, seq_chunk_size)
                args[3] = torch.narrow(args[3], trig_seq_dim, sp_rank * seq_chunk_size, seq_chunk_size)
                args = tuple(args)

            return rope_func(*args, **kwargs)

        return wrapped

    return rope_decorator


def _gather_tensors(input_, group=None):
    """Gather tensors and concatenate them along a dimension."""
    input_ = input_.contiguous()
    world_size = torch.distributed.get_world_size(group)
    if world_size == 1:
        return input_
    tensor_shapes = [
        torch.empty(len(input_.size()), dtype=torch.int64, device=input_.device) for _ in range(world_size)
    ]
    input_size = torch.tensor(input_.size(), dtype=torch.int64, device=input_.device)
    torch.distributed.all_gather(tensor_shapes, input_size, group=group)
    gathered_buffers = [
        torch.empty(tensor_shapes[i].tolist(), dtype=input_.dtype, device=input_.device) for i in range(world_size)
    ]
    torch.distributed.all_gather(gathered_buffers, input_, group=group)
    return gathered_buffers


def _scatter_tensors(input_, group=None):
    """Scatter tensors."""
    world_size = torch.distributed.get_world_size(group)
    if world_size == 1:
        return input_
    rank = torch.distributed.get_rank(group)
    return input_[rank]


class _GatherTensors(torch.autograd.Function):
    """All gather tensors among the ranks."""

    @staticmethod
    def symbolic(graph, input_, group):
        return _gather_tensors(input_, group)

    @staticmethod
    def forward(ctx, input_, group):
        ctx.group = group
        return torch.nested.as_nested_tensor(_gather_tensors(input_, group), layout=torch.jagged)

    @staticmethod
    def backward(ctx, grad_output):
        return _scatter_tensors(grad_output, ctx.group), None


def all_gather_tensors(input_, size=None, dim=0, group=None):
    if torch.distributed.get_world_size(group) == 1:
        # no sequence parallelism
        return input_
    gathered_tensors = _GatherTensors.apply(input_, group)

    if size:
        split_gathered_tensors = []
        for s, gathered_tensor in zip(size, gathered_tensors):
            split_gathered_tensor = torch.split(gathered_tensor, s.tolist())
            split_gathered_tensors.append(split_gathered_tensor)

        gathered_tensors = [y for x in zip(*split_gathered_tensors) for y in x]

    return torch.cat(gathered_tensors, dim).contiguous()


def get_sequence_data_parallel_world_size():
    return torch.distributed.get_world_size()


def get_sequence_data_parallel_rank():
    return torch.distributed.get_rank()


def get_sequence_data_parallel_group():
    return torch.distributed.group.WORLD


if is_deepspeed_available():
    deepspeed_groups._get_sequence_data_parallel_world_size = get_sequence_data_parallel_world_size
    deepspeed_groups._get_sequence_data_parallel_rank = get_sequence_data_parallel_rank
    deepspeed_groups._get_sequence_data_parallel_group = get_sequence_data_parallel_group


def _gather_tokens(input_, dim=0, group=None):
    """Gather tensors and concatenate them along a dimension"""
    input_ = input_.contiguous()
    world_size = torch.distributed.get_world_size(group)
    if world_size == 1:
        return input_

    gather_buffer = torch.empty(world_size * input_.numel(), dtype=input_.dtype, device=input_.device)
    torch.distributed.all_gather_into_tensor(gather_buffer, input_, group=group)
    if dim == 0:
        shape = list(input_.size())
        shape[0] = shape[0] * world_size
        output = gather_buffer.view(shape)
    else:
        tensor_list = [
            gather_buffer.narrow(0, input_.numel() * i, input_.numel()).view_as(input_) for i in range(world_size)
        ]
        # Note: torch.cat already creates a contiguous tensor.
        output = torch.cat(tensor_list, dim=dim).contiguous()

    return output


def _drop_tokens(input_, dim=0, group=None):
    """Divide a tensor among the sequence parallel ranks"""
    world_size = torch.distributed.get_world_size(group)
    if world_size == 1:
        return input_
    this_rank = torch.distributed.get_rank(group)
    assert input_.shape[dim] % world_size == 0, (
        f"input dimension {dim} ({input_.shape[dim]}) is not divisible by sequence parallel world size ({world_size})"
    )
    chunk_size = input_.shape[dim] // world_size

    return torch.narrow(input_, dim, this_rank * chunk_size, chunk_size)


class _DropTokens(torch.autograd.Function):
    "Divide tokens equally among the sequence parallel ranks"

