Spaces:
Build error
Build error
File size: 191,941 Bytes
4132e15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "feaf77ab",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"workding dir: /Users/inflaton/code/engd/papers/maritime/global-incidents\n",
"loading env vars from: /Users/inflaton/code/engd/papers/maritime/global-incidents/.env\n"
]
},
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
"import os\n",
"import sys\n",
"from pathlib import Path\n",
"\n",
"workding_dir = str(Path.cwd().parent)\n",
"os.chdir(workding_dir)\n",
"sys.path.append(workding_dir)\n",
"print(\"workding dir:\", workding_dir)\n",
"\n",
"from dotenv import find_dotenv, load_dotenv\n",
"\n",
"found_dotenv = find_dotenv(\".env\")\n",
"\n",
"if len(found_dotenv) == 0:\n",
" found_dotenv = find_dotenv(\".env.example\")\n",
"print(f\"loading env vars from: {found_dotenv}\")\n",
"load_dotenv(found_dotenv, override=True)"
]
},
{
"cell_type": "markdown",
"id": "3a7dd7d8",
"metadata": {},
"source": [
"## Import Statement"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "86fc25e6",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"id": "fac53e88",
"metadata": {},
"source": [
"### read the data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "dc33b13b",
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv(\"data/all_port_labelled.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "31f58fd1",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Unnamed: 0</th>\n",
" <th>Index</th>\n",
" <th>Unnamed: 0.1</th>\n",
" <th>Headline</th>\n",
" <th>Details</th>\n",
" <th>Severity</th>\n",
" <th>Category</th>\n",
" <th>Region</th>\n",
" <th>Datetime</th>\n",
" <th>Year</th>\n",
" <th>...</th>\n",
" <th>IT</th>\n",
" <th>EP</th>\n",
" <th>NEW</th>\n",
" <th>CSD</th>\n",
" <th>RPE</th>\n",
" <th>MN</th>\n",
" <th>NM</th>\n",
" <th>if_labeled</th>\n",
" <th>Month</th>\n",
" <th>Week</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.0</td>\n",
" <td>8.0</td>\n",
" <td>34.0</td>\n",
" <td>Grasberg Mine- Grasberg mine workers extend st...</td>\n",
" <td>Media sources indicate that workers at the Gra...</td>\n",
" <td>Moderate</td>\n",
" <td>Mine Workers Strike</td>\n",
" <td>Indonesia</td>\n",
" <td>28/5/17 17:08</td>\n",
" <td>2017.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>False</td>\n",
" <td>5.0</td>\n",
" <td>21.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1.0</td>\n",
" <td>10.0</td>\n",
" <td>63.0</td>\n",
" <td>Indonesia: Undersea internet cables damaged by...</td>\n",
" <td>News sources are stating that recent typhoons ...</td>\n",
" <td>Minor</td>\n",
" <td>Travel Warning</td>\n",
" <td>Indonesia</td>\n",
" <td>4/9/17 14:30</td>\n",
" <td>2017.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>False</td>\n",
" <td>4.0</td>\n",
" <td>14.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 46 columns</p>\n",
"</div>"
],
"text/plain": [
" Unnamed: 0 Index Unnamed: 0.1 \\\n",
"0 0.0 8.0 34.0 \n",
"1 1.0 10.0 63.0 \n",
"\n",
" Headline \\\n",
"0 Grasberg Mine- Grasberg mine workers extend st... \n",
"1 Indonesia: Undersea internet cables damaged by... \n",
"\n",
" Details Severity \\\n",
"0 Media sources indicate that workers at the Gra... Moderate \n",
"1 News sources are stating that recent typhoons ... Minor \n",
"\n",
" Category Region Datetime Year ... IT EP NEW \\\n",
"0 Mine Workers Strike Indonesia 28/5/17 17:08 2017.0 ... 0.0 0.0 0.0 \n",
"1 Travel Warning Indonesia 4/9/17 14:30 2017.0 ... 0.0 0.0 0.0 \n",
"\n",
" CSD RPE MN NM if_labeled Month Week \n",
"0 0.0 0.0 0.0 1.0 False 5.0 21.0 \n",
"1 0.0 0.0 1.0 0.0 False 4.0 14.0 \n",
"\n",
"[2 rows x 46 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head(2)"
]
},
{
"cell_type": "markdown",
"id": "9bff68c9",
"metadata": {},
"source": [
"### Clean empty data"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "41aa751c",
"metadata": {},
"outputs": [],
"source": [
"import nltk\n",
"from nltk.corpus import stopwords\n",
"from nltk.tokenize import word_tokenize\n",
"from nltk.stem import WordNetLemmatizer\n",
"import string\n",
"\n",
"# nltk.download('punkt')\n",
"# nltk.download('stopwords')\n",
"# nltk.download('wordnet')\n",
"\n",
"\n",
"def clean_text(text):\n",
" # Lowercase\n",
" text = text.lower()\n",
" # Tokenization\n",
" tokens = word_tokenize(text)\n",
" # Removing punctuation\n",
" tokens = [word for word in tokens if word not in string.punctuation]\n",
" # Removing stop words\n",
" stop_words = set(stopwords.words(\"english\"))\n",
" tokens = [word for word in tokens if word not in stop_words]\n",
" # Lemmatization\n",
" lemmatizer = WordNetLemmatizer()\n",
" tokens = [lemmatizer.lemmatize(word) for word in tokens]\n",
"\n",
" return \" \".join(tokens)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6293f613",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[nltk_data] Downloading package omw-1.4 to\n",
"[nltk_data] /Users/inflaton/nltk_data...\n",
"[nltk_data] Package omw-1.4 is already up-to-date!\n"
]
},
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import nltk\n",
"\n",
"nltk.download(\"omw-1.4\")"
]
},
{
"cell_type": "markdown",
"id": "fad3210d",
"metadata": {},
"source": [
"### The Details column has an issue\n",
"\n",
"some of the data are of the type float and none of the text processing functions can be applied to it therefore we have to process it"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "b1799269",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 5782 entries, 0 to 5781\n",
"Data columns (total 2 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Details 5781 non-null object\n",
" 1 Category 5780 non-null object\n",
"dtypes: object(2)\n",
"memory usage: 90.5+ KB\n",
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 5782 entries, 0 to 5781\n",
"Data columns (total 4 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Details 5781 non-null object\n",
" 1 Category 5780 non-null object\n",
" 2 Details_cleaned 5781 non-null object\n",
" 3 Category_cleaned 5780 non-null object\n",
"dtypes: object(4)\n",
"memory usage: 180.8+ KB\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/7x/56svhln929zdh2xhr3mwqg4r0000gn/T/ipykernel_76478/4121100139.py:3: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" text_df[\"Details_cleaned\"] = text_df[\"Details\"].apply(\n",
"/var/folders/7x/56svhln929zdh2xhr3mwqg4r0000gn/T/ipykernel_76478/4121100139.py:6: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" text_df[\"Category_cleaned\"] = text_df[\"Category\"].apply(\n"
]
}
],
"source": [
"text_df = df[[\"Details\", \"Category\"]]\n",
"text_df.info()\n",
"text_df[\"Details_cleaned\"] = text_df[\"Details\"].apply(\n",
" lambda x: clean_text(x) if not isinstance(x, float) else None\n",
")\n",
"text_df[\"Category_cleaned\"] = text_df[\"Category\"].apply(\n",
" lambda x: None if isinstance(x, float) else x\n",
")\n",
"\n",
"# no_nan_df[no_nan_df[\"Details\"].apply(lambda x: print(type(x)))]\n",
"# cleaned_df = text_df[text_df[\"Details\"].apply(lambda x: clean_text(x))]\n",
"# cleaned_df = df['Details'][1:2]\n",
"# type(no_nan_df[\"Details\"][0])\n",
"# print(clean_text(no_nan_df[\"Details\"][0]))\n",
"text_df.info()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "5fcc3b33",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Details</th>\n",
" <th>Category</th>\n",
" <th>Details_cleaned</th>\n",
" <th>Category_cleaned</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Media sources indicate that workers at the Gra...</td>\n",
" <td>Mine Workers Strike</td>\n",
" <td>medium source indicate worker grasberg mine ex...</td>\n",
" <td>Mine Workers Strike</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>News sources are stating that recent typhoons ...</td>\n",
" <td>Travel Warning</td>\n",
" <td>news source stating recent typhoon impact hong...</td>\n",
" <td>Travel Warning</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>The persisting port congestion at Shanghai’s Y...</td>\n",
" <td>Port Congestion</td>\n",
" <td>persisting port congestion shanghai ’ yangshan...</td>\n",
" <td>Port Congestion</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Updated local media sources from Jakarta indic...</td>\n",
" <td>Bombing, Police Operations</td>\n",
" <td>updated local medium source jakarta indicate e...</td>\n",
" <td>Bombing, Police Operations</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>According to local police in Jakarta, two expl...</td>\n",
" <td>Bombing, Police Operations</td>\n",
" <td>according local police jakarta two explosion c...</td>\n",
" <td>Bombing, Police Operations</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Severe winds have downed billboards and trees ...</td>\n",
" <td>Roadway Closure / Disruption, Flooding, Severe...</td>\n",
" <td>severe wind downed billboard tree bandung wedn...</td>\n",
" <td>Roadway Closure / Disruption, Flooding, Severe...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>Local media sources indicated on October 29 th...</td>\n",
" <td>Cargo/Warehouse Theft</td>\n",
" <td>local medium source indicated october 29 wareh...</td>\n",
" <td>Cargo/Warehouse Theft</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>Tropical Storm Rumbia had dissipated after tra...</td>\n",
" <td>Tropical Cyclone / Storm</td>\n",
" <td>tropical storm rumbia dissipated travelling ar...</td>\n",
" <td>Tropical Cyclone / Storm</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>Tropical Depression Yutu, also referred to as ...</td>\n",
" <td>Storm</td>\n",
" <td>tropical depression yutu also referred `` '' r...</td>\n",
" <td>Storm</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>A magnitude 4.5 earthquake was detected 14 mil...</td>\n",
" <td>Earthquake</td>\n",
" <td>magnitude 4.5 earthquake detected 14 mile nort...</td>\n",
" <td>Earthquake</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Details \\\n",
"0 Media sources indicate that workers at the Gra... \n",
"1 News sources are stating that recent typhoons ... \n",
"2 The persisting port congestion at Shanghai’s Y... \n",
"3 Updated local media sources from Jakarta indic... \n",
"4 According to local police in Jakarta, two expl... \n",
"5 Severe winds have downed billboards and trees ... \n",
"6 Local media sources indicated on October 29 th... \n",
"7 Tropical Storm Rumbia had dissipated after tra... \n",
"8 Tropical Depression Yutu, also referred to as ... \n",
"9 A magnitude 4.5 earthquake was detected 14 mil... \n",
"\n",
" Category \\\n",
"0 Mine Workers Strike \n",
"1 Travel Warning \n",
"2 Port Congestion \n",
"3 Bombing, Police Operations \n",
"4 Bombing, Police Operations \n",
"5 Roadway Closure / Disruption, Flooding, Severe... \n",
"6 Cargo/Warehouse Theft \n",
"7 Tropical Cyclone / Storm \n",
"8 Storm \n",
"9 Earthquake \n",
"\n",
" Details_cleaned \\\n",
"0 medium source indicate worker grasberg mine ex... \n",
"1 news source stating recent typhoon impact hong... \n",
"2 persisting port congestion shanghai ’ yangshan... \n",
"3 updated local medium source jakarta indicate e... \n",
"4 according local police jakarta two explosion c... \n",
"5 severe wind downed billboard tree bandung wedn... \n",
"6 local medium source indicated october 29 wareh... \n",
"7 tropical storm rumbia dissipated travelling ar... \n",
"8 tropical depression yutu also referred `` '' r... \n",
"9 magnitude 4.5 earthquake detected 14 mile nort... \n",
"\n",
" Category_cleaned \n",
"0 Mine Workers Strike \n",
"1 Travel Warning \n",
"2 Port Congestion \n",
"3 Bombing, Police Operations \n",
"4 Bombing, Police Operations \n",
"5 Roadway Closure / Disruption, Flooding, Severe... \n",
"6 Cargo/Warehouse Theft \n",
"7 Tropical Cyclone / Storm \n",
"8 Storm \n",
"9 Earthquake "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"processed_data = text_df.dropna()\n",
"processed_data.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "d02b4b00",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"857"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"processed_data[\"Category\"].nunique()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9ee856a1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Index: 5780 entries, 0 to 5781\n",
"Data columns (total 4 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Details 5780 non-null object\n",
" 1 Category 5780 non-null object\n",
" 2 Details_cleaned 5780 non-null object\n",
" 3 Category_cleaned 5780 non-null object\n",
"dtypes: object(4)\n",
"memory usage: 225.8+ KB\n"
]
}
],
"source": [
"processed_data.info()"
]
},
{
"cell_type": "markdown",
"id": "3f6d478f",
"metadata": {},
"source": [
"## Process the Category column\n",
"this is not seldom done as we don't usually process the y of the data\n",
"However, the category is too complex and requires processing if not the labels are just too much"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "285013d3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"111\n"
]
}
],
"source": [
"# Create a function that will split the labels into individual\n",
