File size: 7,554 Bytes
07f1f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import uuid
import base64
import re
import regex
from typing import AsyncGenerator, Union
import io
from pydub import AudioSegment
import torch
import numpy as np
from functools import lru_cache

from ..audio_processing.higgs_audio_tokenizer import HiggsAudioTokenizer


def random_uuid() -> str:
    return str(uuid.uuid4().hex)


async def async_generator_wrap(first_element, gen: AsyncGenerator):
    """Wrap an async generator with the first element."""
    yield first_element
    async for item in gen:
        yield item


@lru_cache(maxsize=50)
def encode_base64_content_from_file(file_path: str) -> str:
    """Encode a content from a local file to base64 format."""
    # Read the MP3 file as binary and encode it directly to Base64
    with open(file_path, "rb") as audio_file:
        audio_base64 = base64.b64encode(audio_file.read()).decode("utf-8")
    return audio_base64


def pcm16_to_target_format(
    np_audio: np.ndarray,
    sample_rate: int,
    bit_depth: int,
    channels: int,
    format: str,
    target_rate: int,
):
    wav_audio = AudioSegment(
        np_audio.tobytes(),
        frame_rate=sample_rate,
        sample_width=bit_depth // 8,
        channels=channels,
    )
    if target_rate is not None and target_rate != sample_rate:
        wav_audio = wav_audio.set_frame_rate(target_rate)

    # Convert WAV to MP3
    target_io = io.BytesIO()
    wav_audio.export(target_io, format=format)
    target_io.seek(0)

    return target_io


chinese_char_pattern = re.compile(r"[\u4e00-\u9fff]+")


def contains_chinese(text: str):
    return bool(chinese_char_pattern.search(text))


# remove blank between chinese character
def replace_blank(text: str):
    out_str = []
    for i, c in enumerate(text):
        if c == " ":
            if (text[i + 1].isascii() and text[i + 1] != " ") and (text[i - 1].isascii() and text[i - 1] != " "):
                out_str.append(c)
        else:
            out_str.append(c)
    return "".join(out_str)


def replace_corner_mark(text: str):
    text = text.replace("²", "平方")
    text = text.replace("³", "立方")
    return text


# remove meaningless symbol
def remove_bracket(text: str):
    text = text.replace("(", "").replace(")", "")
    text = text.replace("【", "").replace("】", "")
    text = text.replace("`", "").replace("`", "")
    text = text.replace("——", " ")
    return text


# split paragrah logic:
# 1. per sentence max len token_max_n, min len token_min_n, merge if last sentence len less than merge_len
# 2. cal sentence len according to lang
# 3. split sentence according to puncatation
def split_paragraph(
    text: str,
    tokenize,
    lang="zh",
    token_max_n=80,
    token_min_n=60,
    merge_len=20,
    comma_split=False,
):
    def calc_utt_length(_text: str):
        if lang == "zh":
            return len(_text)
        else:
            return len(tokenize(_text))

    def should_merge(_text: str):
        if lang == "zh":
            return len(_text) < merge_len
        else:
            return len(tokenize(_text)) < merge_len

    if lang == "zh":
        pounc = ["。", "?", "!", ";", ":", "、", ".", "?", "!", ";"]
    else:
        pounc = [".", "?", "!", ";", ":"]
    if comma_split:
        pounc.extend([",", ","])

    if text[-1] not in pounc:
        if lang == "zh":
            text += "。"
        else:
            text += "."

    st = 0
    utts = []
    for i, c in enumerate(text):
        if c in pounc:
            if len(text[st:i]) > 0:
                utts.append(text[st:i] + c)
            if i + 1 < len(text) and text[i + 1] in ['"', "”"]:
                tmp = utts.pop(-1)
                utts.append(tmp + text[i + 1])
                st = i + 2
            else:
                st = i + 1

    final_utts = []
    cur_utt = ""
    for utt in utts:
        if calc_utt_length(cur_utt + utt) > token_max_n and calc_utt_length(cur_utt) > token_min_n:
            final_utts.append(cur_utt)
            cur_utt = ""
        cur_utt = cur_utt + utt
    if len(cur_utt) > 0:
        if should_merge(cur_utt) and len(final_utts) != 0:
            final_utts[-1] = final_utts[-1] + cur_utt
        else:
            final_utts.append(cur_utt)

    return final_utts


def is_only_punctuation(text: str):
    # Regular expression: Match strings that consist only of punctuation marks or are empty.
    punctuation_pattern = r"^[\p{P}\p{S}]*$"
    return bool(regex.fullmatch(punctuation_pattern, text))


# spell Arabic numerals
def spell_out_number(text: str, inflect_parser):
    new_text = []
    st = None
    for i, c in enumerate(text):
        if not c.isdigit():
            if st is not None:
                num_str = inflect_parser.number_to_words(text[st:i])
                new_text.append(num_str)
                st = None
            new_text.append(c)
        else:
            if st is None:
                st = i
    if st is not None and st < len(text):
        num_str = inflect_parser.number_to_words(text[st:])
        new_text.append(num_str)
    return "".join(new_text)


def remove_emoji(text: str):
    # Pattern to match emojis and their modifiers
    # - Standard emoji range
    # - Zero-width joiners (U+200D)
    # - Variation selectors (U+FE0F, U+FE0E)
    # - Skin tone modifiers (U+1F3FB to U+1F3FF)
    emoji_pattern = re.compile(
        r"["
        r"\U00010000-\U0010FFFF"  # Standard emoji range
        r"\u200D"  # Zero-width joiner
        r"\uFE0F\uFE0E"  # Variation selectors
        r"\U0001F3FB-\U0001F3FF"  # Skin tone modifiers
        r"]+",
        flags=re.UNICODE,
    )
    return emoji_pattern.sub(r"", text)


def remove_repeated_punctuations(text, punctuations):
    if len(punctuations) == 0:
        return text
    pattern = f"[{re.escape(''.join(punctuations))}]"  # Create regex pattern for given punctuations
    return re.sub(rf"({pattern})\1+", r"\1", text)


def full_to_half_width(text: str) -> str:
    """Convert full-width punctuation to half-width in a given string."""
    full_width = "!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"
    half_width = "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"
    trans_table = str.maketrans(full_width, half_width)
    return text.translate(trans_table)


def split_interleaved_delayed_audios(
    audio_data: Union[list[list[int]], torch.Tensor],
    audio_tokenizer: HiggsAudioTokenizer,
    audio_stream_eos_id: int,
) -> list[tuple[list[list[int]], torch.Tensor]]:
    separator = [audio_stream_eos_id] * audio_tokenizer.num_codebooks

    # Convert separator to numpy array if audio_data is numpy array
    if isinstance(audio_data, torch.Tensor):
        audio_data = audio_data.transpose(1, 0)
        separator = torch.tensor(separator)
        # Find the indices where the rows equal the separator
        split_indices = torch.where(torch.all(audio_data == separator, dim=1))[0]
        start = 0
        groups = []
        for idx in split_indices:
            groups.append(audio_data[start:idx].transpose(1, 0))
            start = idx + 1
        if start < len(audio_data):
            groups.append(audio_data[start:].transpose(1, 0))
    else:
        groups = []
        current = []
        for row in audio_data:
            current.append(row)

            if row == separator:
                groups.append(current)
                current = []

        # Don't forget the last group if there's no trailing separator
        if current:
            groups.append(current)

    return groups