    @staticmethod
    def symbolic(graph, input_, dim, group, grad_scale):
        return _drop_tokens(input_, dim, group)

    @staticmethod
    def forward(ctx, input_, dim, group, grad_scale):
        ctx.dim = dim
        ctx.group = group
        ctx.grad_scale = grad_scale
        return _drop_tokens(input_, dim, group)

    @staticmethod
    def backward(ctx, grad_output):
        grad_input = _gather_tokens(grad_output, ctx.dim, ctx.group)
        if ctx.grad_scale != 1:
            grad_input /= ctx.grad_scale
        return grad_input, None, None, None


class _GatherTokens(torch.autograd.Function):
    "Gather tokens among the sequence parallel ranks"

    @staticmethod
    def symbolic(graph, input_, dim, group, grad_scale):
        return _gather_tokens(input_, dim, group)

    @staticmethod
    def forward(ctx, input_, dim, group, grad_scale):
        ctx.dim = dim
        ctx.group = group
        ctx.grad_scale = grad_scale
        return _gather_tokens(input_, dim, group)

    @staticmethod
    def backward(ctx, grad_output):
        grad_input = _drop_tokens(grad_output, ctx.dim, ctx.group)
        if ctx.grad_scale != 1:
            grad_input *= ctx.grad_scale
        return grad_input, None, None, None


def drop_tokens(input_, dim=0, group=None, grad_scale=1):
    if torch.distributed.get_world_size(group) == 1:
        # no sequence parallelism
        return input_
    return _DropTokens.apply(input_, dim, group, grad_scale)


def gather_tokens(input_, dim=0, group=None, grad_scale=1):
    if torch.distributed.get_world_size(group) == 1:
        # no sequence parallelism
        return input_
    return _GatherTokens.apply(input_, dim, group, grad_scale)


def sequence_chunking_per_rank(sp_size, sp_rank, *args, dim=1):
    """
    Slice the inputs to create chuncks per the sequence parallel rank. This is used for the context parallel training.

    Args:
        sp_size (`int`):
            Sequence parallel size.
        sp_rank (`int`):
            Sequence parallel rank for the current process.
        dim (`int`):
           The dimension to slice
    """
    if sp_size == 1:
        return args[0] if len(args) == 1 else args

    seq_length = args[0].size(dim)
    for arg in args[1:]:
        assert arg.size(dim) == seq_length, (
            f"arg={arg} ({arg.shape[dim]}) does not have the same size as args[0] ({seq_length}) in dimension {dim}"
        )
    assert seq_length % sp_size == 0, (
        f"dimension {dim} ({args[0].shape[dim]}) is not divisible by sequence parallel world size ({sp_size})"
    )

    sub_seq_length = seq_length // sp_size
    sub_seq_start = sp_rank * sub_seq_length

    output = []
    for ind in args:
        ind = torch.narrow(ind, dim, sub_seq_start, sub_seq_length)
        output.append(ind)

    return tuple(output) if len(output) > 1 else output[0]


@contextmanager
def disable_deepspeed_ulysses():
    """Disable deepspeed ulysses (sequence parallelism) if it is enabled"""
    if is_deepspeed_ulysses_enabled():
        _old_get_sequence_parallel_world_size = deepspeed_groups._get_sequence_parallel_world_size

        def _get_sequence_parallel_world_size():
            return 1

        deepspeed_groups._get_sequence_parallel_world_size = _get_sequence_parallel_world_size
        try:
            yield
        finally:
            deepspeed_groups._get_sequence_parallel_world_size = _old_get_sequence_parallel_world_size
    else:
        context = contextlib.nullcontext
        with context():
            yield