"import re\n",
"\n",
"\n",
"def split_string(text):\n",
" # Split the string using either \"/\" or \",\" as separator\n",
" words = re.split(r\"[\\/,]\", text)\n",
" # Remove any leading or trailing whitespace from each word\n",
" words = [word.strip() for word in words if word.strip()]\n",
" return words\n",
"\n",
"\n",
"# Example usage:\n",
"# input_str = \"Roadway Closure / Disruption, Flooding, Severe Winds, Weather Advisory\"\n",
"# result = split_string(input_str)\n",
"# print(result)\n",
"\n",
"# create a list to find the number of unique individual labels\n",
"label_list = []\n",
"\n",
"for i in processed_data[\"Category_cleaned\"]:\n",
" for j in split_string(i):\n",
" if j not in label_list:\n",
" label_list.append(j)\n",
"\n",
"# print(label)\n",
"print(len(label_list))"
]
},
{
"cell_type": "markdown",
"id": "8e7b48e8",
"metadata": {},
"source": [
"#### After filtering out the unique labels in the Category column we are still left with 111 labels which is still considered too much"
]
},
{
"cell_type": "markdown",
"id": "33234f8c",
"metadata": {},
"source": [
"#### The next step would be to to reduce a data's category label into 1 single label \n",
"Previously the data looks like Roadway Closure / Disruption, Flooding, Severe... we need to reduce it to 1 single label \n",
"The next process we are going to use in is that we assume the first label in is the most prominent category then we will remove the other categories"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "12f9b9b4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Index: 5780 entries, 0 to 5781\n",
"Data columns (total 5 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Details 5780 non-null object\n",
" 1 Category 5780 non-null object\n",
" 2 Details_cleaned 5780 non-null object\n",
" 3 Category_cleaned 5780 non-null object\n",
" 4 Category_single 5780 non-null object\n",
"dtypes: object(5)\n",
"memory usage: 270.9+ KB\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/7x/56svhln929zdh2xhr3mwqg4r0000gn/T/ipykernel_76478/2791632185.py:29: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" text_df[\"Category_single\"] = text_df[\"Category_cleaned\"].apply(\n"
]
}
],
"source": [
"def split_and_get_first(text):\n",
" # Split the string using either \"/\" or \",\" as separator\n",
" if text == None:\n",
" return None\n",
" words = re.split(r\"[\\/,]\", text)\n",
" # Remove any leading or trailing whitespace from each word\n",
" words = [word.strip() for word in words if word.strip()]\n",
" # Return the first word after split\n",
" if words:\n",
" return words[0]\n",
" else:\n",
" return None\n",
"\n",
"\n",
"def remove_none_rows(df, column_name):\n",
" # Iterate through the DataFrame\n",
" for index, value in enumerate(df[column_name]):\n",
" # Check if the value is None\n",
" if value is None:\n",
" # Remove the row where the data belongs to\n",
" df = df.drop(index, axis=0)\n",
" return df\n",
"\n",
"\n",
"# Example usage:\n",
"# input_str = \"Roadway Closure / Disruption, Flooding, Severe Winds, Weather Advisory\"\n",
"# result = split_and_get_first(input_str)\n",
"# print(result)\n",
"text_df[\"Category_single\"] = text_df[\"Category_cleaned\"].apply(\n",
" lambda x: split_and_get_first(x)\n",
")\n",
"result_df = remove_none_rows(text_df, \"Category_cleaned\")\n",
"result_df.info()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "b5931fe1",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Details</th>\n",
" <th>Category</th>\n",
" <th>Details_cleaned</th>\n",
" <th>Category_cleaned</th>\n",
" <th>Category_single</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Media sources indicate that workers at the Gra...</td>\n",
" <td>Mine Workers Strike</td>\n",
" <td>medium source indicate worker grasberg mine ex...</td>\n",
" <td>Mine Workers Strike</td>\n",
" <td>Mine Workers Strike</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>News sources are stating that recent typhoons ...</td>\n",
" <td>Travel Warning</td>\n",
" <td>news source stating recent typhoon impact hong...</td>\n",
" <td>Travel Warning</td>\n",
" <td>Travel Warning</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>The persisting port congestion at Shanghai’s Y...</td>\n",
" <td>Port Congestion</td>\n",
" <td>persisting port congestion shanghai ’ yangshan...</td>\n",
" <td>Port Congestion</td>\n",
" <td>Port Congestion</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Updated local media sources from Jakarta indic...</td>\n",
" <td>Bombing, Police Operations</td>\n",
" <td>updated local medium source jakarta indicate e...</td>\n",
" <td>Bombing, Police Operations</td>\n",
" <td>Bombing</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>According to local police in Jakarta, two expl...</td>\n",
" <td>Bombing, Police Operations</td>\n",
" <td>according local police jakarta two explosion c...</td>\n",
" <td>Bombing, Police Operations</td>\n",
" <td>Bombing</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>Severe winds have downed billboards and trees ...</td>\n",
" <td>Roadway Closure / Disruption, Flooding, Severe...</td>\n",
" <td>severe wind downed billboard tree bandung wedn...</td>\n",
" <td>Roadway Closure / Disruption, Flooding, Severe...</td>\n",
" <td>Roadway Closure</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>Local media sources indicated on October 29 th...</td>\n",
" <td>Cargo/Warehouse Theft</td>\n",
" <td>local medium source indicated october 29 wareh...</td>\n",
" <td>Cargo/Warehouse Theft</td>\n",
" <td>Cargo</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>Tropical Storm Rumbia had dissipated after tra...</td>\n",
" <td>Tropical Cyclone / Storm</td>\n",
" <td>tropical storm rumbia dissipated travelling ar...</td>\n",
" <td>Tropical Cyclone / Storm</td>\n",
" <td>Tropical Cyclone</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>Tropical Depression Yutu, also referred to as ...</td>\n",
" <td>Storm</td>\n",
" <td>tropical depression yutu also referred `` '' r...</td>\n",
" <td>Storm</td>\n",
" <td>Storm</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>A magnitude 4.5 earthquake was detected 14 mil...</td>\n",
" <td>Earthquake</td>\n",
" <td>magnitude 4.5 earthquake detected 14 mile nort...</td>\n",
" <td>Earthquake</td>\n",
" <td>Earthquake</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>Multiple sources report that a magnitude 5.5 e...</td>\n",
" <td>Earthquake</td>\n",
" <td>multiple source report magnitude 5.5 earthquak...</td>\n",
" <td>Earthquake</td>\n",
" <td>Earthquake</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>Post-Tropical Cyclone Michael is approximately...</td>\n",
" <td>Tropical Cyclone / Storm</td>\n",
" <td>post-tropical cyclone michael approximately 18...</td>\n",
" <td>Tropical Cyclone / Storm</td>\n",
" <td>Tropical Cyclone</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>Industry sources indicate on September 11 that...</td>\n",
" <td>Workplace Accident</td>\n",
" <td>industry source indicate september 11 2 worker...</td>\n",
" <td>Workplace Accident</td>\n",
" <td>Workplace Accident</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>Government sources are reporting a tornado has...</td>\n",
" <td>Tornado</td>\n",
" <td>government source reporting tornado touched tw...</td>\n",
" <td>Tornado</td>\n",
" <td>Tornado</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>Media sources are informing on September 24 th...</td>\n",
" <td>Industrial Action</td>\n",
" <td>medium source informing september 24 oil worke...</td>\n",
" <td>Industrial Action</td>\n",
" <td>Industrial Action</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>A magnitude 4.5 earthquake was detected in cen...</td>\n",
" <td>Earthquake</td>\n",
" <td>magnitude 4.5 earthquake detected central taiw...</td>\n",
" <td>Earthquake</td>\n",
" <td>Earthquake</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>Industry sources indicate on August 31 that th...</td>\n",
" <td>Port Congestion</td>\n",
" <td>industry source indicate august 31 port durban...</td>\n",
" <td>Port Congestion</td>\n",
" <td>Port Congestion</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>Tropical Depression Gordon continues to weaken...</td>\n",
" <td>Storm</td>\n",
" <td>tropical depression gordon continues weaken mo...</td>\n",
" <td>Storm</td>\n",
" <td>Storm</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>Local media sources indicated on November 8 th...</td>\n",
" <td>Public Safety / Security</td>\n",
" <td>local medium source indicated november 8 270 k...</td>\n",
" <td>Public Safety / Security</td>\n",
" <td>Public Safety</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>The European-Mediterranean Seismological Centr...</td>\n",
" <td>Earthquake</td>\n",
" <td>european-mediterranean seismological centre re...</td>\n",
" <td>Earthquake</td>\n",
" <td>Earthquake</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Details \\\n",
"0 Media sources indicate that workers at the Gra... \n",
"1 News sources are stating that recent typhoons ... \n",
"2 The persisting port congestion at Shanghai’s Y... \n",
"3 Updated local media sources from Jakarta indic... \n",
"4 According to local police in Jakarta, two expl... \n",
"5 Severe winds have downed billboards and trees ... \n",
"6 Local media sources indicated on October 29 th... \n",
"7 Tropical Storm Rumbia had dissipated after tra... \n",
"8 Tropical Depression Yutu, also referred to as ... \n",
"9 A magnitude 4.5 earthquake was detected 14 mil... \n",
"10 Multiple sources report that a magnitude 5.5 e... \n",
"11 Post-Tropical Cyclone Michael is approximately... \n",
"12 Industry sources indicate on September 11 that... \n",
"13 Government sources are reporting a tornado has... \n",
"14 Media sources are informing on September 24 th... \n",
"15 A magnitude 4.5 earthquake was detected in cen... \n",
"16 Industry sources indicate on August 31 that th... \n",
"17 Tropical Depression Gordon continues to weaken... \n",
"18 Local media sources indicated on November 8 th... \n",
"19 The European-Mediterranean Seismological Centr... \n",
"\n",
" Category \\\n",
"0 Mine Workers Strike \n",
"1 Travel Warning \n",
"2 Port Congestion \n",
"3 Bombing, Police Operations \n",
"4 Bombing, Police Operations \n",
"5 Roadway Closure / Disruption, Flooding, Severe... \n",
"6 Cargo/Warehouse Theft \n",
"7 Tropical Cyclone / Storm \n",
"8 Storm \n",
"9 Earthquake \n",
"10 Earthquake \n",
"11 Tropical Cyclone / Storm \n",
"12 Workplace Accident \n",
"13 Tornado \n",
"14 Industrial Action \n",
"15 Earthquake \n",
"16 Port Congestion \n",
"17 Storm \n",
"18 Public Safety / Security \n",
"19 Earthquake \n",
"\n",
" Details_cleaned \\\n",
"0 medium source indicate worker grasberg mine ex... \n",
"1 news source stating recent typhoon impact hong... \n",
"2 persisting port congestion shanghai ’ yangshan... \n",
"3 updated local medium source jakarta indicate e... \n",
"4 according local police jakarta two explosion c... \n",
"5 severe wind downed billboard tree bandung wedn... \n",
"6 local medium source indicated october 29 wareh... \n",
"7 tropical storm rumbia dissipated travelling ar... \n",
"8 tropical depression yutu also referred `` '' r... \n",
"9 magnitude 4.5 earthquake detected 14 mile nort... \n",
"10 multiple source report magnitude 5.5 earthquak... \n",
"11 post-tropical cyclone michael approximately 18... \n",
"12 industry source indicate september 11 2 worker... \n",
"13 government source reporting tornado touched tw... \n",
"14 medium source informing september 24 oil worke... \n",
"15 magnitude 4.5 earthquake detected central taiw... \n",
"16 industry source indicate august 31 port durban... \n",
"17 tropical depression gordon continues weaken mo... \n",
"18 local medium source indicated november 8 270 k... \n",
"19 european-mediterranean seismological centre re... \n",
"\n",
" Category_cleaned Category_single \n",
"0 Mine Workers Strike Mine Workers Strike \n",
"1 Travel Warning Travel Warning \n",
"2 Port Congestion Port Congestion \n",
"3 Bombing, Police Operations Bombing \n",
"4 Bombing, Police Operations Bombing \n",
"5 Roadway Closure / Disruption, Flooding, Severe... Roadway Closure \n",
"6 Cargo/Warehouse Theft Cargo \n",
"7 Tropical Cyclone / Storm Tropical Cyclone \n",
"8 Storm Storm \n",
"9 Earthquake Earthquake \n",
"10 Earthquake Earthquake \n",
"11 Tropical Cyclone / Storm Tropical Cyclone \n",
"12 Workplace Accident Workplace Accident \n",
"13 Tornado Tornado \n",
"14 Industrial Action Industrial Action \n",
"15 Earthquake Earthquake \n",
"16 Port Congestion Port Congestion \n",
"17 Storm Storm \n",
"18 Public Safety / Security Public Safety \n",
"19 Earthquake Earthquake "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result_df.head(20)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "9c19b11a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"94"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result_df[\"Category_single\"].nunique()"
]
},
{
"cell_type": "markdown",
"id": "29d4037f",
"metadata": {},
"source": [
"### After taking out the first label in the Category column we are still left with 94 unique labels\n",
"This is still unacceptable amount of labels the next step we are planning to use is to manually group the labels in more generalize label by using a rule based system"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "10f07d05",
"metadata": {},
"outputs": [],
"source": [
"### first export the unique labels into excel for better visualization\n",
"unique_labels_df = pd.DataFrame({\"String\": label_list})\n",
"file_path = \"data/label_list.xlsx\"\n",
"\n",
"# Save DataFrame to Excel\n",
"unique_labels_df.to_excel(file_path, index=False)"
]
},
{
"attachments": {
"converstion.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABd8AAANBCAYAAAARKsfAAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhe7N17lCPZXSf4n2y38dvdYGOTzGEpWyqarGR4uPzHSmfBFI3HUk3X5GJGGCjI8cyUco3NpgY2awGnt6hx8phOllUCMyZVw6OG4ixHZ2GSrlNSg03x2E0NLGWwx1k6PSXZxcweEhs/urGx3W67KvfeGzciboTiRtx46P399ImulEJSPO77xo0buaOjo2MCAAAAAAAAAAAAAIDMPEf+CwAAAAAAAAAAAAAAGUHnOwAAAAAAAAAAAABAxtD5DgAAAAAAAAAAAACQMXS+AwAAAAAAAAAAAABkDJ3vAAAAAAAAAAAAAAAZG0vn+1d91VfJvwAgrU984hPyr8WE48fxw3xC2IIO4gZAdpCeQIX4kD2c0/mBsFwcCGtIIk68GUvn+wc+8AH5FwCkde/ePfnXYsLx4/hhPiFsQQdxAyA7SE+gQnzIHs7p/EBYLg6ENSQRJ96MpfMdERkgO4uennD8OH6YTwhb0EHcAMgO0hOoEB+yh3M6PxCWiwNhDUnEiTfofAeYMYuennD8OH6YTwhb0EHcAMgO0hOoEB+yh3M6PxCWiwNhDUnEiTcj6Xz/5Cc/Kf+yICIDZGfR0xOOH8cP8wlhCzqIGwDZQXoCFeJD9nBO5wfCcnEgrCGJOPEm88533vH+X//rf5WvLIjIANlZ9PSE48fxw3xC2IIO4gZAdpCeQIX4kD2c0/mBsFwcCGtIIk68ybTzPajjnUNEnn43Ly7R0tISXbwp34CpNZn0dJeunLPiiLtcpElEl4nmJ3ev0Dn1HJy7ws7MeI3/+IPCfnJ5xWKUJ8Hn/NyVcce28UJdwWKXx+qy6GUz4saU85eNiLNTbXHTk1W2+svSu1fOTaQ+Ny1mJT6IsnFGMpZFSWMi7cx5Zr9I+SVPY5788eZFVp6fozlvfjhQ1wxilZuo0+nFiTeZdb7rOt45RORpd5OeuHaazp8/TdeeQMqadpNMT6cvH9DR0RFbDujy6Wt0fgI58cSOn1dAStfp0QN+/NZy8Oh12hhzjWRSx++GPVuunadr5yfTGbxI5cn5a25c48vjF07INfMJdQWXJ72x5bEzcsWCQtyYYqJsvEQPe/KraywDm8wFeoiG9AQqxIfs4ZzOj4UNS35R/Txr6197nOa8+eFAuoUk4sSbTDrfwzreOUTkKXfzCbp2+lF629sepdPXnkBjacpNR3o6QY88eproyQ+PfaTQZI7/Jl0MqICcuPD42DtEpyL8zzwmOuBvXXrP2PMLlCfzC2ELOogb08ouG/0XiM7QY0ePsf/DNEJ6AhXiQ/ZwTufHYoYlK9vlRfVFGvyBdAtJxIk3qTvfozreOUTk6XbziWt0+tFH6MSJR+jR09eosSj3Fs2o6UhPd+l9129Z8Ua+My4TOf67H6Yn6Ty9aQoqIFOTn555Ezsj12jcN8ugPJlfCFvQQdyYUnzwxpSUjWAO6QlUiA/ZwzmdH4sXlnyakfP05OWDhbvrEukWkogTb1J1vpt0vHOIyFPs7hVqXDtNjz7Cu1Ct0cy3rr9vYec9nAWTTE+3LpXkfK4lunTLjjfjNZHjv9unW/LPSVv0/HSRjp9P7ePOoTz/UzigruBy89rFCPsoiBuzQcz/i3g79RY9PXnz1yUqXZqWGt5kIH/NHs7p/Fi0sLx16fzE2viThnQLScSJN4k730073jlE5Ol1933X6dbpR8nOX0888iidvnWd3ofe96k1yfTknff7YbpUGv9DWBY9P8HxL87xe+d8n/8pHFBXcHnnfMf0HYgbs4FPxWbVD87Ld2AaLXp68j9T4+DyablmMSF/zR7O6fxYtLDk+ePBZWJt/MW7gI50C0nEiTeJOt/jdLxziMjTypo6hG5dopI9AqR0iW6x/66j931qTU16EtOO3KL+InS+T2iKlSBTE/4Tmm4A5cn8QtiCDuLGlJqishHMIT2BCvEhezin82MRw/LEhV26fJq18i4uVuGOdAtJxIk3sTvf43a8c4jIU+rme8RtRZcP3NEf9giQSTxIEcxMTXoSna+nqTDmu9Imc/xn6G0sXVw77x3pz2+xPzfmof9TEf7yCfinL79t7CNyUZ7ML4Qt6CBuTCu7bFyiBWujzzSkJ1AhPmRvUc7p3f78T9m0mOnjBF14nD9M/fzY27mThLwQkogTb2J1vifpeOcQkacTf9Aqna/TBV/n6YkLdYxkmmKTTE+eeTLP80L58aH4M2qTOn5+O711G548fraUrj9Ku2M+AZM6fk/Yl67TowdH9Pi4A59ZpPLEO+f70txXgFFXAB3EjeklppphheOTan41oYuzYAbpCVSID9mb73N6ky7KvJ53zl6b86dyLm76OEOPWQ3fhbm4jrxQz9smHf+0w9MsTrzJHR0dHcu/Q8XteP+Wb/kW+RfRH/7hH9K3f/u3y1cAkMaipyccP44f5cl8QtiCDuIGQHaQnkCF+JA9nNP5gbBcHAhrSCJOvDEe+f4VX/EVokPddFHhKhJAdhY9PeH4cfwwnxC2oIO4AZAdpCdQIT5kD+d0fiAsFwfCGpKIE28SPXA1LkRkgOwsenrC8eP4YT4hbEEHcQMgO0hPoEJ8yB7O6fxAWC4OhDUkESfeoPMdYMYsenrC8eP4YT4hbEEHcQMgO0hPoEJ8yB7O6fxAWC4OhDUkESfe5Hq93jH/wv3798UXg/4NW2fyGb4AAAAAAAAAAAAAACwK4weupnH9+nWq1WryFQCkkcvl6Ph45Ml2at2+fZtOnTolXy2eRT7+N7zhDfRH/9cP0Bu++zfkOzBPELagg7gBkB2kJ1AhPmQP53R+ICwXB8IakrDjzR/90R/Jd/TQ+Q4wY9D5js53dL6zAo79C/PDDlOELfghbgBkB+kJVIgP2cM5nR8Iy8WBsIYkPPHGoPN9LHO+AwAAAAAAAAAAAAAsEnS+AwAAAAAAAAAAAABkDJ3vAAAAAAAAAAAAAAAZQ+c7KDq0nstRLrfO/gIAAAAAAAAAAACApND5Pk8Gu1QSnefWUtod2Ctot4ROdQCA7H2MPvAz/5L+8IPyJcyYWQs/xLfEPvgf6Fd+5n30tHwJAABZmvfyCeUvTAjqLzMGeQUEi9X5fvfKOVpaWqJzV+7Kd2Bq8I73Qp26xQb1j4/p+LhP1dZOzM72Mu2J7+6xvwAAptvTv/+zw5XRj72PfucdwxWewM8mIH7n6ofkKxiVSYTtSPAGE9tne1H33TQu/dVV9l00ugKJcxMQJ0YhbjiYfj6LPCXoN0YVb8TvIg+cI1Ynwe/8/sfka8tU56sOa9/VPJYv/mOBBGR565zXKYsLYXl/UH6YRT6bzIfoD9Xz6Fn+A/2V/NSkjKqcWARhcTCucYfD5NLDDPLnhWwJLC9xPsGAYef7Tbq4tEQbVKfLp+VbMF36Peryf1dOUl68kaeNA96Jzke9F6guVjapwkfFl3ZpIEfJl3Z3lalm/CPkrWloSrsd+b61rKs9+p11531n4b8vVwMAjMqD33iaHvrrW/RXah3oo0f0FPvnIx/wNbz+ZkAPve4b6EH5GqbbXIQtr7Bf+RN6zYV/T//il/iyQdSO37j62jX23R9/BHF3yIfo7p/n6TWvzw/FiVGIGw6TDjfEG1gUbh5rLd/1xlfJNZAIv2j87lv0mne55/TNr7tFN6fmosZ48/50voG+3Y6b73oLPcTa569zzusP0tfKT00Kyomkso2DCIcpJfLC36KH1DKGpWN6/J24yAuJGHa+n6HHjo7o8Qsn5GuYOoVlKvJ/mxVf5zfvhO9TQ6ysUZuPbD/YkB30RN16ndiboaPdu/UK9bb4Z9rsF/gmZOc878CvNKnY6IuR9s42lN8HABiZV30DvearB/SRD7oVoL/6wJ/QQ6//Vnroz/9SGVEkK8nfaDfI/aPlfKOPfKMcrFEt1nd++3GWu/75rnjfW/FSRzf9LH3AUycL2x7/Hvv879sjpCc/EmoqjCRsDc61GKmuhl/asMvTQ6+Wf/JGuGhc6eJS8O+FjjSOtb9z5oN/SR/56tP0zW867YsTkicdq+eI4+eJv6emW36u1PPn/Y43HKzP/eEH1e+HfV6OjPJ8Nl48iJsvqdsfjkPW99w8TD1uvpjHm+HjCnvfPm/iIxYehz0j/pLvC4xKVLjx9TyMzdNTcHzm7G3p05aZoHSkSVuhcU73nXnFjldcNP4x+iblGsaDb/wxcVEjOi/hwsIug3Otzfut3/bmhx8KeE/ukDYOMmHrbEPlb1Jxz4nuPMU/t9HlFH+X/y7/Ww1X/n11e/ZnF0Ss+ocSfzTvD6Urz+eCzm1YWFvrgvNQa11gegAfdq7arN1x7qfo279RvsW96hH6rgvfSk89/ntOGtCfz6AwsIWFYXB61dW3YHZgzvd5kd+gg37D6oDv1qlgOgK92KDNqDlmnM+UaZX3vtMh3eE/LEbbF6l6lne15+lsVWwdAGBMXkVf+7o8PfU3fytfy47YN30zPUR/Qnftyi6vJNMSPSgbkn919Z30/qUNZxTDm88d0R84nQiswvOrRGecdXn6iBit/Cr6ph+3XtPrre+qo+s+cuUGPSRHM33H6wf0/ifcSnT49jj2+ceJvkOsn/xIqOmQJGx5RTbgXHsqtCHnmjekrxzR697ldjqkCjt5AeH97/ZXkMPiUoy4kGh/54e4GMPveBDn+U/oLzwNHhYXfvW3iFijyToXZ1lD6U/kOhsPm7+kE2L9T9Hr2G/8wTveSU9V7HNH9P5fDT93YenegzWkbz6+JMOVLzzM4sSDZPmS7Wu/6VtZw1DpIPjYh+gjf+1etEocbwKPK+R9A4sUh+dLnPSki88u47QVyp+Ogt5LWW7Mm499jJ6ib6UTameTIiov4dSwE+H+bvdcZlEf0uf9QfnhN2jyyLA4yNa9Wy0/Au5aCyh/k0p2TkYQj0PzbfbdlOXlPAmvf+jij0G8EqLrLyblZHAealZnACYgb3N84zfTa+iInv5Y+PnMtG2Yol4F0wOd7/OEd8Dzke1KJ/ya89BVDWeamgTEaPsutW7wbQzoRqtLVFymgrUWAGDkHnzVktsQ5I3Grz5NX8sqwydeT/QUe809/bEjVin6ZquhwSovf/HneXrdm75BrOMefONZeo0zxYk9OtliTX/CKljytY46Skw0To8+Zn0ncnuW11wIbmQusvhhyyvK30rfseY716KCLN9gAs81C6ff8TekU4edVSkXFe53m49SMYoLKfZ3LshjtRpF8kLN+z/kplMZF77FaQSxdH2BpUsf91xbv8EbT/YIJxH/ItK+Nt0HUi4aGfDGg2T5kkM0FN3tP/3BWzI9sRep443uuOIdr7BIcXjKPPX4O5URdXIkX0zm6Sk6PsdJWx+54u63d/SgPx1ZPO+lKTfmkZzeTSsoL3n9WbccYtSw85xLw/Qdeq6j8n5jIXFQXNT3lR/KZ/k+DJW/SaU4J6OJx/p82/1usvJybkTFQV38iYpXtqj6i3GciVM/gWDuwK1hA3rqo/JPjezbhgnqVTBV0Pk+j3gnfFsMUadury/+HaVuvUC5HJ9XvkiNq5hyBgDGSGkIikbg0qtERZZXcqzK8Mfor94/oNd8k1vBsUbwqI31XVYhdnlu63v3b4U3RI2Ebw804oZtYKfBV9JDXx1dQf7I47pwTh92Yi5PMaqFjwDM5jbRUe7vLPB0HjNDzwiI6kAaN36b8rveQk/JTsIkt3mny5esi1bW3LQy3VTURn/CeKM7rlTHi/xyEvit9fYIPCu/Gm1tPsty1jvne1Tnok+KcmMxfQN9Mx8lruYlnvpVEPVcpkvfkXl/DKFx8KuXhjtFJX35m1QGeV4W8TiDcmoRGMVBXfwJiVcOo/oLysnx8F688lKnlUwiZhgifc4FdL7PicFuiUrKKPfOflP8W1vl88Xk6eQKfyWni8nI4EZLTDvT6PP54PlyQBvoeQeAsXJHQvMHbzqNQN5xyyvDH7RGkHhvof5W5bY9e5GjEz74H+i31dv6WEXnIetLKYRsD0LEDNtXLwWE1d/SU38dXUHmnTfBt01nF3YPvvGt9LqMOnTGsb/Ty+rwob/+Lfptu9EiOk6UZwQExoUJ4w0nER4b9NDj7wyeQ1gng3zpa9/EvsPvJJGj6ozzxCi640p8vMgv595IytmEUpQbc8k3sj2I6GzU5iVB1HOZJn0b5P2mouJgyChuffmbVAZ5XlbxOE05tRAM46Au/pjcHWBUf0E5OXKvehULB02d3TedaTIJwhDpc+ah831O5DeuUrXFR6DnxFJpEtXax7Qn53Mvb/KpaLpULxjOBW8gv7FFNfs35XZzOfkwVgCAMbFGQv8a/cWfq41Aa8TPR9q36Cl7WhIucH5Gvb96ImCEU5xbN2NuD7yShO0feB4edkM8FMseoRRGdI4Ta1DZ308ZdnxUnWdkygd/j97vbwinuA046/2dGfI8vk7Oo2kvfKSu9QAsRjSalHMhpgnwz/k+KTz+yj9tMeNBonzJjh+/mi5P1As4LkF9/1X04JI9Ap/xh8uixOGZExFuKQXG53GRcS5puTF/5Mj2K967tDzlmX3OeKejmpdI6nc95zJt+jbJ+21B+WFIHumJg/IChLufH6I/9M2nPVT+JpVVnpd5PNbl5wvOJA7q4o9BvBKi6i9ZxZkU9c/FEJwX2uHx0Ll/5M374pzP1GGI9DmrDDvfb9LFpSVaWirRpVtEty6V2N9LdO7KXbkeJi9PGwf2CHRrsTveBXs+eL4cbFDefu39kPyNPbLeLdOe/Xnxmr2zx9dbI9w76xVqqiPfxVzzTaqso/sdAMZIjIQe0FOe2znlPIzsfe8t0Xwe7p+i17zfO7/tr9gV4G/8QfqO1/MHSVnv/8VXvYVVll3W7aXWiBezW/4itgfhYoftBr3mz3ed8/zb7z9Nbw6aUzOQ+30rbNOFHW+ce77rmyM2flzyy3Z/ZwV/0Bm93jvHMGfNb2uP2PwG+vZ3vYXocXku3n1E3zLJ0bX84XxOmFgP2XLmyjWJB5nkSwnzxDC64wo53q9dU9IoDxfPXPyLEYdnUXi4xRQRn+PyzvkeNz9181H7+/HKjfnz4Bt/zBrZrUyJwM/JGWcOajnnN+PNS7g8ve7CafqI/K4YXe6cy3Tp2yzvD84Ph94LjYO+8uMdN+ihf+6PD268iRff/LLK8zKIxyH5NlgS1T+c+GMSr7io+kv6OJO+/rkYeF74Ly4seaeHefctes27vA9WjX8+E4Qh0udcyB0dHR3Lv0fm+vXrVKtZc5DDvBjQbonP816jtt1Z31mnnDXk3tepD1nidxjwix2L6vbt23Tq1Cn5avEs8vG/4Q1voD/6v36A3vDdvyH+hflhhynCFvwQNwCyg/QEqsTxgXcEXSH6jrhz7C8ApLH5gbBcHAhrSMITb/7oj+S7eph2BhLio+TbVOMj3e0pZ9DxDgAAAAAAMLesEcDDU84AAABAMHS+QwpyWhp1Qcc7AAAAAADAHPoQ3f3zoClnAAAAQAed7wAAAAAAAAAQ4Rvo23/p32O+YQAAgBgw5zvAjMGc75jzHXO+/4Z8B+YJwhZ0EDcAsoP0BCrEh+zhnM4PhOXiQFhDEna8MZnzPdfr9Y7v3btH9+/fJ92/YetMPsOX9fV1uUkASOvw8FD+BbA43v72t4sCDgAAAAAAAABgknjn+7/9t/9WvtLDyHeAGYOR3zj+RR75DgAAAAAAAAAwDYxGvqPzHWC2oPMZx4/jX9zjn2cIW9BB3ADIDtITqBAfsodzOj8QlosDYQ1JxIk3eOAqAAAAAAAAAAAAAEDG0PkOAAAAAAAAAAAAAJAxdL4DAAAAAAAAAAAAAGQMne8AAAAAAAAAAAAAABlD5/tYDGi3lKP1jnw5s+blOAAAstVZz1EOmSOkgroCAMyrdPnCQpSxnXXKlXbZmYJkUPZYcB5gxiEvDOQvB9H2nD3Gne93r5yjpaUlZ7l4U66IzSoQcjlNocATG1unJjgRsUaQAAe7peHfHexSKWDfAj877exzKRf1mMTxGCTWUZ17AIB0OrSu5G/eZZ2tnQ7TUs7MXl6OusLYzGBdQWxP2ecs0rzRscpwd7Y75WEddEyo14Fq7vO3lOy8xiAbjDTutGeaf/vZx1za9e5p3N9Luv3Rc+sX6uLf1ezCK2h7k62nohxIKn7dNC5/2ASlo0mEn50vZJGkx73/yfKi6WmHLIbgfNlfDo3COMsqs873u1do4/qjdHB0REdsObh8mq6dv0iJ+9+ZYrFIze3hyNnZb1KtVpOvLOW9Yzo+2KC8fJ2V/NkqFbstuqHuRL9HXfZPc98bAP1el4rVs5nvw8jwinOFncs2O3fHfGkTBZzvKKM69wAA6ZRpT+RtbOk3qMj+a/Tt/G6PrZ0O01LOzGpejrrCiM1wXaHY6Mt9PqZ+45Aqo+7M4A2tQouqTj7Dtltt0doYGgZZQr0OVHOdv6XWof1mkZU1rBzynYskZint8bK3W9+ZmoEMo6CWIcftGjUr3o6erMPL3V6fGsUmVcbU2RME5UA6ceqmcZmEzfjDb7Hzwkm3QxaJ2x6xloON+TqbZp3vJy7Q449foBP2y0cepdP0JH34rnwjgZWtLar5K3usEbjdrNHqqnwtiatITgFlXRVZ76ijHkvkbfv4r5xoGmT5s1Qtdqml7ARPSEWWkIrNfeU7VoZTPWsHftjv8/1i+7NrjyQL2La4Uqbuc/zfE1donM/7j99WpOWC/JN3VInMwNpWoc6q1c2K+L5V0Qjejvfc+8Q6DgCAcdLkxb6Rq3b2NpzXWfmZ2xBLmL8lLWc0+xl8XNa+hZWLsctRe0SHuujKghFCXUHd5/i/tyh1hfwGiyfUJLdNGOdclagUeKwq9h1xkeKA1HZAfuNAaRiEbdNalzzNhZ+z4XC2Ph90TLq8Lvi3DfYbZttU5G/8t/jfMeKZtoxktOvC9jlAZ5+axSptblZ950LSbUfz/lDa83yOHe8d+b4jadq01oXnaRGqWwYdxLr9C97+0OhCEQf88cY0vOLGsQjlPdEBr15w8IdXcHkatB9RG8zT2WqR6PCO8smwY+Xr+PbUsLa2434n6DiD4oYldn0ptHxaPHHqprr8IDjuqGFjhUt0OZ4kfqjr7M+HWOC8MHk7hH9MUwfXxomY4eIX8bvhdbmobYett39fvuR4nuG/g8P5rn/b4Ybii9yeG5Ym+xYvfqTZ3zDJ5ny/26db9DC91u6NT6RMqzVvZW9wo0Xd2qrRiMVmZZuW5eijNvud+o57ijvrBaqvtJ0rJmJEVOAtIFbh1+315WtZsdxcpRW1EcczHPbOSVHf5IEU8PueQGb7Uydqi/W+EZg8IlYOqdF3G3DR++v7PZaw1uor8jVfvI1BQVam6wV/ZMnTxgHfBiv0a9Y23YZjyH77JToOAIBx8udprOBdI7rq5FHuaIbyao0VLEqFcnCDWl23oyF5/paknNHvpyU4rw4rF4PoP8+2L/J3d/uivNibxP0EqCugrmBgcIcOnYsIcc/9AR1oj1USv88aWtqDNdlm8jQXes4Cwzks/FRp9xtm33Tkb+LzBTee9RvEXnvjoSusjGTrCmzDzihj926euHmPuAjBR/qLfLLJfkb9pG47+u17sXO4pn5ui3r1plxnMdnf4LRpmv7DFGjjaoOKzW1tp4N+/4K3L+6yUOpZLFulIjuvThzz5LOjiGMRyqu+i7iK0PI0ZD8CDehGS72LxPBYC/u0KtbLkfO5AvW27M+z9LKmjxvh6cmStHxaTKZ107C8iguLO3HScbz4gbwwjoTtEG2eoT8vccPFKyquhdflwrdtkkeFMGmPhMiijR4rfqTc3zAJOt/v0pXGNTp9+W10Rr6TFD+R7hXmDu3weLhplpGro49EgNhXj9nJ2maVRvV3xIgo/xUrKX9yxQ1MXugXq3Q2zxMZ/0kZ3e4csg3KBCYCu0ZtpcCxRlwdkvy4UGsHFL53dqnkrwgY7u/w72kqBw4rMonIVTC/YhO4334pjgMAYJy8eZo9qtdi3W7fI9Hl4Gt0iYqVKA/4i3T5W+xyJmw/paC8WlsuaujLUd4AtjtZ5P5H/NYooa7AoK4QqsMihZteU5x7HTkNh5bxNhOkOaNzFhXOGmn3G+bCxPM3SY1nQb/nCikjxUWCGm05Py4/GzfvkZ+3GvfyAkXrhhvvddvRvS9fOeQ59HyuzU64zTjPH2HazG/QFi8bfJ26QpK8PH9SuaDDO6CJtrZYKNtxTO3QGlEcS0efz5qUJ916QY6iLFBd6TiKf6xWfGRvkP0VkYaH6omm6cmSqHxaYPwcRddNQ/IqySTumDCOH8gLYzML6yABeUZWZdQQk7imS+MR2zbMo8KZ1VP59F9WPskX2bmfQRs9fvww29+4Yne+37xYokt0mXYvpBr2blFPJI+I9klMzW5E2kuFbUVD2QcRkCsnRaQViUxkLNbV6Zo93CmwAVag5WKXnEEjGs06axzKv71i7C/HKkMH/QYdysgZdvuMmHtKXAHiV7yzuWUis+MAABgzz21kBTUvszoarLkMZb6/pVYSU+RvccsZRr+fYyAayG6Fio94IbnPE4G6goS6gsrtyMhR5bBBfbvRkeLcJ5Z2m5FpLuScxQjnIZM4VzB9piJ/C6L/vdAysrjM9iaIed7jadwzVkeGrxNEtx3t9hWB59Avm7wyjfJem2rduubZFnH3T72g06feyiqVC8tEE41jhtLks5J3jvkVdu5kWTu2fDjh701bnXBaGNZNJ1qf10JeGEuSdkhYnpFBGRUkXVwL2XbaPCpG/umd892+oDTCNnqQDPJ7nVid7zcvLtH5Jy/TgTL/ezpl2uS3RLAT6dzOItekU1NuE7AX92qHl1sR4A8Scgp9nsh4xtKxrvQ4fSKsklCUf7pYBaKrzpkajEcmFo4BIwji7K/EI4X4XJtWWAPUMw1SgPzGVWpkVIhnehwAAOPSWaeCehsZy8jU/Ly8yW+x3qeOvMLv5PtCmvwtZjkTsZ8jJ0Y5uRWZStM72mH8UFewoK6g8nRkqKOpUpx7LbXhFSTtNiPTXMQ5ixnOjlGcK5hB05C/BdH8XlQZ6Rvt5zLNe6zGPXXrVLAb86Ijwzv1gHY72u0rAs+hXzZ5ZTrWKFQ+6vOGfMcVf/+cCzqdfTrkgcunsSDekcfjzyTimIJ3qrFjcvbBL2k+G0SUKbKsHVs+nPD3pq5OOC0M6qaTrs9rIS+MJ2E7RJdnpC6jAqSOayHbziKPSpl/jq6NrpFlfq8w7Hy/S1fOZd3xbhFXz5oVkZG7t1+kEDgXVTirIrBG4sEJTkBaV3Na2y3vnE7y99UH0Ax2t41H4omGLbEMzP5+gv314vsp/1TwK1+eqzSdHXGLmyeBpLgdJ/vjAAAYLzFVhfxbsPOxteB8P03+Fquc8Rnaz1HjIxzk3HfWks0tsWmgrpA2Di5QXSHNudceq2x4Vbx3BTjnL2V4h6a5WOcsIJzDwi/tfsPcmGj+JqnpK87vecpIeaHMTS8dWudzv8ZJRzIftOe4thc+L6wz9YBuO7r35SuHnILF+dyAT5WijNWLle5DpMi/HeVNMYd0nT+Uzma6f/7tyws6O/uHtCLmMcnTyZUu9Xb2qTmGOKYlz3+xsenug1ZweeoyibS8o1+WtSmPVSdpehoyhXXCaRG3bpq4Pp9FOrYhL0wkXTtEyTN05yWr45RixbWobUfmUTwft0emM/4w9IjKPzXsfRxBG13Qxo+E+6th1vl+8z106Rb799YlKi0t0ZK9XLxprU9DnDD2b0jHQzx8/tI+VVvu7chiCUrsNlER6FLXcwuInNOKve+MABH477epJp+Iy5dCq+re7hzJ/b7V4E2wv5115bPWAwb8F6B5pcPzm76576xbhlilhK1LditFBscBADBO5T1q11jlQeZP28sNVgFSheX7KfO3OOVM5H6OGN8+uWVc7GMdBdQV4u/vwtYVkp37qGPNbxxYoykL7n7z370qTlaybTpC01zEOQsJ5+jwS7nfMD8mmr9Zau0t6sn0JUbw6X4vtIws056VUOW+bdPyVf47EelIIabVqG0NjZqz5ri174DRbUf3vp/vc4UebbHXbhvffH910uffNrYv/OGr8pUlev+Ct8/vsuhSs7niXOThF36azeZY4phKnbosV2hRtR/yMEaD8jSKZ3sVdrzOHMRpjzVIkRrtKrVM0lOUaawTTououmkG9fns0rEtOu3akBcq4rZDtHmG7rykPM5UcS1q29F5lJiizF7Pw1Cdtz9G/umd810Nr9G10YfiRwb5vU7u6OjoWP49MtevX6dabaxdBwBz6/bt23Tq1Cn5avHg+HH8i3z848BH8/orVZ11XpHr6xumGUDYgs68x41JpTlYTNOXnga0WypQb+s4swYumEPZm715OqeLXj4hfSwOhDUkESfexH7gKgAAAMwvPuev92FaA7pzKP8EgMwhzQEAwDRC+QQAkA10vgMAAICjvNenxqF6i3GBWlWMwAUYFaQ5AACYRiifAACygc53AAAAUPD587wPV0IjC2CUkOZgkVnxH1POAEwjlE8AAFnI9Xq943v37tH9+/dJ92/YOpPP8KVUKslNAgAAAAAAAAAAAADMNzxwFWDGLPrDQHD8OH48DGc+IWxBB3EDIDtIT6BCfMgezun8QFguDoQ1JBEn3mDaGQAAAAAAAAAAAACAjKHzHQAAAAAAAAAAAAAgY+h8BwAAAAAAAAAAAADIGDrfAQAAAAAAAAAAAAAyttCd7531HOXWO/IVAADMk5Hn8Z11ypV2aSBfwgxa0DBc9PoP6n8AGRplPprhbyPdw+Ia0G4pR7Mb/bPYf+s3cjm2TLTel11YzFyehnZTKv7wRpkWZfryPePO97tXztHS0pJcLtJN+X48HVrnGV7gss7WTofBbmk4YxjsUontpz/wAj+bEZGgkEEBAGiJfNJXnkyqkEWena3hsJ2eeoKfqAv4It7o4oNVmSzten85TX0kaP+nWdZxY2RhJeuO6r76w23cxhtXYRaI8M8w/ceJT9Me99Lsn/iuL/1PfzardFA6y/SWvbMgsGyeQL/CdBtDH1Fnh+rdGrWPj+n4YIPy7K24dR/x+cD9ybaTb5z5op1PZbHv487P44ZfPG5eGLgJfiGBx0/leMd9/HPHPqdyUc+7aVhPexgYdr7fpPdcf5QOjo7oiC3Xzl+j8xeTdL+XaY9neHzpN6jI/mv05evjPbZ2OuTPVqnYbdENNdT6Peqyf5r73kDv97pUrJ4VGXjWyntu4QAAAMGKjb4sR6xlb0KFCfLs7Klh228cUmWGOgEQH0Yry7gxkrDijYhCnVba1j6KhdV9qV6YeAe8H+IqZClOfJr2uJd2/6alfhKXut/tWpMqI+vgmn/T0q8w3cbUR1RcpoL8M4n8xhbVqEm+YGPlvdWxv5rRjo4vX+zQfrNItVpxKC4mMY91iWKRnZvt4c7czn6TnbeafGWZx+MfG35BssLOqVNnbhMFnPco0x4Ghp3vZ+ixxy/QCfnqROE00ZMfprvydXb4Vc8S7e7aVz1kQ8o3csgu/8WVDU9lwD8azH/13rBhlj9L1WKXWkopyRNYkSWwYnNf+Q0rw6qelcGr2c/g47KvkKpXetlnlBjmPb7oz/uvFokFlSUAACmqTIhY78njWf57R74vIc8eLW+jR1NfSBWGdpjJlxwPI3UExVA5b32nUGfN6GZFvGfXQXR1FPu73n0ziC9xaeskKv3+z5LhBnHYuR42FFbac2f6u+xz26ze2Oh7O9vyG3TQrlG3vqPEVx7OYeEetk1NOgjcf+t3xhFXrdGBwetg2kWHrzd+sXUhZaEubmnjXuhv2/smX3KRebR8P4BJPPXun8G5MWb9lrt9X14SkobDjn8Uaa+8WiM6vGNwjqPPj37/ws4HX8c/q/4uX69+x/2toRGSoq6l/p71O26w6o6Hf479btx6ht9Y+hU4k/3Sh03496116mk1j3sxz1eoZPsv9q3SJFb4UoGvW98Vn41f9ykTTw7+jmoenlRbVS4SpAuL8HzRFw4eMc91Z5+axSptblZ9cVHSbVfzfrz8nAvbX2tdcH5irRtH3XVli9Uv/RfP2HFtN2u0uipfS/7j16YJbXjGDD+/iN8NL7uith223v59+ZJLVDYVadm5OlamPdGJbv32cFjzY2G/48sHh+KgSpQF6rbDj9lsn+NJMOf7TXrPpVt0+tFHnM74bHWpXifrliBxpZOd2DWiq/JqaL/hXn0SlQE1oxjcoFbXLbQ66wWqr7Tl1RM5MkqtoGnl6Wy1SN1eX76WheHmKq2ojTueYbF3TorN6ffT4j8uS7OyTcvyym67xj6zo4kskv7zbPuVQ+cqMd8+1dixz8oQCwCAkeIFbECZ4BS0BuvXWCbujAbbol6dVbYjIM/O0OAOHXoqZv5ydTRh6GJhVlC/z0dl3KCzB0r4sfcPNoLGW0TtmyVunUAvqk5iy9OG0f5POU/cMDvXekHhbJ0743qlrz7qUV6lGtvbO86XWDgX3HC3Bse7+xq9TX860IW9aVinjKus8bdWX5H7w5cDmsUotej0eVG8fDSqreaVQR5tlO8xKeJp+nw6Ko3p86BQI0l7bF+3WRisnJQjCaPPcfy8wSTPYb9T2KdVsb5PjWKTrS9Qb8v+PMs316z9ECPNlTjHigcqss877XdRXtijlKOOh23Xk7+a5Ml+4+lXMNmv0HSdptwMiXvJ+2OGhaW9sO3kNw7ouM3yomKD+nz93kbius9QnibCk/2MMuw9XVj4mecHcc+1uAjE77QQF4ia7GfVT+q2a7o/0fl58vM0zrorv+DivXg2uNGirudiSwBtmtCfv3RpJSrPSJ5+Rpk/OORFynrB38kdFtbs8+xUqvmgFu94F+1uw7xpJOVpnM73mxflfO/nxbQzj18YTdc7V2urJ8++6mGxbt3qkSi+RAPGLbREQihWSdTn2AnbZgVbY9P9JTEyyn/lSiN/csXNWHkhLX7Xutp5KFtMgzuHPKeV+xqyn5L3uCy1thuQQyMLAmg/LyoSdoEt9z/itwAA5kG3XlCuTGsqAqLBX6O20rltjZaVnWCG67eckpfl+bwiHwF5dnY6O3W3jJc85eqIwtAhGsa+75ve2hi1b1KcOoE33stRIY7oOsk88cQNw3OtpQvn2PVKN30P65LTD8Oo4e6Ns2bbNK43m8gkrqp3IcAs0pddMfPRsLaaX9o8OnbcTxZPk+fTsn4SlcbSlDUZpT13vwvUqvbJHRgQfY5j5w3GeY6dz1md2ewN584iUYey9yN/UunUHhCLcrS1xX5N/pi348zkeNR6RrL+hZH3KxiXFeHpOnG5KQSFbbr+GD/9/me7nVC+PE2k12KDnE2nDQs/0/wg7jmQn7cuhMoLRK0b7j7otmu8PxH5edbnaYT4dt07FjvEqpye/dYLSBO685c6DnvDIVbeHLXtUeUPHlYnu7goUOBlj9lIc2/9V+POLpV8He9m8S9qn+Mz73w/85iY750vB4VGioeuxucZ8l9gDSz5Po9kPN5Yt/7wwrVLtS018duBZy8VdgoNKRmrKKTlFX+R+ETGJLenXOXU7+cYiIqGmwDE7U/OKAUAgPnlnVNVUwjL+TW9CrRclJ1gidangDzbiNpxUTlsUD+ogm8bRxgmnS80at8S8M8lLEaFKCZaJxkDbdzI4lxrwzlOvTKsUaLewRFE3df4ddlUYZ/2/PGpdfoNOqxY2x/VreAwIbHz0ai2miKDPNo47o8pngbWT0zSWJKyJsNjcva7rXY6WRLnL7r9yyLP9lA7tfvUW1mlcmGZKLP2e4L+hbH0K6To9xhpvp9iv2IZ13bKtMlHFcteOWf0uHhly3hfjPMD8+36L4RanbW+jl7ddk32xyg/H1eYpaRecBEXWzQXkFVhaSKTOuawVHW/sG2PNH/wEnO2izYNvws0m6lemnXduQg55gzLU1WCaWeITjzyKJ2mJ+nD2U/6PqyzTgV1yD87CWrzsrzJXvMryfKKjFJmMTXlVgF7Ua54hHILbv7wE6cw5ImPZ0wd3/Yi9nPkxChKNwJVmt6rUwAAC401vIbzZNYo68pOsETrU0CebcTTcRHW8c6NIwx9o0iMRe1b1iZdJxkDbdzI4lxrw9mwXikurmkaJWLUU9ioeE7d15h12bRhn8X5440Wsf02rdQL3nlAYbYlyEfD22qKtHl03Lg/qXhqksaSljVZH1N5U0zx4kxHkTZ/Cdq/LPIcH6dTm+W3h/xH+JQGxDsW+e+mbb8n6V8YR79Ckv2SRprvp9ivWMa1HR6dqixP2yb+HALPPP2OjPfFOD8w3a51sYfsOfD5IjprvdOraLdrsj9G+fn4wiwd94JL8MUWDV2aSFvHDJI2bw7b9kjzh2D5jaus7El6AdaLP8SVnQ5najJXxPnOujxlzDrf716hcxfdce5333edbtHD9NrRzTyjJW4tln8L9hxVa+otZEzg3FXxWAX3GokHKjg/bF3laW37tucztJ+jxq9IyXmQrMXgFgwAgEUhy4SKUnIOdrfd0QuR663bmJ0yZcBvYUsxPgN5dvZSh2GerDvD5ff96+XIF7de0aF1dS7GsFtho/ZtxIzqJBO4lXck0p5rXTjL3zWrV8qGWsU3akfGqWJj05Pe1c8F5Utm2wwWGPZji6u8ziz/hPmQpCy047G/reaXNo/2MW+LjTmeRqUxbVkT5/izOqY8bWwNj363JW/vKvuXaZ4jyU7tnf1DWhFXOvm561JvZ5+aadrvKfLkkfYrpNgvITIMEsa9tPtlKs12ktR9xPZYuK0FxNOsjzmq7mmLs93ODtW7RbKfO2Uv/A5KJ63rtmu8PxH5eVbnaUx1V+uCS0UMlnKnjDGlpAnd+cs43sTKm6O2Lddnnj8o+Kh9z+hyGUc9nfspwlp05lOdCvYxxDrfwfuchFnn+4lH6NEnz8s535eodIno8sFjdEauHqnyHrVrLLDlVbnt5QaLsCo5R1XXe6sWf3/joE/VlndOVM8T8aOIgrtLXc+tIZrtRe7niPHtk/UE4ETHCgAw13iZ0KaafFI6XwqtqjKNSdT6Mu2Jy+ayTCn0aCv2qAIF8uwRSB+G5T3l+3y9Z75h3/dz27R81fpt63ZdawRR8K2JUfuWsZh1kuj9nyVpz7UunPnvmtcrrQe8rTh3t4il0KIqa+z6HwxWa29RT35OjFzy5Esx67IRYT/yuNpZd/czZz3MCjf1zJMkZaGureaXMo+Ok+9NNJ5GpTF9WRN6/KM6JtlZJPpVYpYtHtr9S5tnB+EjzbvUbK44Hd2887vZbKZsvyfIk20j7VdIsV9CdBgki3tp98tUsu0kr/so4TY0jVbWx6zPD7zMtyumuqxtDY2otubxtue51m3XdH+i8vP052msdVfRWcv+DbuArNKmCd35S3k+0uTNkdvm60eRP7h457hn+7452tOHtXsM1vcjjnlE5Wnu6OjoWP49MtevX6dazTz4IT5+tcifCDrrPOH1R/j0Z5iE27dv06lTp+SrxYPjx/HPw/Ejzx626HEb9OY3bgxot1Sg3tZxJpV6ABPIa0GF+JA9nNP5gbBcHAhrSCJOvEk05ztMHz5/nPdhfQPiD00HAIDpgzwbAAAAAAAAYP6h831OlPf61Dh0bwXht0e0qhj1DgAwjZBnAwAAAAAAAMw/dL7PDT5vkfehGejEAQCYVsizAcDKBzDlDAAAAADA/Mr1er3je/fu0f3790n3b9g6k8/wpVQqyU0CAAAAAAAAAAAAAMw3PHAVYMYs+sNAcPw4fjwMZz4hbEEHcQMgO0hPoEJ8yB7O6fxAWC4OhDUkESfeYNoZAAAAAAAAAAAAAICMofMdAAAAAAAAAAAAACBj6HwHAAAAAAAAAAAAAMgYOt8BAAAAAAAAAAAAADKGzncAAIBF0FmnXGmXBvIlABiY8nTTWc9Rbr0jXwGMH+IgZGNAu6UcTT4qTct+2KL3Z7Jp0Nq/XI4tqGOOwLTFR0hv3GGa5fZipne0PT1id77fvLhES0tLdO7KXflOfKKA4AHmLOuUNi4MdkvRhc5gl0rqdqc8IgQdkzh3iMAAABZeqCv5+ixUTkXe7s/HZfnk33/1s4uW/0+srmAoy9+COJSKf4ZxY6rNWP0VZombngKzM7uMVeJcVFnkXz/2vNKfXthS2p1sigk6B9NZpgflr/HqVigbh42iPhMmUdxKWp/u7FC9W6P28TEdH2xQXr4dZnbjSPr0EQXpZ8pkUJ7MVZgmSO+q6Sz3xide5/vNi3T+yfN0/rR8nUKx0adjHmhs6TcOqTLqhhMvUAotqvatbYrtVlu0NuHKWFzlvWQRHQBg7vAKUaVJtbadr7eJtqe/QM+frVKx26Ib6o72e9Rl/zT3vSVhv9elYvWsyPMXMf8fe10BZoYaN9q1JlXmtbE6J/VXmG7FYpGaAeVnZ5+VsbWafGWJKosmWlaJ9FKnFadewJZ+g6hemHgHvN80l+lq/nrcrlGzMvkLGLNunPWZ2HErbX26uEwF+eciQPpYEDNUnoxVivS+iG1ZVYzO97t0pXGNztfflnnmmt/YIpZtkdvn4L+qqBZOHVrPlWh31746W6IS+2yh3iWW84n3hhMD+44oUA5oQwnp/MYBHThvhG3TWrfe4du217N9UDfju1osFqchGPbbvLwrKev471qfDzomcbXI08BMud8AADOtSMtOoVSmPU+Brs8fdXmpW36E5a3+csheF/YdRf4sVYtdaim977yDo1irUbG579nOfrNI1bPWEXn32SB/94zWYOvuyPel4bJHrphS3rpC3DCw3g+uK4SHW5wyGiajvFojOrzDQtIWHqbetOEbtRaSboZGL4m6n/rbVnp0k2nwdqLzHxv7vcj6q1/c+CzeFd/x7BI/Nmd0Uso8D6beyhbLX/0XhVn83W7WaHVVvpaG46+Xu96KH4F5pTYNDse1deP0wt7fZmVpo097ZfkWl9+gg3aNuvUdJd7yuG+lV2s7dlqwhcVtTXoIPCb9OdDlA/b3vdu01oWV+SMr08t7ooPRPX9MzGPVh3cQ3TFqznvoeWPCth26X2HxIx1vfcYOW7HK4sl/beb7MxS3jM5/SH1a830R51gZxSIHFfg654d1YRIcR8zLxCkUlD60xy8Fns/gc+MaXXyEICw8jMsTXfpNGqYjyOtUou6qi0P6bejTu8KzD2wbvranP63ry63kx5r4N8fAuPP97pUNuvTwNXrsjHwjS4M7dOhk+PykFKi+0nauMA1fHe5SvU7W7Q7HrAFywD9TJNY6EZ8fapCI32eVRzXheJhsk6eZbVqWI4/aNbYPO/ZalkAqh9SQ65x9kSm1sx7w23aByiLOWn1FHgtfeAMrTxtRxySk3W8AgBkmO7HrheAKRFjeKzrr1I7uwQ1qddWO7pB8W1DLoT3WTDH5ji1PZ6tF6vb68rXsZN9cpRX1QnRnn71aoZO6PjZGn7+z8mGN7aAzOmeLenVWYbIFlj1y3bTy1BU4fxiElYn6cnV0ZTSMBwt31kCilZOyoyCqbsTqbGtEV5116ojf8HQj7lpR8g0WJalYVNKsp76p305U/uOIrL/6RRx7qnSfJs+D6VemVVaGqBeFBzda1K2tirBORpdXhqVBzhvX9ozTi+Z9rrzKUtIh3XE2wrZRcMtPazCj236KXwfQHdOY2nSjLtPF+VMufsc61qjw9lKP0R8u8fOhsG2zdQU1v/eO9h5p+3moPhMt/LyECT9OIbQ+rT+H/EIw73imYoP6fH1k30dwHDEuE6eVJ32EHb9YmyivGGl8hGGxyhMd8zAdbV6n4B3vot8yqIwIL4d06d0VXoceElJuJT7WxL85Hmad73ev0Malh+naSHre2YnYqVO3WCURt0VEr1FbCUzr6rA3gtfaViQ0Im/n1zLepht4nlFWogB1O0jyJ1eUdXzUSJEam77f9owuURpucaTdbwCAmWZVakQltOC7uh2V9/oqyqKTwSmHTPJtXzlk+B2bKCfshgYvQ8S2eecHz6KtLwzuHLKNhHd86Mslq3zYsleyX9njFSaPhGXPhHjqCpI3DMzKRI9RltEwUt16QY5cKVCryir6drhHxgPviD5rGqgeiUthUekmf1K5QDYglm3Q1hb7ZTvNejorQ7YTlP/Utpy07Iiqv/oZpYHk8TlNngfTj5ch7mi+DrEs1xO+2QlJG5InrpmmFyHsgnWXnGvejFp+etJJkjqAwTGFMiy/wtt04yqr4h5rvM9rw0WKlw+FbFsMcPDl98pnR9l+DqrPRIk6L1oRx2kJqU/HDL9EZUOsND7l0sTJEKOMj6BjXp4kMba8znZnl0rajncmSTtKFVWHDhRQbqU+1iS/OR4Gne936crGJXr42mOUZde722jKUeWwQX37BAY2NAq0XEwfwbXSblM0xtxIyacPcEdgcXZBZi8VFiUkfutKv0GHFWtdrNurJnGuAACmjJg/TlzB5qMG1AZDSN7LCm5ed7XmWOedaF2qbbkFefh3dWJ8R2loiEaGLDNE50frBtsjuU/mQ169ojrt0pQ9Y6StKwRJXCaOqIyGkXLmXGUVe8/t3gbxwHNLaqHufj4q3ch8w+ps71NvZZXKhWUiTZrVbof9ziYfqaPmP0nTuirq2DOPz0nySZhaagcY77CL2TkYhz5tBImTXsI6CaJGGqtlRfy4He+YfBKXX9KYy6q4x5rq3LBPJy7DmdBtj3Gu8lj1GSOGcYMzPE5dfTp++MVNPyMqEycmRZyEKZKmPElihHkd06xHxLW05VBkHdontNxKeKwpfnMcjDrf+7eIrp1foqUlvpToEnt961KJls5dYWuT8TyoQi18WCOmKP90sQZON0UE911NHZJ2m2LkuxuYlab3ihGxrbu3PtiLcsWJRxLxXptWWMGsnZ/JbxTnCgBgRuU3rlLDU0EIz3vLmw1rCgl5pd5bz4/ItwPF+Y7biccfquo0Mnh5xa/Cd4L2KYbA8sEnadkzRtq6QpDEZeKIymgYj/ImS/dN2rYr2FHxoLNOBfWWVFZJdz5vkG6cC2SdfTrkP8hv1yc+coZvQ0mzYdthxEgdbf4jRdVf/UzSQKbxOUk+CdPL7QATzyGRD/vOXETaCGKUXsRgKE0ngcE0bt7OlJhxO8ExeSQuvxSjLKvk6Glx3uMea9pz4wmXICFhFbVtgxHHWYlVnzESI27EPE5PfTpR+MUvG4zS+LRS04eQIk7CdEhdniQxwryO4Q9UZm9TfU0z1UracsigDj1EW26lONYkvzkmBp3vZ+ixoyM6cpYDunya6PTlAzp6/AKdkJ/KjJhzrEkVpcYw2N02G32hvf1GViYr3nnM+BUTcTUkzTY5fpVHzuNkLcotIvK3nUZhKH5lSf5pC7ulKO1+AwDMMCcPt3V2qG5XEEzyXvsza+pUEUysfFtK8B2rE2+NxAPtnI1bIwxa2759iktOj+Hsz4Dfaqi7vh9Q9swi0zJRLVdjhVvMMhrGJE8bW8rod9N4IInb/+XfRulGXiDb2T+kFdHyytPJFdZA22GNsZA069kOZ+8nH7Gj/V5E/dUv1rGr8Zkfg30nEBOaX0ix0g7MCqsDrCIGErm3jmcgJK8cShtBUqQXOz4XG5ue76mf86STDOJ24DGNrU2XcZmuOX+2uMcaFd7acAkSM6w825YXN93vdmh9zPP/Wszy31jnRWVwnKH1aZ/I9GoaJv44YpTGp5A/faSJkzbULaeAaXliWH8KCNOx5XUKcWGN6lRQyhqHnQaTlkOx2p5+SrmV0bGm+c2ROTo6Oo63HBxfPk3Hpy8fBKwLXvb29o5V7RodFxt9+SpI+7hGdMx2z1qKjWP309a6Wlu+tPUbx+zcis/rfrvfKLq/yZeA3w1e1z9mac+7zXbN8xl+TPrftr4fuJ7/jvq+upGAYxLb8e5Iqv2G2XN4eCj/Wkw4fhy/y5+3Fo+92X9I3ivZ5cJQmRL6XU05ZLA9L5l/G+6TN/83yN+VMoSodtzmr+31YWXPhPjjdnhdQRcGYWUiE1hXCAm3mGU0jEZQuveec398CI8Hap2t2Giwz7L0IdeFphvJ+r7yHRlP/PExdDuMPv/xCqu/evMFLuTYQ9O9+j22n578xH9+bXHzPJgGQenJDVsZpmpge+ICf+ldH/U6KK/Upw1dXHPTQdA6D38819QNam1fnJdrLWFxO3gf9cfE6M6B50fU/WGLJy35w4lRwyU0bYcLr1fxxX/+Eh6r7vMOvm22rbYvD5Zr7fMzfGhhYWW+r+5xRpxrA/HqM5wvLnq2F3Ve5DEqO+x/HXycKv859H4m9BwGnpvwMAmKI5xxGh+jJOkj6vhN46R1bqzfShMfwYw/3Qr+vDUwvMPSLxMYpmFpOuu8zh+HrN8PzpPUY/H+vhAV9zx5Dds+f+3fR3tH/OfWc8AJjzXFbyYVGG80crxznG14pK5fv061GgvGOcWvFhdaVc/cbZ31HG0v9zVPtAdI7vbt23Tq1Cn5avHg+HH8i3z88wxhCzpzGzc665SrELWP1Qc3AozWzKanzNLLgHZLBeptHZNnltAFhbI3ezinCU1hmYiwXBwIa0giTrwxmHYGovD5er0PWB3QnUP5JwAAAACAj3hA/yzdXg8wQUgvAPMNaRwA5hk63zNQ3utT47CiPDm3QK0qRr0DAAAAQJAOWf0M6GYAiIb0AjDfkMYBYL6h8z0Tedo4UJ+ae4yOdwAAAADQKNMeqy9i2gsAE1mmF6vdhrQHME1QJgLAfMv1er3je/fu0f3790n3b9g6k8/wpVQqyU0CAAAAAAAAAAAAAMw3PHAVYMYs+sNAcPw4fjwMZz4hbEEHcQMgO0hPoEJ8yB7O6fxAWC4OhDUkESfeYNoZAAAAAAAAAAAAAICMofMdAAAAAAAAAAAAACBj6HwHAAAAAAAAAAAAAMgYOt8BAAAAAAAAAAAAADK2AJ3vA9ot5Wi9I18CAABkZkrLmM465Uq7bO8AAACS6aznKJeogJuOsjH5/kOwrMIV7XMAAFgshp3vd+nKuSVaWlKWizfluriswjaXU5d1mmTZKypm6KQAAJgpg93ScN492KUSK1f8DbrAzyYgfmdCrUVRVgUcW1rTWQZG1xXi7vckww6yFBQ3htPFJON1UFxDXROmlV22hKUnW5bxODxPNkvnkL3h+BCvnZ5VHJmrPJMPiFDO6aTisf+col4UnziHMc7ZXMVjAEgl1sj389eO6OhILo+dke8mU2z06fj4mC19ahSbVJlgxl/eY/txsEF5+RoAAKZf/myVit0W3VBrtP0eddk/zX1vmdLvdalYPTvD+XyH9ptFqtWKQ8eW1jSXgW5d4ZjaNW9dAWX3YlPjxnG7Rs1Kjkq7bmYwbfED8RWmmSc9sWWvLFf4jDseR6VzGA31vPcbh1SJ0QGfVRyZmzyTDwqpNKnWlvH4uE20PZnOWJRD44dzDgC2KZh2Jk9nq0WiwztKIeQf7aAW+HxdiXYHHVr3rFe/w9fLjzvUz3vXe69gWr+z3tF/3n/1Wiy4agwAMF75s1Qtdqml9L539ptUrNWo2NxXyg2r47p61q76hpUxjBw9b6+3snfrO4V6l1jrX7zv7QAIKTNCt8e/xz6/a5crmgZuZ5+axSptblZ9xyZ59pn93h35PjM8SsfaH3v//evFSCj1t5xjiXcc6xHbjau8WvPUFXTHNbx/1vv6sIOZV94THXPd+o4TJ83idVD6s+KLJ2p5pnHi6/n3g9K8Pq6Zx1fO3oewfAVg/IbicWSbKF46CRWQzsPTUYDA8l2fPu390peL8y+/sUU1apL3ur8+bzLLe22mv2OQJ051+7xIywX5J5Vpz9MZGxGHQ+qknsPzlFP8PLHz46tbuufU+r4/DUalA/CLjpfeuwvih1vWdWkAmJxYne/XztvTzpyjK3flm6kN6EZLHZHIM5QC1VfaIVfcu1Qv7NOqWC9HzucK1NuyP09UX/NeUW5Wtmm5r6wvhFfO1M+3a2x7O/anWaZYOaSG81tFohrbV90QEQAAGBHr4m2315evZSf75iqtqA1F3nHN3jkpWzqd9YAyRq34rhFdddYVqSlGKOVp40DJ89m6gw236aQvM6K2x7HP14naYv0ea5YNExcVeDkpLjg0adtT6Wbl5hr7AWek2hb16k25TnZaqx32gxvU6qoXIxSskbdWX5H7wpcDsg7TsGxWjmMvznYjse1vs2NaOak0WFVh+xcedjAnyqsBHUSSNl5z0elvGPtOIaheaRrXTNJTeL4CMHnRbaLgOJwiT/al8+jyVaUr3yPKydD8YwEM7tChp/M4Rt4Uce7i5nH6z09x+1wOFKkXfBcLpMg6aUGt38UZNc+2qS3bgtNgrPoiOLItq73hlm1dGgAmybDz/QRdeNydcubgMtGl0kVKOus7160X5BU9VuCoGYjIUGrUVgpL64r7Id1RSppa2y5E5Mh5VnDYX8mfXGEb6JHdHcPV2m5hH/R7furnPaPtRAXE7cQR2/KM2gcAgHERebBdKeX5c7FKZ/NlsrJtK2ce3DlkmfqqVWawhuB2s0iNTV8Z40xf4x2RZE1t4y1PgujLjKjtWdwyLYD8DauclBccWjfcckeWm1tOi5YdQ5vtg83XWTG40aKuOE/W62EBHZixy2YmaLu1rVidFmpdoVVljU9dQ9pw/2CRaTrmmdD0pxG3XulhnJ40+QpAxty81hptqUkqXgZtopHGYcPy1RVSvkeWV/r8Y951dupDdYZ44RqW98aLH9rPT3X73OroFp2yBZ6+lE74qDgsBo/46ncxpjCJXbZlUG9bRFnnc1nXpQFgOiSadubEhTqdp2v0RIred+8cfivu1WA5X69XgZaLXXIGN2Yi4e/lT7Ki3W0c8dGI+pF4AAAwUkqlVFRIZX7MK79WB7V1d1VtVW1+2A0ge6mwX3B5bpEusEanfD+58O1FEcelNHyH5roPLDdV1sUIa654eT62NI23/AYd9Bt0WLH21bmtNVHZXKZNPrJQ3a4nHKI5dYWhqQZ8xlZ3gJmki9eZihHXEF9hynjnfDfssJuKNlG88lVfvoeUV2PJP6aLejGmctigftI5q8d17magfS7m/mbpy7pTSh0FHxGHi8usdBiX9PU2yBrCBGBeJJvz/e6H6Uk6TYUT8nVaovNENjgKy1S03lX0qdf13u6WXsLfE1fW3UKy0vSOXAIAgHFyR7nzh6o6FVJervAO6o41wtRbT2X5ttPJYC9y1EpnnQrqLdKslTRcJsUVsr1IVkWbtYSpYDfMRIeBMtd9YLnpVd5kx8HvEJAjbkPr7byxLPaxTSusAS6mmkxYNosLBabbDVPeFFPMeafbUYyt7gBTS44Q1MaxoHidqRhxDfEV5sEk2kRD6TxG+RpRvoeWVyPPP6aL52JM0o532zjO3Qy1z/MbV1l9Rr3QGhGHDe6+zFJm9TbIDMIEYD4Ydb7fvOid4/3mey7RrdOP0iNZdb6LipRscMj5bCtKyTzY3RYPmtPfIh+tWXGvMKf6PT5aSc6NZi3xb1UGAIDsWKPc12ibNbbcCqk1irS1zW/PlFPOcIFzpuuJ263l3444t5PG3N6Qzo6Yms2ex9Re+DydzkhwMeJL2cZgl0oV39g/ez/WfOcjFD+H8s+kZbP9PX7BwHi7QfK0sRUy+t10/6bmNnTIlIzzxcamQRxT4nWgPFmzWcm4FJSemMh6ZVhcS5qeAKZJFm2iOHmyP53b5VrC8nWofDcqr6LyD9Ab4bmb4vY5v9vCM+Jf1uvUfg9tHJZ3d7rrO7Qu5oM3K6eM+NOgUTqAZBKGG8IEYC4Ydb6fedPDdKlkP2x1ic4/eZkOHr9AafrePXMLskzHnSuLz4vWppp88jZfCq1q8tvdhCI12lVqFeTv8VEPSX+vvEdtcvdNLNoH+wAAwMiJUe5d6npuzZVzo7P3vbdn8jKmT9WWOr+tko/zPL7GKrjy/e3lBmv4uKwpX6xR6Ga3T0dsL4K4dTpgbkdrfmh7Dsgy7Vn3MVu/XejR1tCIfd358OmsK/tpPQTMGjyWtGyWz2VhUt8mq0wxNCx6/+KHHUwzTz2y0KJqP+Shjdp4Hay8p8Qlnp7UZyhItfYW9TT1yui4Noq6LsCYpWwTmeTJ4ek8ZvkaUb7z3wssr2LmH6AY17mb4vY5H+nuiaPiwbBqv0dYHPbV73LbtHzVKidMyqkowWkww3obDEkWbggTgHmQOzo6OpZ/j8z169epVotfIEwjfvXa30DqrPMKXN/8Sf0AKdy+fZtOnTolXy0eHD+Of5GPfybxxneFqB0xEg1hCzrTFTcGtFsqUG/rGB1wMJOySk9z2SYyLK/myTyUvdMWF2f+nC5gOtBJG5Yibva26DhthQFhMnLzkBfC+MWJN8nmfF9gfE5h7wNcBnTnUP4JAAAAHtbofdwmCwAwT+axTYTyajahfZ4tpIPs8LhZzOBhLggTgNmHzveYynt9ahyqt7UVqFXFqHcAAIBhHbLaC2guAADMk/lrE6G8mlVon2cJ6SATfD53Fhf5w3+3UsdDhAnAPEDne2x8bjb7YS7WgoIdAAAgSJn2WDmJ6Tlgflj1QMRpgHlrE6G8ml1on2cH6SAT+Q06EHExi2liECYA8yDX6/WO7927R/fv3yfdv2HrTD7Dl1KpJDcJAAAAAAAAAAAAADDf8MBVgBmz6A8DwfHj+PEwnPmEsAUdxA2A7CA9gQrxIXs4p/MDYbk4ENaQRJx4g2lnAAAAAAAAAAAAAAAyhs53AAAAAAAAAAAAAICMofMdAAAAAAAAAAAAACBj6HwHAAAAAAAAAAAAAMjYTHa+d9ZzlFvvyFcAAACzY9xlGMrMSRrQbilHOP0AAOb85RbKMYAZ0VmnXGmX1X5g6kxx2CCPh0UQq/P97pVztLS0JJdzdOWuXBGTSFw5dVmnNElN/N4oMpLBLpU8+5mj0u5ks6vBbmkoYxrZ8QMATK0OrfvyZ3dJV6aEGUt+6y97FjR/z7quwAWVoR68YaJsU/1o5HcllMljgnQCkJ05Sk9oK8FUmrJ+hYmliZh5zbSlXbtu6g870zpiGtNyLsZdH7bPubrYm5+2+AEQxrjznXe8l64/SgdHR3Qklsfpwgm5MoFio0/Hx8di6TcOqZKiUV3eY79zsEF5+ToTvAFeqNNK29pHsfQbRPXCxDvg/UZy/AAAU61Me0reXGT/Nfry9fEeWzsaI89vRdnToqpzLKyMrLZobcrKnXHJsq4QiTcIK02qOeV+m2g7foUeZfIYIJ0AZGcB0hPyZZioKexXmEiaSJDXTGPaLRaL1K3vjK4+qjFr+ViW+6u2B/iyJxt6yNthlhh2vt+k91wiurx7gVL0t2vlN7aoRk3ad3Iw6zZt9+pWeGNbXPFSr775rqi6q0x/l31uuykSuZ2whfwGHbRrSmbLf69EuwN1BCZ/LVZKYdvk32Of32UFkboucP+t3ynUu0TNinjfLqyHjj90m9a69Y5+n8XVTM06AIDZoMlfI/NHnufp80fj8kZbDoVh2xWdvwe0odQi8xsHdMDe0OX1TsPNeJvpyojw749OvLqCP/xLVGKfDSpDvYq0XJB/8gs8okJvbWf4u8FxbDicFLzh6TmfkzmXsy08nQjatBAcZla4uJ8Xi/MlhBHMszTpyUoboeVFxHft92Onq8Df1eXVPImzz7kbZ8K2H31caCuBORafjPoVEpRPKdKmJ034fidWPcXzXfa9O/L9IVF5TfDxe9Mu3xe+b+px8c+p++g9zsj9T6K6RY1ikyqePMUvbLvWuvC69rDhcxHxG6FhY39fvuR4XFNGkQ/nc9Z3EteHtfE1Oe82gvfDPlZ7u5nEAYAEzDrf736YnmT/XN+wp5xhy8Wb1rosDO7QodPg5YmjQPWVtntFNNZoN5boCnUi5+qYO3Ktsx7wu0G3qQxuUKtbpOpZpWSwlVdZ4/+Q7jhf6lK9sE3L8gqudRHb3dfobbLvs91ti/V8tCbb/zWiq87ni9QU+5+njQPrNSu1xDqnUuxhdv6aFXef2zW2DztyLcsU1+orcn/44i0gAQBmhz9/Nckfw/N0L115o8vHI4iysEarmmH75dUay7z33X3xlFX6ss8rZRnBGJelWYtdV1DDnzXuosrQ/FmqFnn4+xovoeWvP46F4I2ayiELIrdcndi5nGUR6USkhdD05w8z9nkRLu7nRTiLXpK0dVKAKZc6PYWVF/pyKV3ep9sntJVgCsXtVzAun9KkTR9+IUD5HSpWyd7d8LTK0tKamsa3qFdvijVDIvMazn/8QdhnCvu0Kj7TtzrBcwXqbdn7x+rta+55GE09q0AbVxtUbG5rOszT17VN6X8jRtgECczn0tSHo+NrNob3A3VtmBaGne99usX+eXRXTjlzcJlOXztPWfW/d3bq1LUzeVFA1aitXBq2RrupBVOIzj412ae3nIxAjlxjGch2s0iNTd/vdlt0I/B3V+hkQBlp6VKvL/9k1Cu4nn013GatrWZQ9kg7S/5slYrdHimbC2d4/tR9Fh06h3eUDEgdWQgAMLs8+WuC/DFovUNX3iTNx/s9VrqEEI00N38e3GhRt7Zl7at2X3zSlhGxy9LsJKkreMvXKFajQjReCnxkjL8TPpjRNu7sUsnX8T7JcznTotKJQfrz5gu8Q8Ct8+VPrijxPWWdFGDaZZKeNOVFZm0yv4RlrA1tJRi7OP0KhuVTmrSp1SFW1aLGVfm7UWlVpiVPGm+z7QSJzGssJnUq9zN5Olu1OoLt5CzOkX0eRlnPym/QFq8vKh39jkzyGDP6+nqMsNGKl8+Fh126fLtbLxiPXPemIdS1YXrEeODqw/Rae86ZE4/Qo6eJnvxwwieuMmoCqhw2qG8nxsCMuUDLRW/BFKq4zL4RxG5Q20uFZSk6YQ0r9bb0IOq+xtmmxXOLT6FuVFA50p4/fuW736DDirX94NvyAQBmUOL8MWS9prxJlY9rlWmTjxQRNeEB3Wh1qaYOIdKWfYosylj2C3HLtaRGWlfQEPNHipEx/K4Hsw74KM26Lg6M71wukljpL3+SVpQ6X2efhcDKyZHHM4BZkao8y6RNNgxtJZgtCfsVwsonJuu6ZmedpUN7UIcjJK0GpqVpM7p6VnmvTbVufXjO+pR5jCdck95plzZsRpDPpYmv3jnfoy/QeKGuDdPBrPP9RIFO05OUoq99iCcBKVfBqLDMiiC/PvW6UR3eCu1VtJpy64y9uFcLHaKg02SOYhRH2NVrTt1Xw23aOutUUG/xYZne8PkIkcX5c249a9NKvZDJfFwAABOXOH8MWR9U3iTNx30j24OIkSJ86hk5osVz+67JCJIsyoi45VoKI60rRMhvXKVGRp2s/CGuojN/aITU+M7l3IhKJ3HTnxhZ6DbMKk1ltNoY4hnARGWdnvzStsmCoK0EsyRNv0JY+ZQ2Hfix3/P8viMkrQamJQ2DOu5opMhrIlmjyfm8/TfkO0LKPIbPg+/ua9yOZilO2Ohkmc9lHV9jGWUcADBn2PnOR7rfouvvk73vN99Dl26dpkcfGcHjV8Wcq94HWAx2t6mpzD0WSmbs287VuQ6t8zmd5O+674eRowsrvhFvA37bOH9gyqYnE1Q/59nXWNsMJm6zl387wm5JSnv+PPgVWvknAMCsM8wftXm6n668ka9sgfl4oOCyh48UcUac2MfAR4zUVt2yyHBfUpcRGZRrmUhzHJoy1HOeuc4O1f0NpQS3BNtEZz7VqWDv87Scy5ljkE4UkemPjw6Tc5dai9LQTZteAKZexulJlUmbLBraSjDd4vUreISVTz6x0uYQljbFw1B9vx+VVsWFBWW9PKZg8fKaTIyjnlXeFPPO1/lDSG3TUHeIDJs88Rl6rLtpmdCwC8jnUtSHuXTxNYZxxAEAQ4bTzpygC7uXiS6VrIetnr9G5689ThdG0PfOM4KNgzbV5BOU+VJoVd1bzSOVaa8v7hWX39+mZTFvGf/dPlVb6nxRbNE8bEFccWyveG9RKbSo2h9+eE+tvUU9+TlxRc/Z13jbFMp71K6xzFp+dnu5wSquLmt+LNZ4Z+uCC6qU569jPx2aL9bDKYYugAMAzCSz/FGfp/tpypuIfDwML3usn7S+a+/jVafckfNbMp4pZ7Rln1/aMjZBuTYSyY4jrAzlneOe4/LN0R5d/kZx99n6/rScy9kTmk7ipj/+eXLjkVicMEibXgCmX6bpySObNtkQtJVgxsTpV/AIK59SpU0fMQKfDz5xt2P1G0elVV8aL/Roi73WXY+KruNmbRz1LLYN/vBV+cqSMo/JRHTYiGlz7H3k69U54UPyuUT14SzjayzjiAMAZnJHR0fH8u+RuX79OtVq40le42U9yZo/XRuVLhiX27dv06lTp+SrxYPjx/GP7vhnJE/nFeIKf5J/wltRp9Six23QG2Xc4KPu/I3izjpvGPbDO0UAZhTyWlAhPmQvq3OK8mnykD4WB8IakogTb2I8cBUAAAAmTTxwS51yBgAS6/e6ngfY8Ytwdw7lnwAAABOC8gkAYH6g8x0AAGBmdMjqe0fXO0AWynt9ahyqt/UXqFXFqEIAAJgslE8AAPMDne+p8DmkMOUMAMB8mIU8vUx7xyh3ALJjpXv3gXYRc/ACAACMBconAIB5kev1esf37t2j+/fvk+7fsHUmn+FLqVSSmwQAAAAAAAAAAAAAmG944CrAjFn0h4Hg+HH8eBjOfELYgg7iBkB2kJ5AhfiQPZzT+YGwXBwIa0giTrzBtDMAAAAAAAAAAAAAABlD5zsAAAAAAAAAAAAAQMbQ+Q4AAAAAAAAAAAAAkDF0vgMAAAAAAAAAAAAAZGz+O98765Qr7dJAvpw2nfUc5dY78hUAAADMqvGW6QPaLeUIVYgEprhuiHohzJpJxdlst2vlp7kcW6a43QgA02w262XjysP920F9BxaNWef7zYu0tLQUsFykm/Ij5pTKjbOs01wnu8EuldTjRaUOACAbvBNNyV/VOtxgt4RK3azzl5++MJ4pGcRV0VBBHWJqGmyTCjfxezHTQtC+Ij4BZ8cnd0nXLvPHq0nEPfH7cRJIZ4fq3Rq1j4/p+GCD8vJtgPSsvo/Srje2i3QxRflveHm2gP03Yaaob2fk5XhI3TXKyPcNYMaYdb6feYyOjo48y7Xz7P3zb6Iz1idiKzb6dMwrOGxp15pUiZOSZwnPsAotqvatY+VLv9qiNV8BDAAAMfHKb6VJtbadv7aJtlHJmxui/KzTihO+MowrM9jgyyiulvfYd9ExNHOyDbcO7TeLVKsVqbmfLiUgPoFNbZf1G4dUSdGxZhKvpjLuFZepIP8EgGEL038TZsr6dkaal6asu6KOAeCVbNqZu1eoce00XX5b0q53r/JqjejwjpKQ/VdXfRVA39VGT77vWVei3TvyfWboiq64kqf+dofW1d/TbGd4NEXwFW3xeyLDOqANJdfJbxzQgfqGR/ixi2Nw1rHjE5u0vuPZJX5szpVGflzss7v8eNXfjDjPAABTr0jLTmu5THuikmflbYV6l6hZEfmbmz+H5XtBeSX/PM9rrfLB+7792s6LITt2+XlMe2X5lsDC+HiP/d8WFp7WuvWOGnb+sIobH5iwOkioOHE1eNuhozlFnUY9vrBjmycG4RxSN3S/L19ynjoU/7q/7pUy3BLHIaazT81ilTY3q1Rs7g+H6dBv6/Y1YL9C44zBeYa5kN/Yoho1yb22ExYvhrnxKkbc06WJNGnFER53Rfpm5Q1161Tg69yNxzpugFQM04Abd3n85H+r8ZrHUTXe+vLowG3o02mYuP03+j4M/zH49jn0d611YeVS8Ha58P0NxrZj1LeT5nj85yM8TEeflwbVXbmgfY3YN4AFl6jz/eZ7LtGt83W6cEK+kQpLuNuswrNyUknIBaqvtN2riZ4RGCyBrxFdddYVqelcgWPfXasTOVdlt6hXZ78t5c96GyoD1vgqFpXKJXvjkFU3V0WrXr8dUdioDZ7BDWp1i1Q96+tQ9/yeiYhjZ5nmWn3FuiVSLN6MP1yX6uzUWN+1Oi466wHbwq1BADAr8mepWmR5W8Ffsc3TxoGVb7MassjfrEpxVPnCDeeV4r3CPq2K9/rUYOVGJVeg3pb9G0T1NeSdmeIdjAblp0k51qxs07IcodSusbDccUM7+vv++BBWBwkRO65yQXFRg3cWVw5Z9cetFyxaGa8P5/C6YaTAuleacEsYh6TOfpOK1bOUF3GqSdueCMV+u6AeKx+ldoPOavdVZZI/hqcnmBOi/WJ3uJjFi2Bh6UQVFG95mkiXVvx0cZd3nB23Wduu2KA+35a44pvmuAHiConr+Q06UN5nBQC5XQ4sHhvXT3XbME2nKpY+PP037NfD6hyhfRj8GNy0Kfa5YKezlOVSyHYT1ZEM+3ZS1zsTtzkyzku1dVdbWNgBgF+Czveb9MQ1PuNMulHv3XpBXiErUKvKMgh7aJvoyK5RWxnqZo3AOKQ7ItGrV9x4nlClYrdHff5CfnfLyc3ZZ3llypY/SSvOSI4B3WgRbW2xX7Z+mH29Rd3aqmwohWynvMr2x+20t763NdwR3u+xLCmGyGPn1JEo8dTaSiOQFUbbzSI1Nn3b6rboRmRODAAwDawGg6jYFoZHXAwxymN9eaXkvpens1WrgWL/TP7kCivUZPkAI+EduSQr9oblmDpCyTNSy/j7anwIqRuEihlXpaC4OOTOLpV8He+LWMbrwzmibmgkXt0rPNySxiFGhqs12MPKi7qtG24DWl608hyrsq1Qxvmj5jzD3Ojs1Klrd/AZxotUtPE2RVoJECvujuO4YaG4fR/WIkaaO0zieodY0qTGVW+ebl4/TZ+e9P03JnUOfTmqpk1POsukXArYbtI6kmHfjr4+ErfeGbPNkXleGl131YYdAAyJ3fl+90qDrp2+TGlnnHHmDGMNoG59x71CFpipFWi52KWezCE8jfACqyBabxtkiGWy8j+eI/Spt7JK5cIykWi48M74LtWUS5na7bDf2eRXDEVOPvy9xKKOnV/57jfosGLtk8ktYeHsjNReKizDBgCYLWJOQWfERUinpkH5AtNJjEyUdQavtOVY/O/r6wbRjONqDM26bh9QxguGjWWtzOteyeOQGOyhjHq0GtC+zoKk81Yjf1xoasdg5bBBfbujZlzxQhNv0+S3qSA9QMbU+dKtekBRrrFExfXOOivDgwb7xZA2PWn7b4SQOkfsclSms7TpMHS7k6ojjXi7I8hL49VdkUcC6MTsfL9J77l0i87XL1AmM85w5U1xO41z22xhmbxFEdenXlfe/thZp4J6+xDLBZzPB37Xi199FKOEOvt0yH+Q305DvOHCt6HcRhS2HUY0ePjUM/KKbGDfu2+EfKSoY+ecW8/atMIqyumm0aopt2HZi3v1EgBgluQ3rrLyJKTSZ5LHwnQwLj/TlmMxvx9RNzAVGVdj4PPiiwbR0G3IKOMFg7phpCzrXonjkDXYg+x5qZ0GdJdaau97zJGMDuSPC83TMaiMkBxbvAiKtxnlt4kgPcA4RcV1tr7S9I4Ajy3L9OTvvxEi6hyxylGZzrJIh9rtJqgjxe3bCTTiutkI81KzuivySACdWJ3vYtQ7naeUM8745GljS7l6KuewVJ+ePdjdFg+X8k+pzolbI+Xf9rQyTkEw4Ldi+64l8kyz26Kd/UNaOcl/ME8nV1gmsrNPTWfKmWGe7XD2fvKGj/Z7coR8xXuFkF95DLziG+vY+VVf+ac4BpIj8Zmg4/aT2/IWmgAAs2MoL+3sUN1fIVdvPY1ZvsAk2eVnyEOh0pZjGZSDQ3UDjdhxNSbRIKI6FeyThTLeFVk3jFOHUuteUopw40zjkB1nGnJuVXvhoyedOrTsGHDDvUPr6lyyYfuK/BGCZBUvwuJeVLyVjNNKFpAeYIK8cZ2lB/GQT4Np6GIITE/G5Vlw/41ZnWO4HFX7SjzpLNN0qGw31v6qYvbt+CXerqGM81KTuqs27ABgSIzOd2vU++nLb6NM+945z1VEPrdUm2ryadt8KbSq7u2P5T1q11gmLNdtLzfYd21l2uuL+2HkiKAebQ1d2eNTz3Sp2VxxRqvz0fDNJivU1OHrodvh5BxcTNiUM/xWeWuXrN+xj+dq4OXNiGPvrDvv87nW+MM67Avg5T3le/y4I+cz5dvqU7XlnX8uF/WgEQCAKcE7HD15mG/ea2tKBmuUqFV5jMhjYaqIqWZYAWrfLmyFcZOKjU3ZAE1bjiX4fmTdIFj8uBqXG7fduI4y3hJdNwytQ4XUvRKFW8I4xB+0SgFTDlhzrNp1aN+x5rZpWc4PHL2vyB8hSPp4ER33NPE2YVrJBtIDjFFYXBfzePNOTmsdX5S+aHMR6Sl2eTbUfxNS5wgpR7lae4t6sq9EjNB20lnKdKjdbsT+hojXt+OXfLtmss1Lo+qunD7sAMAvd3R0dCz/Hpnr169TrTa+6tLY8Ay9QtQ+zvZKNECY27dv06lTp+SrxYPjx/Ev8vHPM4Qt6CBuAGQH6QlUiA/Zwzk1NaDdUoF6W8eezvhpgrDUmf6wiwthDUnEiTexH7gKLmsUkn6qGgAAAAAAAAAAAABYTOh8T6xDVt87ut4BAAAAAAAAAAAAwAud74mVae94fm6zAQAAAAAAAAAYPT4HOvpTZhPCDiCuXK/XO7537x7dv3+fdP+GrTP5DF9KpZLcJAAAAAAAAAAAAADAfMMDVwFmzKI/DATHj+PHw3DmE8IWdBA3ALKD9AQqxIfs4ZzOD4Tl4kBYQxJx4g2mnQEAAAAAAAAAAAAAyBg63wEAAAAAAAAAAAAAMobOdwAAAAAAAAAAAACAjKHzHQAAAAAAAAAAAAAgY+h8BwAACDSg3VKO1jvy5VhNctvzr7OeoxxOriHERQAAAIDUOuuUK+2ymtX0Qd0YYLTMO99vXqSlpSVnOXflrlwRl9WIy+W8iz+di8Q/oYxpsFsayngmuT8AABAkuDwp7SbLqYPyfpiwwS6V1PBVyuE45XKsMpw3jJRtjjJKjKRuEbL/pnF82us8Yv+UY8zl1iltMIWfG9RdYV5lW47GgTIXFkVUmYW8enaIsJqCfGvc9bnhOOzWgRB/AcwYdr7fpIvnn6TLB0d0dMSWg8tElzYocf87U2z06fj42FraNWpWvBW98h57/2CD8vL1pE3b/gAAgKXWlmWJXA42kFPPBd6JXGhRte+Gbb/aojVZV4hTLht/lnf2V5pKnGoTbY+uQZF53SKj/Z+FOo9aj+w3DqmSQQd8FNRdYV6hHAUYrbAyC3k1jEqWcctTB2LLXtl6H/EXwIxZ5/vdD9OT9DC99oR8feK17FWGynuiEdOt7ziFkP+qori651xpK5HV1unQOv971x7lxQuxgNujPbf38PX8+/y7/t+zvluod4m1qMQ6u1E1fJXTP1JEbfTZ+xC0DQAAGAvfqGk3C/eXHSUqafJ+S1herq5j5QDfpqe8CSuPGO0++ojRzOq2w8qgecDOq+hEPiC1Dyi/ceB0Cqnlsq6M1pfhYYq0XJB/Upn2PA2KsPPuj1frtB53v7TxIU54B+2/9f3hOD68z/x3Q8/XFMbF/MYW1ahJ+0bny3/MUelfA3VXmHO6+OOmj6TxyVoXO80BzAl/meVNa0FlBBNWXwxYF51+Ib2wfE7yhA1bd0e+L9jfly85XzthuB6hyz+D481QPDBtd8RgFH/lsdrb9ZYXAIvBrPP9xAWqn79G55cu0k26S1fOnacnL+/SBbszPgvlVV/DScEyibX6CrWdK21qY7xL9TrJdXusmWmCfaewTctyNF2/Qew1zwDytHHAXxf5EBCxLnjkB888ClRfsT5j/cbwqKtmxd1Gu8a2uYMsBgBgPFjlb43oqpNHF6npGQGslh0HdBCS9+vzcl4WVOjQGQmySvuFOvtlU1H7KPGKeOWQGn237OusB5RBaqf+rBvcoUNWK1g1K9RZFaLGAmrfLYMHN6jVLVL1bFAZHiJ/lqpFXkfwNZ6k6POuxqs92ou1Xyw+sPjDAlr+vjtq3Ti8tfsfVr/x7nPoKZ/WuCjii33RwaSOph5zePoPhborzLGofNUk7QfHJ9M4CzCnPGVWEH8ZEVZfDK47FLKqF0Gk0HbCmho2W9SrN+U6A4H1iDT1OcN2R2rD+zH37RYAA8Zzvp957IiuiQ74El2iy7Sbac+7CU3jhqm1TRsuLnU0nXX1+ZDumKZ+UXjVqG3fa8ME/Ya6DVGBPbyDDAYAIGN86ofhkRTeEcv5s1UqdnvUl68507JDm5fLsmDLqfSybbbZemPR+0h3dqnk6+zklfHtZpEam74yqNuiG/NSyPR7rOoeg68TdHCjRd1ileK3Ma1GjWg8FXh8UjqxDc+7J17F2a/OPvukLz7x+BErvEP2P4RRWpjiuNjZqbvn1biOFr/uGB/qrjAbAsvRsPzLOD9EfALw85RZGt4yIqS+qKs7BKXf2pZbfkNmRtdO4PT1iCDhdQuDdkeIbr0wXE5oePZjEdotAAbM53xfWqIn3mTN+X7w6HUqLZ1LNed7LPkNOug36FBWDEdzu1SXeqY5T2CnQIGWizF+AwAAMuGdq9at7Hlu1Yw1It1Q3A7iAFH72Kzr9tvuXLWXCqueL7Iy8fZOU7RQBnSj1aXaltvAiEvMXylG5vDRxWoHdtzzHnO/isusNhEk3nb1+5/ctMVFtRFYOWxQ325QTksdDXVXmCHB5WhU/oVyCMCUtswyFFpfDKw7lGmTj2xW06/p7YSQjbTthBHUI9K0jbxzvod18gdBeQFg1Pl+90qDrp2+TG87Y70+cWGXLp++Rdffl2Hvu7xqqy0TeOYjEnqbVljhlcX8VF5ht375FJbZp/361OvG+A0AABidzjoV1Fs1WeV1ON9OKbAsiMFgH3mHiOhAXfPfmllTbkO1F2VE8qwLm85Do7zJzh+/xVqONMqijZnfuEoNT+dk/PMea7+0I5CShffw/ic3bXHR0whUOzHGWUdD3RXmXHj+NeflEECGtGWWiaj6oqbuIEY2Z1wvghjSthO4LOsR42gbaaG8ADDqfD/x2oeJbvXJ6Wq/+z66fovoYecJrCkN+K3MTVYobRpcQeOjdOSfgfJ0csUepcHI3/ZrVtyRYIPdbWr6b/0Kuy1SzKnapIqS+wX+BgAATAVxi6/8O1ScW+LzJ2mFmrTtFia+8sasPLLp9lF0oFKdCnaZI8sgZ7tzSY7YUspqjo/Y0Y78sc/LGr+1ejXmiBzL0O93dqhud04mPe+m+yUvOLi/36F1Ph9mjO2G7r8txbQPMxEX5T4lqqPFOTeou8Ii0OVfWaX9FPkRwKLy1Bd1dQf+p53v8xHOCetFkEKm7YSAekTK/NO4bZRWVuUFwIwzm3bmzGNyvvclWuJL6RLR5QN6TI6ET8IzZ1ShRdV+yMN2+AO+nFtUrIc1KFNWDinvtakmn/6cK/RoK2BurVp7i3oF6zfFFcCh+a9Y45KtC27k8zlVlW3w32hVY98+BgAA6XnnqpX5dnmP2jXW4JDvbS83WOMkXHTe71emPTEUWJZnAeVNaHlkvI9umWPtF3/dp2pLnXuRLXP24KL8xoGcNsU9Rl7WXtUOk8nT2WqRut3kt1bzzmXPefXMcZ70vJvuly8+5bZp+SqvV5hvN3z/2frYcdxvFuKiu4/2/pjU0UzODequMK8Cy1FBl3+lT/vp8yOABRFaX9TVHTgr/XKYcmYSAtoJ7LXahx5a9ofUIxLlnwnaRtmYxroiwPjljo6OjuXfI3P9+nWq1caTtKMNaLdUoN7WcWgjCGBa3b59m06dOiVfLR4cP45/qo+fV5S3l9GhlcCix23QQ9xA3RWyg/QEKsSH7E3VOeX10gpRO/Yc3cAhfSwOhDUkESfeGD5wFQAAAAAAAAAAZkFnv8mHvaPjHQBgwtD5DgAAAAAAAAAwNzpk9b2j6x0AYNIWsPOdzzmF23YBAGAEynt0jClnACBTqLsCAEBcZdo7RtkBADANcr1e7/jevXt0//590v0bts7kM3wplUpykwAAAAAAAAAAAAAA820BH7gKMNsW/WEgOH4cPx6GM58QtqCDuAGQHaQnUCE+ZA/ndH4gLBcHwhqSiBNvMOc7AAAAAAAAAAAAAEDG0PkOAAAAAAAAAAAAAJAxdL4DAAAAAAAAAAAAAGQMne8AAAAAAAAAAAAAABmbus73znqOcusd+WoEOuuUK+3SQL4EAAAYCZQ3U2vkdY1ph7gJAAAwG1BmL4SFr5sCzDnzzvebF2lpaUku5+jKXfl+AiJjyXmXSeUzYl9QmAEAzJgOrfvKEXdZZ2thLgx2qaSGrVJexym/zT87oN1SQJ1kgg3fwW7JqDFm162yrk9NbT0pJG5MhhV3nP2Riz88Jnk+g+LS1IYvAMCc4PlsaVfJZXmdIlci+y3kw7NDhFVEOZ891C8A5oFZ5zvveD//JF0+OKKjI7Zce5gulS7STbk6iWKjT8fHx86yV5Yrxqy8x7Z/sEF5+RoAAGZBmfbsMqTfoCL7r9G3y5Q9thZmHm+cFlpUdcL1mPrVFq3J1mqc8nv+y/oO7TeLVKsVqbmfbStwKs9dRNyYJE/9tl2jZsXb6TJt5xP1YACAMeIXjitNqrUPaENmvMiHZ8uk+rFQvwCYbUad73c//CTR6UfpkRPyjTNvovP0JH04xeh3c/4rff4RjRHrPSOjSrR7R74viStyzlU6e8SbOqLSvSotiCvV9jq5jP5yJwAAxBZWPvB8nuXvu3aeztcZlAG+0bae7D+ivAnfH/BiYeBrnHL5jQM6kG+o5be3LOesc203SobXpxEVT4LiFhce/mLUkOf3rM8X6l1iLSzxvmfknKqzT81ilTY3q1Rs7g/Hq5C4GffcDe+nXBF6fMPnZD1iu3rRcUOfTjVhE1q3Cw+3UOU90UDu1nec75idz6D9tPbDc8r4fjujyvh6/n3+Xf/vWd8Niku68Hf3ST1eex+CtgEAAOFY3lmo00rb22E7lA+H1icN8mFtGRhWTkA6drjIl5ynjObCyteYUL8AmDlGne8nXvsw0a0+efvab1F/5J3vPBEWqL7Sdq7y9RuHVHESqsH6tTqRc5Vwi3r1plgTplnZpmU5mqpd61J9x84WWGZQOXRGV/YbRWKtPzqe1LB9AADQiCofOJa/syKiLda7o+VDy4A1oqvO7xWpua1UTEPLG5P9AcfgDh1SjVYNi9fyao0FnNLpPLhBrW6RqmdHN95GH0+44bjVWQ8If7thwxrKa/UV+Xm+8I7lPG0cKHUN9r7TuezT2W9SsXqW8vmzVC02advTWgmPm7HOXeB+ihWx09te0jCLjBth6ZTzh01Y3S6DdFteZXvbpMAbErTnkxuOQ9HYdwpuvOw3iL3m+2oal8yONzzuAwDAsD7LXyt0yMri8K6D8DLblqyuyunKCRi10HpgEqhfAMwUs2lnzjxG185fo/POnO8NevK0XJdQt17QXPVSiIZYjdpKCZXf2GKZzCHd4bmU4fotJwMo016bNfYieG4D443DwztWpigafCt0Uq7Ln1xx1wEAwPSIKh+kWnu40qktA3gZotw+mT9bpWK3x5pTTFR5Y7g/IPV7rJofg68BMrjRom6xSiPsew+JJxZP3GKNoO1mkRqbvvDvtuiG8yVNAyqK/G2r0zpPZ6tF6rZuuPsSFTdjn7uA/UyS3oK2W9tSGocakXEjJJ1K3rAJqduNJd3qwz0of4qixsvY+2ocjuFxHwAAvLr1CtWNLjBHlNlSorqqlKqcALN+LD+jemDWUL8AmCbGD1w985ic710sdXr4llyRkHeuLE3iD2xgFWi52KUeL0ESrU8hf5I1z9wMgo80o5WTTuEGAABTIqp8SMhzC2eh7m4jqrwZ0f6ArUy8jm7Ndz6gG60u1bambZ5JPmrIbqzxpcKaRVJ+gw76DTqsWOuip15x+TvLrYa20piLrAvFOHe6/UwUv8u0yUfkqds1vdUhgjadBgmr24063aYId3Mx9hX5FADASPC+D6NR5pFldrRYZaCAPD4Oo36sQCH1wKyhfgEwdYw73z1uPkHX6Dy96Yx8PSqFZSrKP1196nWLtFxgfyZan4IYHeVmmpWm9+odAABMiajyIYnOOhXUWzhZpdbZRlR5M4r9mWdht9JqlDdZePBpTOTomjT9uIe+oTyDO4fyrzRYncFprNmLO8JHNJTEe21aqRe8c29qWZ3W1K1TwW7MiYZ2l1p277tBXSjWuQvaz4TxW1woiBtmUXEjLJ0GCavbZZFu+Xz8bI+1x5Yo3OOIsa/IpwAARia/cZUaxSZVwjJ6gzI7VNwyUEAePx4R9cC4UL8AmCkJOt9v0sXz1+j05bfRqPveWatMzF2qFlCD3W3xUDHr7uqo9Xw0kzL36WBXPF08MX7FTs5lZS3xb9cBAIAxiCofMtDZUUYTRZU3Y9if+SJHRVe8D1vio7m0o3fs+c7X+PQlqwnLZzlti/IAKxbStFNPOZLe3jejkUd8JJD806a77bazI25jt+crtxc+96ZzDCZ1oUTnTtnPpPHb/h6/YGC83Xhxw5NOg4TV7ZIel02e62Jj0+DYAsLdI098RhzrTgFGU6dVz0vgvobdwp32eAEAIASfH7tNtWYlpC6Tbf9FUBkYWU5AAhFltF3P0oV7XKhfAMwcs873u1fonDPf+3l68vIBPX7hhFw5Sm4BJUZzsaXQqlLfmccsan2Z9qz7u6z1hR5tGV391SjvUZvcbYklzUMyAABgRKLKhwR4GVBjFUf5e9vLDXJn4Ywqb0awP3Muv3Egb9G2zpd9zq5qhwjJjvNuuulLrO3yh0DZ2zV5QFoUHv59qrbUeULZYtchOuvK+9YDqeztWdPIWCPb/Y11MUVKwDzp1jya9uhwk7qQ4bnT7mfS+G1tl4sTZqFxIzSdBgit28U/Ls9csIUWVfv6B+WGhXuQ8p6yLzwcA+cB3qKePC9i9KOyr2FxyYJ8CgBgtNwyWemHVKTsvzAoA8PKCUguvIyOqAcaQP0CYLbljo6OjuXfI3P9+nWq1UKbPjOBj6ryZxKddV6o9fUZH0DGbt++TadOnZKvFg+OH8e/yMc/zxC2C4o3ECtEbXXEuc8o48b81O0GtFsqUG/rOOWFIph3yGtBhfiQvek9pygn4kL64BYj3iCsIYk48SbZnO8Lqt/r+h6wOqBMpoEFAAAAWEDW6P2k0wSlh7odAAAAAACMEjrfYyjv9alx6N4qw2/haVUx6h0AAAAgvg5Zfe+TG0qFuh0AAAAAAIwSOt9j4XNVeR9qhsYZAAAAQBJl2mN1qcnexjwvdTvrODCVAAAABEM5AUkg3gBkIdfr9Y7v3btH9+/fJ92/YetMPsOXUqkkNwkAAAAAAAAAAAAAMN/wwFWAGbPoDwPB8eP48TCc+YSwBR3EDYDsID2BCvEhezin8wNhuTgQ1pBEnHiDaWcAAAAAAAAAAAAAADKGzncAAAAAAAAAAAAAgIyh8x0AAAAAAAAAAAAAIGPofAcAAAAAAAAAAAAAyBg636ddZ51ypV0ayJcAADBqA9ot5Wi9I18CAAAAAGQK9c1F1VnPUW7eAh79VgChIjvf7145R0tLS3Tuyl35jnT3Cp1j7/N1fLl4U75vgifMHMtw5DIL+c5gtzScmQx2qRSw/+pnRcaKTAgAEjr+4hfFAn4dWlfKEe+yztbCXJDlrBO2Ey1P5zvOibpLjApZ0OfHVecR25ml8++Px2wp7cY7S3HDBwAApsQE+z4mWVbPM7seEhSWSc7vKMNE/HYGkW7c8Qb1Hpg3IZ3vN+ni0hJtUJ0un5ZvOdi60iWiywd0dHRER9fO07Xz58jfPx+IN0AqTaq1j+n4mC9tou3pz/zzZ6tU7Lbohrqj/R512T/NfW+m0O91qVg9S3n2d3mPHePBhvgbACCOZ27coI99/dfTR0+coKfe+lZ69s/+TK4BlrvSnihD2NJvUJH91+jb5coeWwszjzdWCy2qOuF6TP1qi9ZidlpmB3EuyjjrPMVG340XjUOqTGsHvIjHdVpx6r1sYfGH6oXYHfAAADBjprDvA/0TaXVov1mkWq041A/EJTm/sxAmiDcA6YR0vp+hx46O6PELJ+Rrxc0n6Bqdp7q97szb6PLpW9Q36XwXirRckH/yxqwnEVu3X7lXh93G1PBVO+uzbuNF/12eSa7nSrS7a195tteFfUeRP0vVYpdaSu97Z79JxVqNis19z3Z4Zlw9ax2Rd5/tW8vU0XNsn9TS1zM6iq27I9+XxBVA3XcBYK587jd+g46feUb8/cx730uffPOb6fl//MfiNYQLLy/43zz/DMmLhbD1UWVH2HqDsmDhsXMjGqsHtKHU8vMbB3Rgv+EbTewGNz+v7Hz6y3vfyDOx+Mpnd52mLhBKs13tfkbHg+Ayn3+P/x0Wf8KOx7+fJSqxzxbqXaJmRbzn1KsC99367aDP69Kd/f1RpYP8xhbVqEluG1i/3aGRVCJe+M/PcDgFH4P/XKrrOPbdbVZXbPRpT706k9+gg3aNuvUd+Xn7XIgXFr5fYoSZtc48fKSRx3cAADAT1vfBJS3POd16fdkRu38itDxZQJ19ahartLlZ9fUDWbznN6qeYIkdJpHxQsfgtzV1i6E6nudz7Dd8/Vbh+xi2H9a6wHoPwAxLNOf73Q8/SXS6QP5u+Sc/bND7Ljux6wV/BmLprBeovtJ2RgeJ0Uzy9pbyao0lQCWDG9ygVlft6NZ/18K2Wydqi/XWKLXo79jydLZapG6vL1/LTvbNVVpRG3w8M2bvnPSWqB7NyjYty9Fy7Rrbpx37yyyjWWM76Izm2qJevSnXMSyDW6uvyP3ni7dTAgDmy3O+8ivlX66X/PRP0+d/93flK9CJKi9EeVBw82JrIKq34hqaV5cCyg5PgydsvUX/+0CDO3RINVrVDidnlfU1oqvO+S1S0zOSzF/es89XDp2R6vzzVGPhI3pEzcLLTMB2Q/czJB6Elvnsc9r4a3I86n4e0MGBck7Ye9YFDt2+52kj8PN+Y0wHIr7YnRvh2xV3Mip5A/sqFYtKPc4X95LULR1D+Y6ivMq2ckh3hiucPrrzHRa3wuK7yTEBAEAmIvo+uNHUN03Laot+H8LLk0UkBmDyWQ5E2DZpO7JjOKSeECKsfpS2HA8N7wLbWac/SnenBot7Yf1WjMk+Bu9HvLgLMCsyeuDqCXrtw/LPSFZiEomroF7hYlhDc7tZpMammyWJ0Uz2dC+ioeI2kAY3WtQtVkm0aaK+K9XaSoZn+B1b/uQKyyFkg403zsS2y8T7eA5l62lw55BtZDU0U1VH8okOosM7ViYkGmk12nIylzLttdl6D3VkFwDMs5f+xE/QC8rDucnTb387fXZvT76CQEHlRW3Lc8FSzYutkbPejrCovLqtNDw8349aL2l/H5xp3fS8I8esqeF6ZF8e57zlPe9QdS+Mi/LcNDxj8mzXaD/D4oG+zNfGX+P4F9UAjN73UGNMB52dulIfjNhu/qQyaGJALGugrS22Vu6UlVfIelySuuWQsAEZXXLGdMQWEj6h8T1e3RcAANII6fuQRl3fNKHfh5DyZBHJMtS6qC4HZ7ZuRJ6P6DrXMH2YpC/Htb8tBpL6+qOG7tRgZNzT9lsZ15/S1wEBZkVGne93iQ+Gj0PMGSWugPHRWmohZBdM9lJhGYDN6ui25tbiDaYu1bbUzCDsuzoxvqN05ojG2cpJsW2eUViZrtwn/VC9cFGdDfw2ZXbCDivWvuL2G4D59txXv5oeunKFHvyFX5DvuD797nfTUxcu0JfuGs/3tWDKtMlHgqrlRWTebNgRFphXF2i5KL8ftR4y4ZmSpVCPKD95h6vbGOWjlkiW4aMOr1j7qYpd5mcf/xLvOzfi89qtF5x9qxw2qG83DiO3qw6a6FNvZZXKhWUibT0uSd1SFdYJok5FEJ82fMLiu5D2mAAAIA5930eIqPJsxOWsEFmeLBbP4E/GuvA9iYvXIyzHi8ssFkUIjHt+qGsAqBJ1vp/gw9xv9cnf5fPwawPmh4+Q37hKDU8BUVNusbYX5YrYZsO6XVhebfP2pYR/N1ic77gNNv5QVadxxjvleabbCdqnGFjjryj/1OKNcbGPbVphDc9Fnm4NYFG88Lu+ix78pV+Sr1zPdDr0iUqFPr+/L98BlagQa8uLIIYdYYF5dZ96Xfn9qPUQzXfnwpDOOhXUKVlYaza0/BQjt9xGQKWpjBQbZXjF3U+/WGV+xvEv7b6POB2oD1z1PADMYLvOoInOPh3yN/mt48Qbz/xzWdQtJdFpoekEMZimMFRY+ITFdyHFMQEAQGLDfR8hosqzEZezQmR5skisC/TUrVPB7lAWF769zwUcjxGW4yZ3OQbGPT/UNQBUyUa+n3kTnadr9MRN+frme+jSrfP0pjPydQg+SsczequzQ3W7gDCZN8v+zJpyWzBnPOeWIsF3rAbbGm2zgsdtnFlXmFvbvn2KS94K7ezPYFc8HT0Y36b8EwDm3gtXV+nLf/3X6f6rXy3fsRx/5jP09DveQZ++dInuf+IT8l0QZB5f4RXjgLy5WXFHHg12t8XDk4KmZh5i/67SE+r5ftR6MCDvXFDCiBuqQ0hi2hH5dyA+QkfOG2ktyu2/YwyvyP3UGi7ztfE3zfGE3O4buO9htwdPKh2YbFcOmtjZP6QV0fudp5MrXert7FMzbd3SIzgesx0S9btiY1Nui2/fvrOT0dX/TMPHIL4nPyYAADAV2vcRJao8My1n00zlEVaeLBoZdvb89/bC5yZ3H6A+BqMsx+XgF/e3O7QeNJd8VL9VVvuIaWhgjoR0vt+ki0tLtLRUoku3iG5dKrG/l+jcFT7e/Qw9dnCZnjzP17Pl/JN0+eAx9m40frW32nJvFc6JB3jYV8D4nGh973q+eBK8nFur678t2OS7fgm+IxpsXep6bsfR7VNcZdqz7kWz9qPQoy11JJPnSePWAywW9sIzwAL6skceoU/v7tKL3vIW+Y7rs7/yK/Tx7/xO+vzv/I58B+y8mQvKm2vtLeoVrDxVjCANmtMwEC872lSTT+AX329V3WkvIteDifzGgbw92y73rPN4lVcYynvUrrEGp3x/e7nBGgsh+OfJDQ+xOGX9CMMr7n6qIsp8ffxNdjzWrdPWaC7RURCx70OfHzKpdGCyXX4nY5eazRVnIAUfXNFsNjOoW3rxeHzcXvHE41yhRVXWeFcfIFbeU/aZ1/98z/yJFT6R8T3dMQEAgJnwvo8oUeVZdHkXXVZHCC1PFouYcsf3/CjOmmc/5G7NzI2yHPf1R+W2aflqUL0tot8qg31MHXcBpkzu6OjoWP49MtevX6dazbi5CQAhbt++TadOnZKvFg+O3zr+z/3mb9Lf/a//q3zXi4+Sf0m9Ts/LG9XsZ0rs8OcdmBWitmekzoB2SwXqbR3jAuYUGWXa5iPP/A3SzjrvsOx7OkBnw+LF30XP9+Oar/gOWUN6AhXiQ/bm6ZwuenmC9LE4ENaQRJx4k9EDVwEAYJxe9P3fT6944gn6sm/7NvmOi88B//E3vIE+22wS3b8v311M1iiVFNOBwVzgz2nxPiBsQHcO5Z8AcwbxHQAAsoDyBAAgG+h8BwCYUQ+srNCX/+Zv0sve/W75jten//W/po9/27fR51st+c6i6ZDV946u90VX3utT41C9bbpArSpGAcN8QnwHAIAsoDwBAMgGOt8BAGbci9/6VnrlH/+xmG7G70t379LTP/Ij9Mk3v5me+f3fp+MvflGuWQRl2jsOmpqDz0OIKWcWixXm6gOyZrfhiPgLUeYpvgMAwOSgPAEAyEKu1+sd37t3j+7fv0+6f8PWmXyGL6VSSW4SAABG5fk3b9KLfvVX6Tkf/7h8x+eBB+jZM2fo2de9jr70+tfT/Re9SK4AAAAAAAAAAIAs4YGrADNm0R8GguOPPv7jz3+ePvurv0qf+Zmfke/oveA7v5OeXyrR80+fpge+6Zvku9MLD8OZXwhb0EHcAMgO0hOoEB+yh3M6PxCWiwNhDUnEiTeYdgYAYM7kXvhCesnb305f+ad/Si+OuPD5zHvfS5/+yZ+kT/zjf0yf/O7vpmcPDuQaAAAAAAAAAABIA53vAABz6rn/4B/Qy/63/42+8tYtesm/+lf0wNd/vVwT7Nk//VP65Pd8D33u6lX5DgAAAAAAAAAAJIXOdwCAOffcV7+aXvqjP0qveO976RXtNr30x3+cHviWb5Frh/3dO98pFgAAAAAAAAAASA6d7wAAC+SBf/gPxZQ0r3j8cfrKbpce/IVfoBd93/fJtS4++v0z//v/Ll8BAAAAAAAAAEBcC9r5PqDdUo7WO/LltOisU660y/YOAGD0nvs1X0Mv/K7vopc/9hg99Cu/Qs95+cvlGsvf/x//B33ut35LvlpghnlzZz1HuTgFC/J8mBtTWq8ao9jpHwAAIFJU+Yryd/4gTAHmUWTn+90r52hpaYnOXbkr33GFrdMZ7JaGOxsGu1TKDWcwgZ9NQPzOhHIv0RgLOLa0xO+i0wYAMvKCf/SP6CuuX6fnfd3XyXcsf/e//C/0hf/n/5Gvps10V06RT6dhhS0vP9WltDvlZ5NfUFH2N4u4OZI6TMh+mm5vkvHbrlu5yzqlPUNGxy3rq852kb4BACBUUH0mfZkFE4S6AAAkENL5fpMuLi3RBtXp8mn5liNsXbj82SoVuy26oeZQ/R512T/NfW8x1O91qVg9S3n5evZ0aL9ZpFqtOHRsaZX3jun4YGOGzw2M05fu3KEv/N//91iXL37oQ3T/4x+XewCz4HmveQ09+HM/J1+5/u5HfoTu/bf/Jl+BKeTT6dXa7Bweu8vBxhSfTd4YqzSVfW4TbU9hgyyj/Zx0/C42+nL/j6nfOKTKqDsz+AWLQouqffu8se1WW7Q27ReEAABg4tQyq11rUiXri+owHqgLAEBCIZ3vZ+ixoyN6/MIJ+VoVti5C/ixVi11qKb3vnf0mFWs1Kjb3lYaT1XFdPWs36/xXjX2NLN8VSKs8s75TqHeJmhXxvnfUXIfWne+UyJtnhm2Pf499ftceOaZp8HX2qVms0uZm1Xdskmef2e/dke8zYlSXp1C29sfef/96MWJL/S3nWOIdx3rEdmH2fL7Voo+fOUOf+t7vHevyiXKZPvbN30wfzefpU295C/39L/4iPfuf/hPR/ftyz2AaPcDC7KH3vEe+stxj+f3f/fiPE6thyndmQGCZwFl52nonJP8PyZs5fX7rNZSPR/yuvW/ub4+4M3FmGYRhzLJPrPONBhcLC7+o8tirSMsF+SeVac/TOR0RvkNx1vp8cB0mwfF5BO2nbnvBvzd8XhTiXKphEnHsKeU3tqhGTXLHOcQ5PyUqac+zjX1HXLA4IPX6T37jIOSCUPgxB+cj1nc8p5WfS2dUnS5sR3t+AQAgO+XVGtHhHZmvcyZ5OM//7fVq+WoLWx+nTER/gF5UXUBTRmvbJHxVWJsiKswBYJZMYM73PJ2tFqnb68vXspN9c5VW1IYT77hm75yUGVtnvUD1lbZ7hZGPclIbI2tEV511RWqKUVx52jiwXrNcUqxTG0nNyjYty6uW7VqX6jtKMRS6PY59vk7UFuv3WNN1mLiowEfuiwsOTdr25JisEFtjP+BcBd+iXr0p18lCWe2wH9ygVle9GKFgGfpafUXuC1/sAoEXlAHH4SlwvcexF2e7MBOeee975V+TcfzMM2Laks/8m39Dn/yn/5Q+evIkPfW2t9Hnfv3X6Yu3b8tPwTR5waOP0sve+U75yvKFP/5jevpHf5TuP/20fGea6coElz7/D8+b9fltlIjfZaLLHVBlW4bzBtUhCx7787LesFc2L4/l4IJ6IbiBFFmPKajxg49Gv0FnA+sw8ct2Tx1Fu59hdaaQ3/PjncXiXLppY+Rxe3CHDp0LCnHPD2s0h9QVBfH7NVoNPXBVxD4kzke44bBA3gEAMCtY+bDN6n8rJ+XFeZMyy1vn6TeIleHm6+PWidAfoGFUF/CX0SFtkoi6QFg9FwBmz0QeuJo/ueJm6DwTK1bpbL5M1kVgqxgY3DlkjaBVq4HHMqbtZpEam25OJ0Y5OdPXeEeXWVPb9Mju3tdRr1p6rkBHbs9Sa4c0QOVvWIWUvODQuuEWcqIQq9GWk8OyY2izfbCVVz2juAY3WtQV58l6PUwd8SXJbbT3fMfBig15mgXPcQRtt7YVo1EI0+aBr/96+dd04J3xz1y/Tn+3tUWf+Ef/iP72v//v6e9+7MfECH0+PQ5k5P59+mKvR5//3d+lz+zsiLnbP/2TP0lf+vCH5QfCvfhtb6MXrbHaooKH0Sff/Gb60l3z53xMRnSZoM//I/JmISC/jRL1u4blzqJpVuwRP3zxNjQzLcNFg8q94C/qKfbvGZeLVue1aCAVfKOUovZJDDjwxQ/dlC5JynaPkP0MEVrnsd3ZpZKv430ccbuzU3frSKnPTwA5PaIxo31IkI9I3riLvAMAYNp16wVZlylQq9oXF/cF4zLLLVdjrU9SJ0J/QDDDuoC3fhHVJtHXBbT1XACYSRPpfFczdJGZyyu/PFOxOqgHdKPVpZrnsqLdSLSXCvsFl+eWnQJrhMn3kwvfXhR/Z/nQXPeRmbd1McKaK16ejy1NQzy/QQf9Bh3KTgrnlrDAbRRoudgl58aDIWXa5Fdk1e2aD/WCKfSSH/kRsfDRzONcnv+619FzXvlKuRd69/6//48+d+0aPc32kU+P87enT9PT//P/TJ/9tV+jL/7lX87dNDV85Di/yMCn4Pn844/T53/nd8S/zzzxBH3hfe8TI8yfPTigZ//f/5e++IEPiLsD+Oe/9F/+C33x8JCe9+ST9Oyf/7n4/hf+5E/oC3/wB/TM7/8+PXPjBn3+t3+bPr29TZ+sVulvXvMa+sQb30hPv/3t9Pe7u/S53/ot+uy///f0qe/5Hrkn0V7+Uz9FX/Zt3yZfWfh+PPWDP0jHn/+8fGc6JS4TovJmXX4bxajCnq7cmUfeOd9jdJbGPZf5k7SiNGT5nWvuqLR45aKYC53trzXyTO3Yjtin4jIroQ0kKtuH6fczuWZdl9ayj9tuR0aOKocN6tuN24zOTypR+5A0H9FC3gEAMM2cOd/bNVZ+7biDCRKXWXHWxy0j0B+QJW2bJPO6AABMs8l0vsuOZT7KnT9U1cnMeac876DuWFeAvXl8Tbklx17k1cDOOhXUW3ZYJla0vpRCyPYiWYUUK1mp4MlolbnuC8uR+1jeZMfB7xCQV8RDyzyeeYt9bNMKa5CKucQCt9GnXled63WYuFBgul2YCS/9kR8R83iPc/mK3/1detVf/qVYHrpyhV78L/8lPe/kSblHevc++lHRIf3pd72LPvHoo/Q3X/u19ImzZ8XI7b//d/+Ont/tig5g+tKX5Dem172/+RvRMf73P//z9Km1NTHK/2MrK+IiA5+C5+kf+iFxoYH/+xQ7P5/6Z/+MPvX930+f/J7voU9+13fRJ/7xPxZ3B/DPf/w7voM+8aY30cs2NuiT/+P/KL7/qe/7PvG7T/3zf05Pra/T02zdZ3/5l+lZdo5054efX75fpr78N3+TXlCpyFcWPvL9md/7PflqCqUpEwzy5sD8NorJ76Yqd8Ar5rkUI9/dxmml6RuFlqBczG9cpYan8RyxTwZ37AkJy3ad4f1Mjl8sEZ35a/4pT7KP2+rD6zwPfs34/Ai+UYCRTPYhST6ihbwDAGAmlDdZmatMR5u4zIqzPn4Zgf6AAHHrAlxUmyTTugAATLMJdb7zvIuPcl+jbdbAdTNz6ypva5vf2iSnnOEC50zXE7cfy78dcW7Tibm9IZ0dqrMC05471l74HF/OlW4xyk7ZxoDfqu27Bm3vx5rvfITi51D+Kb+vPk19sLstHgIbOmWb/T1+wcB4uwDB+Oj3F5TL9LKf/El65c2b9Mo//mN6+c/9HL2wWqXnvOIV8lMh+PQpH/ygGLn9mZ/+aXrJ5cuiI5p3yvN/n6rVxPt89PwX/vAPrWlVJtAxz0e0f/Ev/oI+9xu/QX+3uUkff8Mb6G9f/3rRMf6Zn/95MUKdj/KftBd93/fRc7/qq+QrM/7Od2GG7kgILBN0TPJmh5LfRon63bTlDriSnEs+8kzO920tvlH2BuUiH9nkGbUk6wKi8Ru1T7JB567v0Lo6H6tah7H3JW7ZLoXupy3Frc2iM5/qVLD3b9xxO8350R63HAVY8d4hMHQubbH2Qc1H8mTNzCi/F5r/SOM+vwAAkEKeNraU0e+G5YVa/sRan7SMsPcL/QGKmHWBAPo2SYw2BQDMpJDO95t0cWmJlpZKdOkW0a1LJfb3Ep27wuf6DVtnSIxy71LXc5u1nBudve+9tYnPT9qnasu9xVgsdsO0vEftGisc5Pvbyw3WiHVZU75Yo9DNMsaI7UUQt6sHzItmzb9mXy0t054YHia3UejR1tDoTN358OEPN3P203qgijVgjx9Hm2rNirO+0Kq6t2ZrWdvlcIsZZO15r30tvegtb6EHf/7n6VUf+AC94vp1etm//tf0wtVVo2lqVHwE/DPtthgRz+eN/9QP/AB9/Nu+zeqYP3NGdMw//Y53BC9vf7u78BHocuEPgw1c1tfdhf0uX/go9Y9/+7fTRwsFMaL9E+fO0d/9+I/T5/7P/5O+NDCrhI3S8/J5euF3fRe99Cd+gh76lV8RFz9e/thjcq2Zz129Ks6Xx3OeQ1/2P/wP8sXkeecFZxXiQniZEC4ib9bmt1Gi8vx05c688obtCMtwXo8gt6wc/nx0ucg7nT3b9Mx9HrVPvviR26blq1ZZPVyHSVq2W8L3M2h7cbn75+7vOON2svMTddz5jQM5RY97DPx3rwYOHYzYh5B8pLynfI/nE0PPnPAb9/kFAIBUPCOoTcqsIjXaVWrJ8keMpDZen7SMQH9AkHh1ASasnypxmwIAZlHu6OjoWP49MtevX6dazbzrA6YALwwq/EndcebYhXG4ffs2nTp1Sr6aP7xD/dm//Esx2v3ZP/1T+lI/g7kQpshzHnqInvsP/gE999Wvpud85VdS7kUvEiP1j7/wBTrmI/b5v88+S8df/CIRW8T77DWvmNHzn0+fZX+/hP1G7nnPoxx7zd/LPfAAEX/N/n3uf/ff0fO+7uvogYcfNruzIMTf/+Iv0mf+zb+Rr1x8WiE+r/8kzHv8X2STDFs+asnf2O2s80ZSnw7sBhXKxYlBugfIDtITqBAfsjc35xT1HqSPBYKwhiTixBt0vkMg3ulQobb7JHaYGotWMBx/5jP0pY98RMwzfo/9+8m/+At60dGReAjptMu94AX0/GKRHvimb6IHVlbE8tylJbk2mXGFP39wK58/3u/Bf/tv6YX/5J/IV+OHitH8mmTYDpd5A9otFahVdTvfUS5ODtI9QHaQnkCF+JC9eTmnqPcgfSwShDUkESfeTGzOd5hmHRIz5+AWM5gCuZe+lB74xm8U09K85Ed+hP7+x39cTJ/y6sFA/PvlV6/Sy3/qp+jF/9P/RC9405vEVCuTwEe0f9m3fRu96Ad+gF6+s0OvaLfFPn75f/gP4oG3L3jjG1N3vI8Ln7Pe3/HOLyR8+W/8xkQ73gFGpbzXp8ahe8s3v/1X7XhHuQgAAACLA/UeAIAsYeQ7wIxZ9KuyJsfPp2m591d/Rcf37tH9v/1b+W4IPqWLTfe3QkwBw33Zl9FzX/lKMVe9mD5mDEYZ/vwug6f/1b+iZ554Qr5jee5Xf7WYauaBb/kW+c7kYFTC/ELYgg7iBkB2kJ5AhfiQPZzT+YGwXBwIa0giTrzJ9Xq943u8g+r+fdL9G7bO5DN8KZVKcpMAADBtnvvRj9KLfu7n6IEPfUi+Y/lSoUCfvXiR7n3N18h3AAAAAAAAAADABEa+A8yYRb8qi+PP/vj5/PlPra8PPdyWT6PzYKMhRvZPC4xKmF8IW9BB3ADIDtITqBAfsodzOj8QlosDYQ1JxIk3mPMdAGCB3fuv/5Weetvbhjre+Rz7D/36r09VxzsAAAAAAAAAwCxB5zsAwIK699d/bXW8/5f/It+xvPitb6UHf+mXKPfAA/IdAAAAAAAAAACIC53vAAAL6P7HP05Pv/3t9MX//J/lO5aX/NAP0cve/W75CgAAAAAAAAAAkkLnOwDAgrn/9NP01DveQc/euiXfsbz4X/5LeulP/IR8BQAAAAAAAAAAaaDzHQBggRx/7nP0NO94PziQ71hetLZGL/vJn5SvAABgpnXWKVfapYF8CQAAEG5Au6UcrXfky0Ss38jl2IIyyFhnnZ2vdCceAKZcZOf73SvnaGlpic5duSvfsdjv28vFm3KFqcEulXimbC/InAEARutLX6Knf/iH6Qt/9EfyDcuLvvd76eU/9VPy1ewY7JaGyw5Ztvjrr4GfDSA+h8ovwBRzG/aBSZV3OqesV4pGsPL9oHzB/5lxENvUHXcKkzgWAICFMoV9HyOp83Z2qN6tUfv4mI4PNijP3pqfurVyYUFZSrvTU3qiPAeYXiGd7zfp4tISbVCdLp+Wb9nuXqGN64/SwdERHbHlgH3g2vmL7BuGeMOo0KJqn2XKPGNmS7/aorUpyrgAAObK/fv01A//MD3ze78n37C88Lu/m16+syNfzZb82SoVuy26oRYd/R512T/NfW8lv9/rUrF6VjQCAGD2FYtFam4PNzA7+02q1WryVTLlPbfTQMfkM9nq0H6zyI6NHbcvf0tr/McCALBAFq3vo7hMBfnnPKq13XDky8HG9JSeKM8BpldI5/sZeuzoiB6/cEK+Vpy4QI8/foHsNSceeZRO05P0Ye/geI0OrVdYw6h9QGo+ld84cDMu35Vh90Ip+26uRLu7clRTbp29w9+2XyuL8yX/FUr5HQCABcEfrvqpt76Vnrl+Xb5jecGjj9KDjYZ8NYPyZ6la7FJL6X3nHW/FWo2KzX0lr7c6rapnw8oYq6wo1LtEzYp43x3JElaOaMolABipla0tqvkvvrG0vd2s0eqqfG2LWa8UI8fEh/T5gvsZjn+O/c6A/569Hf5bat7B18uPC2H5SoDOPjWLVdrcrPryN8lzjGxbd+T7jHdfOWvbwcfCf6qk7Je632H7PHwu1yO2CwAw/1jeOHV9H9Znguu8nFqWmZddouxgx0rdOhX4uvXdiO3MERGGyrnyvObnjP8ddl79wsNRV07ryvvg37HWrXfi7BcAJJXNnO93+3SLHqbXBvTTDxncoUNiDaOyfD2EJf41oqv2VeGGf2RTl+p1sm5lOt6jMv985ZAa8koy/zwr3eh4j2+AZygFqq+w187vHVIlsBACAJg/X7pzhz61tkZf+IM/kO9YXvCmN9FDv/iL8tWsytPZapG6vb58LTvZN1dphZrkDA7lnVbsnZOijaMrY/K0caCUIWyd3SjqrAeUI55bOv3lEgCMXplWa96Lb4MbLerWVn1pMG69UqXPF4ax3yns06r4nT41ik1W3yxQb8veLlF9zd1udL7iJS4s8rt3xEXHJm17WsesvrvGDqLRl7+3Rb16U65jZ2q1xm8Hcuu+gxvU6ioXJFWDXVqrr8jzwRe7w8ikTu09l3txtgsAMI+msu8jvGxrVrZpWf5+m5Wz9R3322FlF7+gcNxm+X6xQX2+fm8jRhk64/IbdNUp5+0y+apywYXXEdzzKuoEBV2fVEQ4astpP7P4EBbeAJCdDDrf79KVxjU6ffltdEa+E0pOCaBXpj3lVhlrWoEe2V0rXK2tNI5EgWZ3qrDPn1whOrwjCgCrkl+jtiiMLPmNLVb8HdIdXesGAGBOPPtnf0af+t7vpS/+5/8s37F82SOP0IO84/15z5PvzC6R59udO7w8KFbpbJ53yvGiwMroB3cOWcFhd8hFlzEerIK73SxSY9NXjvhG3HrKJQAYC96p3K3vyEZkh3Z4W1dJq5aY9coU3N+xLgzyzga7CiryKnu7hvmKQ37e6rSWFx1bN6y6Lifru1tO65sdM+8AsZVXWd3XvSApLlKIvNJ6PUy5eGkzrFN7zmXQdmtbmk4CAIA5NIN9H+oofXHx1vn9mGXXnGpWgkeSW+eiTmulNapTg676Cjv1vIaGi1E4BpTTfsbltia8ASBTqTvfb14s0SW6TLtB09Mk5LmNplAPL7DyJ1nx42YgfGQQrZy0CrDAwq5Ay8UuOQMlAQDm0Gd/5Vfok29+M9372MfkO5YXveUt9OW/+quUe+EL5TszTuncER07Mv8XnXKic2pAN1pdqilDjmKVMQIfrSI/L5YK2yIATJzauSunZQkezB03zY+Deb7i7ywfet6FQecOb09bc8XLPHFLMydsfoMO+g06lJ0LzhQBierUZdrkozjV7eqHfwIALKTZ6vtAndg757t68d668N3thpSxHppwiQpHXTnth74wgKmSqvP95sUlOv/kZTpQ5n+P5BsFM6SzTgX1NhqWsRTlqkDi6q9bCFSaytW9wnLAd/vU6xZpeZ6fAgIAC+uLvR499da30qcvXZLvuF7yQz9EL/+5n2M5fzYzjk0Hd5Q7f6iq07HDyxreOdWxRn04/T1xyxiBlSv2551Fd4snAIyP27nrTMsi1zgSpflxMM1XrE5rZw5dvojOGWXKncD6rld5kx03v0tIjoQL7QPnDXuxP21aqRes+YcT1qnFhQLT7QIAzJu56/tAnVhPTgnUYCFe0U0po9KEi0k4BpXTfugLA5gqCXtg7tKVcwk63gXZUKp4H+bAr/gGXbXr7ERc/eVX9OQcYtaiXH2U82JWlNxosLutHRkFADDLPvtrv0afeOMb6Zn3vle+43rZO99JL/2Jn5Cv5os1yn3NetCiUwBYIzta20FzQLsCyxj1dsvA+ZUBYFpYnbsV0QHhTruiF1mv1MnyNuw4+Upnh+qsoWzP72svfA5dZ8odMRJS+b3BLpX4Q+9U9jbXwvNEL56Pyj+T1qnt7/ELBsbbBQCYF1Pe9xGnbItTdvktwFQmnfUKNfnUahub1nNffD3iahwIDZdY4aiU035Jy20AGImQzvebdHFpiZaWSnTpFtGtSyX29xKdu3KXrXqPeI+9SSXxGblcvGl9NQJ/GEdfPGRCjuBhS6FVtebFKu9Ru8YyCfn+9nKDlFkrh/HPk/X0bGdxHljFHybSppp8ujZf+Hb6yrxqAACz7osf+hB96p/9M/r0u94l33E999Wvpod++ZfpxW97m3xnDolR7l3qFpdZFdQm50Xmt36qQy0jyhhrOgdrhKnVKOLlSJ+qrYJbxvAl5MGIADBGonHJ/tV17MatVwYYzhfSMs9XxJQCAfOkW/O22qMpy7RnVayt3yn0aGto9KQmT/TrrCv7ZD2ozRpUmbROLee/ZzDlDAAsomnt+4hftiWrE2dfhk6Wd853eUys7HTvQmDn6Sq/22zbc8Gl1t6inowD4m4HbfkZEY7actovabkNAKOQOzo6OpZ/j8z169epVovb1DHDrxr7M5HOOi+4+vP7NG1YaLdv36ZTp07JV4sHx+89/s/+8i/Tp7e35SuvF/3AD9BLf/RH6TmveIV8Z/YtevjPM4Qt6CBuzDjeUVAhaqsjNGFikJ5AhfiQvVGeU/R9jFc2YTmg3VKBelvHmk5ymAbICyGJOPFm5if+5XP8Og8ZEQZ051D+CQAwp569dYs++T3fE9jx/txXvYoe/Hf/jl7+Mz8zVx3vAAAwe6zR+5hyBgAgLfR9AADMppnvfC/v9alxqN56VaBWFVd+AWB+/f0v/RJ9cnWVnj04kO+4+Gj3VzzxBL3w3Dn5DgAAwKR0yOp7R9c7AEBa6PsAAJhNM9/5bs1l5X0IFQofAJhH9/7bf6OXXL5Mn/nZn5XvuJ77NV9DD125Yo12f+Ur5bsAAACTVKY9VjfHrfYAAFlA38fsscIM5SDAYsv1er3je/fu0f3790n3b9g6k8/wpVQqyU0CAEBczz84oBc3GpT79KflO65n3vxm+vz3fz8dv/jF8h0AAAAAAAAAAJi0mX/gKsCiWfSHgSzi8X/mscfo73/hF+Qr1/MKBXrZ1hZ92Xd8h3xn/uFhOPMLYQs6iBsA2UF6AhXiQ/ZwTucHwnJxIKwhiTjxZg6mnQEAmE/PdDr0yX/6TwM73l/0vd9LX/Ef/+NCdbwDAAAAAAAAAMwSdL4DAEyZZ37v9+iT3/M99NSFC/Tsf/pP8l3Xy3/6p+nlOzv0nAcflO8AAAAAAAAAAMC0Qec7AMAUuPfRj9Jnf+3X6JP/5J/QU//iX9CzBwdyjeuBb/om+nSjQS/6wR+U7wAAAAAAAAAAwLRC5zsAwAQ9+2d/Rk//8A/T354+TZ9+17vo2fe/X67xeumP/ZiYZuZLX//18h0AAAAAAAAAAJhmC9r5PqDdUo7WO/LlzMli/63fyOXYUtplrwBg3P7une+kT775zfT5//gf5TvDXvzWt9Ir/+AP6CXveAflHnhAvgsAAPOgs87qYbNbIQUAgKky6/0cMLU66+g3AkghsvP97pVztLS0ROeu3JXvWOz3reUi3ZTvRxnsloYT7WCXSrnhQiLwswuhQ+u8UzxwWWdrM9DZoXq3Ru3jYzo+2KA8e0ucb5TUAGPxxQ99iD539ap8NYxPLfOK976XXvbud9Pzvu7r5LvgZTUwSrveUmJUZYfoJEOlE2CCsq8fJU/XyiAGZUE1CgAAXEFlRUbt+dSyKcfG3YcQtL3R19Gnqf7hEr/B9iGL0z/udg76nmDRhHS+36SLS0u0QXW6fFq+5bhJ77n+KB0cHdERW66dv0bnL5p1v+fPVqnYbdENNVX3e9Rl/zT3vYmv3+tSsXpWdAwvljLt8U5xvvQbVGT/Nfry9fEeW5uR4jIV5J8AMF7PffWr5V+u5xeL9PKf/Vl61Qc+IB6q+gCmmJkq5T33YiUATEL29aO06brY6Mvts6Vdo2Zl+IIgAAAsNres6FOj2KTKFHU6zkM5Nvo6+vTVP/gFgf1mkWq14lA/WhJo5wCMVkjn+xl67OiIHr9wQr5WsXWPXyB7zYnCaaInP0zesfEa+bNULXappfS+d/abVKzVqNjcV64aWplJ9axM/nJ0vH2F0S2v+FXIEu3urvuuPPqv5AZdkVSvYLLf8JQxYd+31nnKTN9tOOJKXuBvm+yXqWT7L/at0iTq1qnA163vis8W6l1ipa34PBqOAKP1nFe+kh66coVe8J3fKaaUeUW7TV/RatGLzp+n57ziFfJTkF5Ufh1UhgSXK2JEiPpDunJJW17Z+5K07AGAcMFpV58m/enaJI2GKO+JjotufUdJtzHTtGZfh/If+bt2fU1f7wQAgOmRp7PVItHhHZaL28LKCb6O5+lqucTXq98JyvPHUY5Z7wf3IUQdU0RZG1gW6renKyPt78fefmz8t9hvjLP+0dmnZrFKm5tVXz+apNu2aT3D8zm2L3fk+46k59hah74nWDQZzPl+k95z6RadfvQRpzM+nFXgdHt9+Vp2sm+u0go1ybloxzMT9s5J0ffOEu0a0VV5tbHfKFJzW70lpkv1OllTqMgrj531AtVX2vJqJP/OIVV8t9E0K9u0LK9YtmvsN3acHIllCAHf92QoIVhGtVZfkfvDlwPakNcQTPbLlH7/w7eT3zgQhSoVG9Tn6/c2aOPAOq9Us75zYO8wAIzMC8pleujXfk08TPWBf/gP5bswfsNlSPB7KlYuFdgHnNFCbSJRLkWVV8nzbgAw4U+70WnSLyyNRiqvUk2pz8ZL0/p9La+yepvauB7coFZXDlIJqXcCAMA0GdCNlnp3v0m/AyuHCvu0KtbLkfO5AvW27M8T1df0dU2xvmDYj8EZl2N5TR+CWV+KvqzVlYW67fml3X5S461/iAGsPB6Jwa1N1gxRf5ltW9dOCXzfj53DNfVzW9SrN+U6i0n9Jvh4TMMRYL4k73y/eVHO935eTDsTPEI+WP7kCkuJsgExuEOHxSqdzZeJtysO71jJdXDnkCXGVdnhUaY95RYYa+qaHtnd91ytrXSOsEbIdrNIjU23uyS/sUU133Q3tbbbOBGNGvsKtGjQ1Ki95/s+HZLcPQPKhQSb4X6Z0u9/ttsBAJhm3XpBjqiwFjGSIiZPGSIFvecQF4hrtOVUFu1yyqS8Qt4NMEretBudJv20aTSu2Gk6ZF99nSGDGy3q1raUTvaAeicAAEwFt65aoLp94ZQz7HdwyzU5cr7WJvsrom8lpK4Z9HvGktRNjY9JV9bGL7c9Um8/ubHVP2S4WPFIDm5t3XA/q2unaNsvPvIcej7HB2/aDOPFKM4xwKxK3vl+5jEx3ztfDgqNWA9dVRsQovGwclIkeJ4grUzDuiJcW3UTs+d22kKdortWulQvuJ0xuVyFbdGQnIPeq0DLxS45A/bD5DfooN+gw4q1be9tNCn2K5ZxbQcAYLI8c1WKkResUTIOmudmxC+vVMi7AbKWLk2mFS9N6/e1TJt81JzoYffVk0PrnQAAMGneedVXWLkgp+BI2+9gLM3vxaybZnBMqcrtsZ3TaKOqf4g+NDGA1Xptdez7Lojonu9n8ty/wHPohzYLQBwZTDtDdOKRR+k0PUkfNpr0nXNHufOHqjqNB94pzzONjnWlzel776xTQb2dVjzkIkpNuf3WXtwrb6EKywG/36det0jLpk8o5Q0hsc02rdQLyvxeKfYrlnFtBwBgQQWNXklUXqmQdwNkKnWajEmOKnPHj8RI0xH7KhrX/M5ROSJNGaMSUu8EAICpIgYiyo7gLPodjMT4vTTlGJf2mNKW22M7pxFGVv+wLsCT/fw+p2Pf+1zFwHYKZ3IXQeA59EObBSCOZJ3vd6/QuYvuOPe777tOt+hheq35zDNylPsabTfVjN26Itna5rfS2lPODOvsRFw1DJz3Kgb5ffUp5IPdbfFAC+vqYp6smXPk+sEulfgDTAPxY5J/pt0vU2m2g1uBAGCuxMmvY5B3cLn5bIfWA+ZxjiyvVOMqIwAWWKw0GZfMX4qNTasOmzJND+2rXT/ljWxtPVmpdwIAwPQRnduyI9jO17X9Dsk0K+7DOmP9XtJyTO1DyPiYAsvtsD6LEZ3TtDKrf3R2xNRFDTmXur3wO3+dB+Xq2imG7RfKnxTPY3Q+528/mcaLKOh7ggUS0vl+ky6KOd1LdOkW0a1LJTHH+7krd/lQd3r0yfNyzvclKl0iunzwGJ2R3zQiRrl3qeu57UXOV8XeV6ec4U/dbtdYBiqv7G0vN1imEYY/xKFP1ZZ3HuBcUMYSiH+/TTX59GW+FFpV6ivzYZX3lPWFHm2pc2B17Kdc88V6EIU15Vja/TKVbDvW7UrWFVTcsgwA8yI0v06sTHt98QQrmcdu0/JVVkbELq9U4yojABZIqjQZzfPMiUKLqqwx7D44LGaajtxXOdcv46kna+udAAAwDTxlRaWpzIUd3e8QX5Ea7Sq1CvL3+OjrkN9LW44N9yGkPKaIsjC6z2IU5zSBEdU/+INWyfPMF4s1r739/BdNO0X7vp/vc7z95Bm5H7N+EwB9T7BockdHR8fy75G5fv061WpZNnUAFtft27fp1KlT8tXiwfHj+Bf5+OcZwhZ0EDcUvKO9QtQ+DnkgNEAIpCdQIT5kD+d0fiAsFwfCGpKIE28ymfMdAAAAAABGyxrxpp+aEQAAAAAApgs63wEAAAAApl6HrL53dL0DAAAAAMwKdL4DAAAAAEy9Mu0dH2M+dwAAAACAGZLr9XrH9+7do/v375Pu37B1Jp/hS6lUkpsEAAAAAAAAAAAAAJhveOAqwIxZ9IeB4Phx/HgYznxC2IIO4gZAdpCeQIX4kD2c0/mBsFwcCGtIIk68wbQzAAAAAAAAAAAAAAAZQ+c7AAAAAAAAAAAAAEDG0PkOAAAAAAAAAAAAAJAxdL4DAAAAAAAAAAAAAGQMne+GOus5yq135KvRG/f2AAAWVWR+21mnXGmXBvIlsb92S+w7ObZ43gcAUAzlHTCTEI4AACNk1avR9WEG/UQAsymy8/3ulXO0tLRE567cle943by4FLreq0PrvLMicFlna0dDZFCjrjQPdqmkHg8q6QAAIzXYLQ3ntTIv9tdJ1c+mLhM6O1Tv1qh9fEzHBxuU52+No5wBAJe/3hWQ7qfTZOrC4yLy2hgBEfT5ceSnYhvsnGcdZ1AWAIBr9vL7sLwxKL+Om+fPNmXwjbKM+vCnrVxZrDAHyE5I5/tNuri0RBtUp8un5Vt+Ny/S+SfP03nd+iFl2uOdFXzpN6jI/mv05evjPbZ2NMp7bgfJSPARMYUWVZ1jOaZ+tUVru6h6AwCMSv5slYrdFt1Qs9p+j7rsn+a+t1LY73WpWD0ryoFMyoTiMhXkn9zIyxkAcIl6V51W2m696/i4TVSZhc7rydSFZ8no89MO7TeLVKsVh8qKtFAWAIBr1vL70eWN86TY6MswZEu7Rs1Kjkoj7PdBuQIwH0I638/QY0dH9PiFE/K131260rhG5+tv83RApMOvDpdod5c1qsSVRLsR5b/KqDau+Dr2nYF6ZZm/lqsZcbVQvTrnGy3lrNK9H4ptt9KkWvuANpQcMb9xQAfsjaFty2NxMmjjbUadA/5d/TkI/z4AwAzKn6VqsUstpfe9s9+kYq1Gxea+ksdZjYnqWSuTHs6XfTz5MstL78j3GTHag+X51K1Tga+Xv+P9zSRlGQCYsetdx7Tn6bngnRx2Z0aSNGjXpeRLzjPdiEFdKyTvMKfZd219MXq/RL41tI5/j/8dcjzyt93vqufLv58lKrHPFupdomZFvBde17V+O+jzurqz/f3gcAs7Dp/OPjWLVdrcrPrKCikkHKPq9f71weeei3Nu12k9YrsAMKvi5QWdwPe4uL8TQJs3Wr/tza87Ae/J/EhbXjFh62y87PXkl1OsvCc64Lv1naHzZR+jUViEnJfwdgvfFj9X/Hft7/PfVPfBfy7D9s9aF1ymWusCwxwAIiWe8/3ulQ269PA1euyMfCMzXarXybqdXzSieCIvUH2l7Vxh7DcOqeLJJNh3Ctu0LK8k9xvEXqvrVSwjKbANOFcs20TbvGHF3l8juupso0hN8X6EwR06pBqtai5dl1drLHNSCq/BDWp17U4g3b74mZwDnge656BdY+dkx13bWQ/4Pm6LBYCZlqez1SJ1e335Wnayb67SCjXJGbTDGxPsnZNGQ0ZYfrum5stb1Ks35TrrwiqvZFOxQX2+3tv7p/CXZciHATIh0rO+3uVKUp+Mpq9rhecd8fj3PbqOqt0v1qBfq6/I3+KLOliEfU5bfzasfzv7eUAHB9a+Uc36Dh+EwvPl4H3P00bg5/3S14H9xEVafieUuIDbZFVv9UyGh2N4vd5He+7jnts92ouzXQCYGdF1Q29eYBV9/vfi5ylBRag+bwzKr8uaPDysvDLo++Ad75VD9hHvwMapVl5ltRK33RE/TKPL+HDs9wr7tCq+36cGC7tKrkC9Lfv3WNm+5v6eSXskuEw1LbcBIEiyzve7V2jj0sN0Lfued6HWVgoEUbmsUVvp4MhvbLEM7pDuKDmEOvI8aL1DNtq2nIyiTHviNh77X4s1nUGP7C4dLTnFgZYvMx7caFG3tmXtq3ZffBKcA9E4OLxjZaKs8r/dLFJj0/d9/3QNAAAzJn9yxe2Q4BdDi1U6my+TlQVaGdzgziHLIFfdciWMzG89+TLvbE/AW5YhHwYYBe/IYm+HbJL6ZBR9XSu7vIPz7Dv/rYg6qna/BOVipI+2/mxc91T3M0jC+rUtbR3YT+bFVqe1vIDbuuF+Niocg+r1otyxXg8LOPdJzm1YewIAZpNh3TAon01SvoXm11F5o7GQPD+q7+POLpVmrePdL1GYpiwnGff3rLBjbzh3B4q2kv17xvtnWKYCgLEEne936crGJXr42mM0mq53n8DO7QItF7vkDHYMFLLeN1evzdOAK9TDO9WNlWmTX70UteUB3Wh1qaYO19Lsi0fic6DiV0TtxilfKqzwAwCYcUqHhOiMWDkpKq+8omg1GgLy3TBRF1RTQT4MkDVxNwofvRXV0Z1JXSrESPOOFHXU/AYd9Bt0WLG+G32LuDwfGZ6vVPXrjMPN31ludXIonQ6R4Whd3PXU67eUziOV7twnOqaI9gQAzKgM6oYZ5JOReWMMoXl+SN9Hs55V/8ukxQ/T0fRD6aA9AjAJiTrf+7eIrp1foqUlvpToEnt961KJls5dYWszVlimovzT1adet0jLob3WIeuDriR21qmg3hrKKsvD2w3gG4kSRBRefGSmvCrtqSubXNVMfA5UNffYnGWGryoDAAjuKHf+UFWnM4LnzbzR0AnId8ME5rdZQT4MkJpBvStQJnWpEKPMO5LWUW28E1h8t00r9ULwHLsOeT6yOl9p9z3TcLM6rZ1ndjidHMqzQwzCsbzJjkFXr/cLOvcJjym0PQEAMyqDumHqfNIgbzQVleeH9H3wZ7mwj3umSJkJQ9PhxQzTtOVkbGiPAExCgs5360GsR85yQJdPE52+fEBHj18g3eNZE5NzjlWUlsJgd1s8DES9xbNZcR8kEbTeIRtt7hxmHVoPmHO3s2N6xVGORFG2z/Grl84IF/sYeCGmTn1guC+m50ArcE5LAID5YI1yX6PtplrxtUb8tLb5rfmGU85w+ZNivngnvxzwW2AzGA+CfBggI3a9S/OgNp3IulSerFms5Pq4aX9UeUcA8zqqH88X5Z+Stv6cpu4Zcnt64L6H3c6etg6s6uxQvVukhpzH1l74/LXOw/JMwtHOz9filC/KuU96TPb3/O0JAJhNdl6Stm6YNp80yRttQfm1aZ5v0PeR37hKDapTQTmWqSbLiGJj08qTMwjT5GW8gaziHKahAYgtpPP9Jl30j2xnr89dyXxsewT+YIc21eQTlflSaFWpr84PxtTaW9QryPX8yqFvvatMe+KSakH+3jYtX2WfLe9Ru8YKLbmN7eUGKxzM8FuerZ+0vmvv41Xn8qGce4vx3iKq2Re51mV2DvT49/tUbdnbkUtQRz8AwKwRo9y71PXcyirnq2Tvx7s135cvF3q0lckIFOTDAFkRU82wdGlP5yEWtfEbKLouVd5T1vO0H2vO9lHlHUyKOiofUWcfby5nPWRNmRY4pP6crO5pTVVgjZ4Ug1Ai9n3o80PS1oFd/GGCFDBPujU3sn03hUk4GpYv2nOf9Jh07QkAmE1Z1Q3T5ZNmeSN7HZBfx8vzTfo+3GMJLhMmr+vsP1sKLar21QePJgjTNGV8bOnjXHS5DQBBckdHR8fy75G5fv061WqjykKsp3vzpzmrjYmpwyvgFf5U65AHnQAYuH37Np06dUq+Wjw4fhz/Ih//PEPYgg7ixijMSP0ZvDJoTyA9gQrxIXs4p/MDYbk4ENaQRJx4k2DaGUjCuqKMW0QBAAAAACA+tCcAAAAAZg8638eiQ1ZdGVVlAAAAAACIC+0JAAAAgFk0B53vfN6qab9ltkx7x7itFwAAAACmwSzUn8EL7QkAAACAWZTr9XrH9+7do/v375Pu37B1Jp/hS6lUkpsEAAAAAAAAAAAAAJhvc/DAVYDFsugPA8Hx4/jxMJz5hLAFHcQNgOwgPYEK8SF7OKfzA2G5OBDWkESceIM53wEAAAAAAAAAAAAAMobOdwAAAAAAAAAAAACAjKHzHQAAAAAAAAAAAAAgY+h8BwAAAAAAAAAAAADIGDrfAQBgbnXWc5Rb78hXU6CzTrnSLg3kSwAYtwHtlnIUli1MXb4BAAAwJLo8y9Yotmf9Zi7HFtSPAWCORXa+371yjpaWlujclbvyHe4uXTm3JN53los35ToDvPOBZ7ByUTPwwW4JDR4AADCgVNidZZ3CShDRqYbKPcBME+k4RrpPK16+0aF1z76py2j3cxzi1tODPj+6fDioTBjuKJpkOTDe8wEAU2OwSyVf3lTajZfqZ66fxOSYOztU79aofXxMxwcblJdvc+J4/Xmj/E3/aQj87CiE9GPNFpSXAOMW0vl+ky4uLdEG1enyafmWz/lrR3R0JJfHzsh3I/AMs9KkWptlsDyTPW4TbSMBAQBAMsVGX5YnfWoUm1QJqQmX94Yr9wAwe9x0f0z9xiFVRtixHS/fKNOe3K/jfoOK7L9GX74+3mNrYdT5sBo3jts1ala8HT7TVg6gXAKYc7zDtlCnFaf/gy2sfKB6IXYH/MyIc8zFZSrIP1X5s1Uqdlt0Q/14v0dd9k9z31vi93tdKlbPjjYfncN+LJSXAOMT0vl+hh47OqLHL5yQr7NUpGUnh2WNFJGArKtvhTrLTpsVceXNTfj+K3NqA4uPMCrR7q59FZKv459n7w3U0Uf2+/Zrvl7+BAAAzIE8na0WiQ7vaCvCYsSE3Tk/NCJHlgu69znfOrefP6gsYjyfZ+vviA8DQIbyG1vEmoxktcWtup7nGlzgdE9qHTG8TujJNzhtPmDCJK9Qf9M+Hv3+itFhQ+uC6sL+41TrxXwJq1+XqMQ+G1hPD9x367eDPj90PkP3I/r4Q5X3RIdCt77j/KZ/+8HnLyic7H0RX7N44hZfz78ftK9Tcj4AYMxYmt1uik7OPfXqa36DDjx5k522xQuLk7/o8w+LLj8Iyse4sDyGMS3j+P4F5j9mxyzy3kqT2BtU4Nvybyh/lqrFLrWU3vfOPvvdWo2KzX1lnzu03yxS9azsktXuv+58xBHUj2XTn9ehUdzi3Knbt8LQ+UhYGIjvqtthi/vF8LANg/ISYKRSzfl+7bw97cw58sxKE0ZmovWCP+LnaeOAj14qEtXa4urbwQbPyniiKVB9xXqPL8MjnNjv1cm6XckZVcS3sU+r4j05GjJXoN6W/RtE9bXZvlIJAACqAd1oxRj5whsBTrnCyp5ilUS9Xfc+r1yuEV1V1jU9I178ZRErv9bYG86oki3q1VkjAwCyNbhDh54GcbRmZZuW5Yh0azCeaQOV5QMFNV0nGfnmzyui8hbv/rZr7Ps7cm9ZA32tviJ/iy8HJKrPAq8L644zbv36gA4C6+m6fdfV6/1M9iPk+E2UV5WLMz5R588TTiZ053yKzgcAjM/gBrW6SsewSuRNh3QnsgAJzz/Cy7PhfKyzHpDHOJ2i0eWRwDtSK4esKFTzTMnwmPMbB6Kzl4oN6vPteXrqOWtQTbfXl69lJ/vmKq2oeXpnn71aoZNic3Hr6jFo+7EsYedVjOJXLhiwagsVi8oxiHpMjVbFDoUdA1snzru7TsQJee7Cw9YAykuAkUnY+X6CLjzuTjlzcJnoUukimc36biUmEfELBlefROZdo7aSGVsjnLwFVa09nMjd9+RoSJZ47Z/Jn1xh6b1HdlYOAACzqVsvyNEMrAKmq+yH6tAOqzA2rvpvY/S/7x3hYt0O6y1HPGWRLL+2nAoj+z5vZABApjosoXadi2Rmam230RhUr9QSjXxfuk5wC7S33mqSt7j7W15l+YjnDh9NQ5nRHmeK+rVX9L6HMt6PsONPK+z8RR3/sMRxi5uK8wEA2bI7hoN0yelbTigqz/HWTXdpu1mkxqYvj3GmdzHI0+/sUknX8e7I5phFn43dac07qEVZXyYr27MOcnDnkB3kqjxGk/I0fr5uCenHijqv+ZPKBQM+WIhoa4uFlH0M7I2uyTGITnr33IrzY+f/kWGbBZSXAEmlGvluO3GhTufpGj0R45mrYr4m5wpXSAe8nNfLq0DLxfQFFQAAzD7vfIUr4WVKgM56hZq1raEGRND7ntstC/WA8kkRWH4BQBbci245qhw2qK80VJOJUa/UzE+bRqy8RcXv1GGV6cOK9V3vVARB5HFmWL9OvO/cpOv5sc9fEjGOBe0egDkU1qEY764tM1H5hd15bC+svivXcFF5erNuks9ndMzKSGzRQb1yUpT1vBO127pBfEoeftdrzRoyLqQqkwzo+7HCzqt6waBPvZVVKheWieIeg+jEd88tn4aH5DmxhIdtKigvAVLJpPOd7n6YnqTTVEgwPXx+4yo1whIIy5SK8k8Xy7C6oyioAABgpolKeoxKV2edKk3vqAkh6H32XkG93ZJVQIfLJ0Vg+QUAWfBcdEvd8c7FqFfGGdltIm7e4udMldWmlXrBO8fqEHmcWdWv0+77OOr58m4FpV/DK9b5SyLGsaDdAzBfRGeppl7qmS4lS1H5Bavf2nm2s8jRwQZ5On/gKHtbP4Vvpsfsdlrzh6o6HdS8vs9HdHes0c9O/p62TIphuB8r5LwyzgUDdg4OeQDxaWyIj0rnebzhMYiR724H+3AbJnwfIqG8BBiZRJ3vNy9653i/+Z5LdOv0o/SIQec7v4rnuUrW2RHTBHgSiHoriJhbq0kVJWUPdrepGfP2YgAAWACi0mha6eLzJrIq5tBtkrr3vcRUF/LvQPIW0227zBvw23Qx5zvAaOXJuktd1hs16a5ZcUerxapXylF4Trrm+UWc+VQNROYtWnzEl/xT0h5nmvp1yC3bgfsedov3qOv5MvyLjU2D2+GHz59XRnFrkucDAMasTJt8zm4lXxCG8iaz/CUo/4hVnsk8xi3DwunKI9HxTHUqBPa+mh6zGavTeo22m2qnsDXCubWtTtcyLHl5Oiy0H8vkvMoLBjv7h7Qirj7wMO9Sb4e1XUyPgY/2lvOgW4vSVokZtkNQXgKMVEjn+026KB6mWqJLt4huXSqJh6ueu3KXzrzpYbpUsh+2ukTnn7xMB49fIJOB7zyjrrbcW4VzvvnCrDmtrCdeW5kbn1urTTX5pGO+FFrVDG4vBgCAeaBOP5FjFTt1br9QoqOeV/zkd9ki6m+698t71K6xSp58b3u5QTX2tl6Z9sTQILl/hR5tjXAEDgBYyntKvZGnu6FnLRSp0a5Sq2ClZTHCzLhe6UvXuW1aHnpeREyx8xZFZ13uB1+sB4+pg+Bq7S3qBR5nsvr1UD09Yt+H6/V+2dfzPWVCoUXVvu5hbUzE+fOLjlth53wy5wMAJuv/Z++PXtt4/7/P76V/YUth8XYPwkcKHxwf9CDQIrGwhE/hK5lkfbOgI0O6dCPxPbIONqYHhjTgg5Isi0ShHyzflAZyUsFNTXxH+v3oF7OwSNsbcrI3jhoifdYHbd2F7e5/kHjnmrlGmpFnRjOyHNvS8xGGaHRpZq6ZkaX39dY113g3FjXDIvqfNebz4/pn07zPl+jPj6zfZ+YzZhTOx5jJ/xE59ffR9LMq6rMs7T6n4iatBxqEhnyzN2N1ng8O13Kj79M5kvNYc46ry/TiH6jd3pr8iGB+WGi3nbZL2n0wZZp+P4S3kaYOYXxfAr9O7vLy8so+vjWnp6eq1Zb1sQest69fv+rJkyd2bv2w/+z/Ou//KuPcIg7vjUWM1SoVNDy4SmwcY5kexjHn7wlBvB+Wj2O6Ou7buTS972cTzL26SdCPsv+ocafu3/clf7dYRJb3zXLGfAcAAAAAAACwdGbc+/ANVsf6fm4fArjXSL4DAAAAAAAA91T5aKTmeXDYmYI61YfW6x1YTyTfAQAAgJVixkJlyJlfi2MOALhN3vfM9IarC4yhfy/wfYn1kxsOh1c/fvzQz58/Ffd/Ulma15ipVCrZTQIAAAAAAAAAsNq44SrwwKz7zUDYf/afm+GsJs4t4vDeAJaHvycE8X5YPo7p6uBcrg/ONRaR5X3DsDMAAAAAAAAAACwZyXcAAAAAAAAAAJaM5DsAAAAAAAAAAEtG8h0AAAAAAAAAgCVbweT7WK1STvWenf2l7nLbAICb6tVzyvEhDqyvXl25UsuJ6B4WPrsAYDXx+Y576YHGS8BdmZt8vzh+oY2NDb04vrDPTPll3vRCES+J4CWoc7nwVGot9mc7bpX4MgKAteR9n8x+f7jfCymDQbdBQ+AIPBA91Wfix+lUd0rvUlR8e9d1ihYVO/NZCAC3YfrdEJmyMAlM830R+Pyd93k8W77sfEja9bn1iNuvGA/7++f+f88vck7i/Orzsuz3MXDfJCTfz7S/saE9NfT2qX0qwCTeS6fP1b+81KU7fdKrR7YwhVr3SldX06m/l7clAAD8GuUj5zuovye+gYCHoKwjP3YcNVV0/jVHfix55JTevWJzNIltu7W2Kg+kIclnIQDcnmKxqPbh9URm76StWq1m5zzzPo/vx+d1TyftolN3Z79ObvY999C+f6bf8yM1i/fpe35558QgLgCWKyH5/kzvLi/1KTKjfqY/30hvW6+UId+ezrilUuDXxOlnmentVFKrZX8ddh6XSjkVGgOpXXGfC/d+DPaOcpYLfdMFy+rqmW1OftXzftEMfYbOXlITW8cZ7i/ZwW3P/lp6P3tEAcBKSfjMdnt13JugGcDNzMaKNs5KittCZc6y3+3zE4vHbuWdmnT+fRo/zluX3wMyOLmVTRGbzorcZ289UbHz9c/CpLr69UmKtQEAvq2DA9UGHX0Ofk46n9OH7Zp2duy8NS82nZbHf6bHf+8lfX4nrG9W70TtYlWvX1dVbJ9c/168tv34dT/c75+8tqvF8Pd87HGPiU9iv/eNpOMQIfM5SX7+2nkJvS5rvJR03ryyVO874AFbbMz3i7/0zfnvdM8fcsaZ9s+8shtx/hhfSh9sj6FRc/YX4oEaDanrlvfV73uvUa3rvj7Ye75dOdSm7Q3VrTnLvZ98ujh/3BWdT36x3NFJoeGsOa15dbTMB2nlXM1RX361evWCGlteXb1lz1V5EJdYAcBDlfIzG8CKCMaKpjd80meAExO+dF48iQkPNGy03RLf4rGbs+5DZ11bjye9xpLX5dTTjRun9XTj26NF+vPH7XNeewmx85SJlSPqOtPwj4+1AQBhZe04n5OdQPZ9/LmjQW3nBldtxX2mz499oz+/035HOFs4aatY3VY+v61qsa3DULLU2X4h+N3alQ4/a3vlvn/G+twZeMfBnZ933CPik4Tv/azxR/ZzYtYV9/ys5cRLN33fAQ/Zgsn3kb44/z1v2SFn+m/19OOusuTf25WoX8XKOgpc2pLfrqo4GGpk541aN91lxbXuNOkd6nk0/qzOoKaDyR+0s81u+FKvZPPrqO8tlWYS7+aXwsN2Uc3X09rn9yJ+AQcAZDJoFALfJ7bnxESKz2wAKyUcKyZ8BsyLCReI3aafRwV1qk4j1U+ez1vX+LvOtaXHtir5x1szveazuOHnnj0u3UDi362rU8PvgQrFxtoAgGvM5+Sg8d7mPXp6b3KZge+E5Zn/HXCjz2/7fVbdNivwen8POp+ny5se2M43Rui7NVCfRA/g+yf4Pd8Y+MfBSHPcA/FJ0vd+1vhj0XOS9lwtKV4ibsA6Wyz57vpdv/ljzjz6Q8+fSt/+SnXHVVd4zPfph5B7owU/iZKpR3pKo+GN1zmvju1GXL0HahTscu5UcT7sAAA3ERxj2Uxuz4mAW/9eAXCvxX4GpIoJs8Vuk88jp1E6TbL4EtaVf+w0wafJBdODLdhrPqsbfe5FHpeCNosDDfnlEgAWU95RzfnUd4fjtkOETPK2S3absa/bYz9Qdy/JPJMULm463xoLeADfP6F2R3fL+V6fDnuT6bjP/d5PH3/c6JykOVe3EC8B62ax5Pujgp7qmzLk2tPp1VVobNlLcZzJvZnWkhU2b7bOFHU0Pyw4T6vxcvaSndp0uckU6B0PAFiuX/G9AuD+SvoMSBUTLhi7lV+7N2ILX/adsC63B9y04Vpph3v+ZXLTz73I4zLScFDU5kLZFACA6S382gxFctJzE63T4UqW7FZjX2+oFQ0aKvhJVjfJHB5SR4teZfrQvn/cH1TsDwNZj/vc7/208ccNz0mac3Wb8RKwJhZMvpue7l90+g+bfT/7U2++PNXzP5Z7+9Xe+5S/0ma5XMX9hTHQGBqbIWKCv8nlZa74mdwh+lp5WFwd83sf1JTzAejfpCJy7C0AwK+U+nsFwEoKfQbMiwlvFLvltXcQ6P0+b12mV5kd69SbgkPnZItNZ0V+7iXFzraulcCN1satw1vtpQkA68DtkdyuuInW6RAeS5Dwmb5Q7Bu3vt57d6gVf5xyfzJXnU6+72wP/+n3XU/14Njfq/T94w7bEv3DwNzjnvS9nyX+uMk5mXeufLcaLwVkyesBD0xC8v1M++7NVEt680X68qbk3lj1xbFJuD/Sq9ZbyT63sftRux8/6VWG3Ht4zHd7R+Pykbo158PWPne42XQ+DJJ5l9R4v/KluytyWUcj0y3djtVVGOpgZsz38lFXNXun5Wvlqetobhzhrcerl5kfqdoJj02cS7hpBgDghhb4XgGwQhI/AyJiwlBPtRvGbsEhBuaty9RTNvacLXOLE2LTWXM+9+bHztMY1q9LoVPVKO2YvQCAaG6S0vn/RjdaDbv2mX7D2DfpO8IdGqV2cK03szcuu/99N/PdmjvU5gfv+2MVvn9C95qqtKfjmGc97onf++njj5udk/hzFXbL8ZIje14PeFhyl5eXV/bxrTk9PVWtluUj/xfr1ZU73KRRgQfh69evevLkiZ1bP+w/+7/O+7/KOLeIsw7vDTNO7GyCoVc3jfeR+lyzjSXisxZBvB+Wj2O6Om7zXPK9f7/wd4tFZHnf3OCGqwAAAABuajQczNxobazv5/YhAABYKXzvA+uF5DsAAABwh8pHIzXPg5efF9Sp0vsNAIBVxPc+sF5IvhvlI10x5AwAAADuhBkvNXyzNBrgAACsKr73gXWSGw6HVz9+/NDPnz8V939SWZrXmKlUKtlNAgAAAAAAAACw2rjhKvDArPvNQNh/9p+b4awmzi3i8N4Aloe/JwTxflg+junq4FyuD841FpHlfcOwMwAAAAAAAAAALBnJdwAAAAAAAAAAlozkOwAAAAAAAAAAS0byHQAAAAAAAACAJVvh5PtYrVJO9Z6dzahXzym36MIPRa+uXKnlHCkAAACsu7WIfwEAuC/uaU5mNh4gPgBuZm7y/eL4hTY2NvTi+MI+4zjbd5+7Pu3rzL4kzrhVuv7hMm6plLueKI987YpzP9QijsUi3HX9wuPnni8+kAEAwG2zsaOJmdxpCfHO/YhjvM4jk/1yp7ruY3QVdbx+dewJAMCvsdj3851+L95CrARgMQnJ9zPtb2xoTw29fWqf8j17p8vLy9D0cdd5fvdveua9IlZ+u6rioKPPwb/60VAD57/2SfijazQcqFjdVt7Or76eTtpF1WrFa8diEeWjK13199bo+AEAgJVneokVOqqOnDjnyptG1Y5etlanSVlsjib71q21VXkgnRuIPQEAq2z6/TxSszj/+/nOvhfXIFYCHpKE5Pszvbu81KdXj+x8gotjNT8+1du/z0u9O/LbqhYH6gSy772Ttoq1mortk8Avh14iurrtf0zN/tIY/JWxp3qupFbL+YC5VmaZDx/zGnezZl3msVnOX59fFmPmV8PQZ2xsWVKdI/RO1C5W9fp1deZYWHHbiXn+2qVBodc5+/vdPj+RVF+vrN6LOmZeWaExkNoVt6zEhzoAAFg6Jw6ptFXr9rUXaMnm9/rqu0/48Yr3vGvmkm63x3YolkmKY+bFRrPxpCkPLhOOL69v2xYkKO/UpPPvk/on18nhxrzBcmdyD4i3XNKxuSYyxvTWE3W8rsWeiXX165MhHgcA4F7Ia7taDHw/m+8y5ztsJieVOScT+x1uzPn+n5gXKxlp1xUjLjflrtd8l8d/t8fHQjesE3CPLWXM97M/3+jLbkNp8vT+h9RgOLLzNsn+ekdbamvS4dskop1nHrufDeaPsKDGVnf6q13zXJXQH+NAjYbUdcuPVLbPuswHWOVczVHww8d5feFQm/aXwFFTznzCh9dL6cNk20W1D/2GilNWcDY8+QW0K9myXj2izgkNHPdHCNPT3/2Bou2sJvjKuO3Ebz/MOYYvg6870LDRtmWeNPVtV6bHrFtzjuF7c8Ty2ut7x8X5hHfLph/qAAAASzL+rnPVtBMK9DJwGosvG1s2XjSTiQ3j4piU8WfhRDtuue0FlytoeOC/3okvX9pYKnLb7koSOHU4dOK1rceTXnPJ8ZoTF7oxr19m9+lokQMWF/+mjfvSHL+42BIAgPtsrM+d2ZEaEnJSrnk5meTv8NT5pbmxUrrv53hx8YEvIdeWEAtlzZ8BD8kSku9n+qePZsSZFL3erfzjLSfStj27zQdDsartfFlexx7vT2v8/dz5oNnxPrDGn9UZ1NQNNBzyewfOx8m57MtdtW7EB9z3lkrXEu+e4C+BUeubKusocKmQN3TOUO7PB+6PBDUdTFZuX+t8qBy2i2q+nqnz7JA7Pvt6r6e//YGi83n6QRO3nbjn7dyEPYah13WdA+5LWd/gMbveEwsAAOAW2aEKbybQ2SNJ5vjT9oJzGsr+Im7M68eMrnTbHjQKttdXQZ2q00j3VzgvXnMb3H7nFbv9hWO1hPg3jdTHj9gSAPAwBL+fG4PgSA2eyJyUb25OJuE7PEt+aV6slPL7Od78+CA51xYRC2XNnwEPzI2T7xfHTX18+lZpRpyZKO84f3zeH9z4c0cD25vHBNxewtn7FbHm/1QX+eFR0GZxoEkH+hjtRiNDIy1+faFLYwoz6yxuOrWJYn7xs8u4U8XZ62jucXB/hPDmI8fGj9tO7PYDUjVW09cXAADgwcnvqT9q6rzixTqJw+TdIP6MlGHbkzFlnUb5oPF+pidaQryWf+w026cNXHNVZbDXfFaJ8e88yz5+AADcseA9Wa66W873cXhIlUTzcjJzv8OXlK9Zwvdz9vjArjsxFiIfhdV1w+T7mf5880W7jVdKNeLMxLSXu7mp6iTJbpLyJuHc836Jm1wmU9hU0T6cGmk4KGpzTta51rWXufiX/CaKWV+vrkLw0hhnhaH6xPYCqgUup/Gn6z3wnY8u98cGp3WlQugDLDw2fux20vRCijyGs9LWFwAA4A4EOnAszDT83Binq61GITwGetAN4s9YabftK792h7IJD0WYEK+5veamjddKO9yzLZN58e88t3H8AAC4L9yYJMMPyvNyMnO/w1Pma+bFSjf9fl4oPgisOzYWIh+F1XWj5Lvb6127yjDizITXy/2lDp0PlOlYVN6vbZ3Djgb+kDOGHQM9eCfpcevQvTnpzFU+kfJ7H9RUQ4WZFk67Mv2VMsv6eu8Dv+zZD7Zpo6inuhmXKnLc9hi99+4lS/7YXv5kxs6a9HaK207c83Zuwv0VNfC6sRmOJ/A7Ypb6JuFSYQAAcGvKem3GFg3EcIbpgeX1nsrLG93Qxnyz8U6IiTvtQ18wjrlh/JksYtuR8to7CPR+nxevmd5sdhx2bwpe/p7l2FwXin99SXHfrR4/AADumDsEcIYflOflZJK+wzPla+bESkv+fo6KD9Ll2gKxUKb9Ax6ehOT7mfY3NrSxUdKbL9KXNyXn8YZeHF9Myk2v96dv/64Fcu9eMnkw0CA0ZIod69x5ftIb3mVu7NRVrV2xl5/kVOhUNYoa2zzSdPngZS217oGGBbs+88td3PrKR+rWzA20vNcebjY1HZmrrCO3a70/9tehNj+Y9ZhtjlTt+M/bKSIx7l5OVDu49oueNzaW/4tl3Hbinp8187rCUAehXyjT1zeON1SO13s/6VJqAACAReX3+vbmXdN4xcSFH2wgVT4KxIwm3gmOp2puwm+Xccdr3QqMz34tjrlp/DkjYduJQj3Y5sRrJmbVtL6hMrc44djMSox/08R9Sz5+AADcsemY785UaYfGNp9vTk4m8Ts8W74mOVa64ffznPjAiM21xcZC2fYPeGhyl5eXV/bxrTk9PVWtlhDc/3Le3Z2HB1fpGj3APfL161c9efLEzq0f9p/9X+f9X2WcW8ThvZGe6dU224Du1U3DeKQ+123Dwd8Tgng/LB/HdHX86nO5Gt/hDzPXxt8tFpHlfXPjG64CAAAAuHvmXkrhm7ON9f3cPgQAAPcW3+HA6iL5DgAAAKyA8tFIzfPgJesFdar0egcA4L7jOxxYXWuafDfjSTHkDAAAAFaJF+NOb9Z2RaMdAIAHYRW+w8m1AVFyw+Hw6sePH/r586fi/k8qS/MaM5VKJbtJAAAAAAAAAABW25recBV4uNb9ZiDsP/vPzXBWE+cWcXhvAMvD3xOCeD8sH8d0dXAu1wfnGovI8r5hzHcAAAAAAAAAAJaM5DsAAAAAAAAAAEtG8h0AAAAAAAAAgCUj+Q4AAAAAAAAAwJKRfJ/VqytXamlsZwEAAACjV88pV+/ZuRVA3AsAAG7BbMy0cjEUkMHc5PvF8QttbGzoxfGFfcY623ef96dr5ZF6quecP7jIqe6UAgAAAHHGapUeRgw5bpXupJHpNm6d47LsTbvrJVEPAFhX5gfrQPwR/J697e/8u4opnA2rFNhn4gBgMQnJ9zPtb2xoTw29fWqfmnDKdr/pbf9Sl5fO1H8rvdnT/Px7WUdXV7oy06ipovOvObLzV0dOKQAAAJCs2BzZ+PFK3VpblbtokN5LPZ20i6rVimqfLPeYlI+c493fU97OAwCwNkwSutJWrevnr7rS4Yonos2PDYWOqpOc3ZVG1Y5etki/A1klJN+f6d3lpT69emTnAy7+0jf9rt/8oke/OXPLMtujKdibyfScL6nV8n9xNGXe6+u9YK965zXBz4OZX+tC7bNQmbPcd/v8RFJ9AAAAcJfKOzXp/HugATwndpvpueZObnDox5Tey1zzhmWJjDG99RQaA6ldcZ8vTQLTpLpdj3Pr1y7R9pafrm9G70TtYlWvX1dVbJ9cj1kT4t7rl4OHtzVb7vbCC65rUqVb3kcAAO5EUZsF+9B0LHV/kPa+s65/5yflrrw1uGbjjGtxRdz6560ravuGt5y//vB3dJCzvPtjQ197gV/d83t99SdPpF1XjNg8nVmviSvMPvjlwTjDLLpIDALcncXGfH/0So3dj9rd2NeZLnT8Ylff3rYUlafPxvyhFNTY6k5/WWueqxL6gxmo0ZC6bvm0t3y7cqhN+4tct+a85r2/hPMH+1L6MFlfUe3JL5TO9l46K5v0njrQsNF2Szxp6gMAAIC74cRqh07stvV40iO7V4+I3YKN0cr55MpLExc6LUtdHS1y/WVcjJnXXj+wbqfMa6hmj3OPzA8LwST6+LM6g6Kq29H9z3snbRWr28rnt1UttnUYSmAnx73ujxhpt+U0mF82tmw9zeQ3zm9/HwEA+OXc71Xn+6sQTgI7BTHf+UZ07iqeE1cUgt/Tpnf9Z23Hrn+e69tPjpECxt91rpp2Yit901xZUp7OMMd6muMbNeXM23XHxiAZ9g/4xRa+4eqzd5f66CbgS3qjt2rdPPNug+2auoEGUH7vwPmTP9f3wF9LrXv9gyv4i1y4B5T/i6Qnv11VcTDUyMzY7R1MPryc13adZX0p6wMAAIBfZ9Ao2B5NBXWqTiPVj9WcBtlhu6jm65nYbdDRZxO7uY3JLT22oV/+8dZMr/ksEmLMKIvEueUdp7wtfwSZ8eeOBrWDUC+0CbvvXtI6r+1qUYPO5+m+zYt7o7ZVrCo+Bz597cRt7yMAAHfCS7K7HT0Ls72t40XlrmKZq9ecb8TQ9/QNh3sLbX9ejBQ0GmpgH0a6ca5sfgwVzPFdX3dUDJJh/4BfbMHkuzce/D/9zRvzvf/8VKWNFynGfJ8j8g+8oM3iQMPYlsx8oUtSCo3pNuZ9oNxSfQAAALC4yZjv3ZoGjfczvaz8hrE/VZwmmpV/rK1A4830FA/2ms8qNsaMslBcWdZr0xvMbWGO9bkzUC2mG9psstxryAYanPPiXmdbXif0wLYOYhr9+T31R02dV7x9nwwRc8v7CADAXXLvf+L2qDY9sdMl4DMpbjrfmrcpIUbKYgm5skwxlMuuOy4GcS1p/4AlWyj5fnHc1Menb/X3Z978o1ctvX36Raf/uGH2vbCpon04NdJwEBxbK6NeXYXgJSnujV6tyO0F3EZ9AAAAsBzl12peG16lFrgU2Z9s7ym35/u0YVZph3ttZZIUY0ZZMK50k+hmWBbbyyw6L+0lrTVoqOA3ON2G7EAdP/s+L+51lF87+zB3W5Zp/Lr73tVWo+CN1Xqr+wgAwP2Q3/vgxB+30Ckz6Qq6pUiIkYJmrkq75qa5sqwxlCuw7qgYxJVy/4BfbKHk+6Pffpe+jDRJtV/8Q6dfpN8nd2BdkB2fshK4a8S4dejeOGpZwz723gd+UXN7PwUabOOWewfriV9QHwAAACwqr72DQO/3yLHOA0xPLTtmqjcFLwfPy4xC4/XAdszGhXOEYkxfcEibReNKfzmTTK/tBOob0HuvhtPg9cey9yczhur02MyJew3/+L00Q7/EbOsa09PNPrzNfQQA4I6YXtqhHtb2ezeUaJ47jN2cOMMmvKcxTE/14HjlofUvELP43/FxMVKIvSqtcv1Gp+5xWPT7PkZUDBXcdvy6r8cg6fYP+LUSku/e0DIbZkz3L9KXNyXn8YZemLFlnr2z472bcmcqvZHe9vXO9oRfnBlHq6uavYuzmQqdqkY3GeeqfKRuzflQsOs73Gw6H2i+so6864VsD6GhDkK/uN1CfQAAALA8od5ZJnYbqdrxx4S3k994NXGhpnFdqMwtDsR9Ji4Mjok+KzHGNG1AM+yL1xPda7AvGld647cbccOxuMPnRIyT7o2R6h+beXGvYceKH8wZ+qVXn+yDGXff3NzMu4Dg9vYRAIC7Ynq6h2IL9+btgTHJr33nR0uOM2a+p3OH2vzgfX9GrT9TzOKaEyPNyO/17fA609ea7/QP7k7fMFc2J4Yyat0DDe223V7y/roTY5D0+wf8SrnLy8sr+/jWnJ6eqlab90EAII2vX7/qyZMndm79sP/s/zrv/yrj3CLOMt8bpsfWbOOwVzeNvpH69/maZNPQrEjdUE/9FbMO+3gP8FmLIN4Py8cxXR2cy7syVqtU0PDgyibVbx/nGovI8r5Z8IarAAAAwMMyGg5mbrA61vdz+/Ae83q2r/ZwLOuwjwAAAFg/JN8BAACwFspHIzXPp5dIm8uVO9V73utdPXl56ZVOva/BPgIAAGAdkXwHAADAmjDjgYZvSnq/E+9GWUdOPX/Vpdd3Yx32EQAAzOfFasQEWCW54XB49ePHD/38+VNx/yeVpXmNmUqlkt0kAAAAAAAAAACrjRuuAg/Mut8MhP1n/7kZzmri3CIO7w1gefh7QhDvh+XjmK4OzuX64FxjEVneNww7AwAAAAAAAADAkpF8BwAAAAAAAABgyUi+AwAAAAAAAACwZCTfAQAAAAAAAABYsoeZfO/VlSu1NLaz90mvnlOu3rNzAAAAuFfucRwJAACwEoi3gIm5yfeL4xfa2NjQi+ML+4x1tu8+700vNFuc5L4kqMetUqp6uPVd4oeGu75cTlkOQVRdl10vAACA++6hxZHpjNUqefFhcJpd/W3GfsSaAADMl5TPuavvzUy5rZi6Z/Wr93W5cRfwayUk38+0v7GhPTX09ql9ymcS77vf9LZ/qctLZ/r4u96U9p0lVlP56EpX/T3l7fzN9HTSLqpWK6p9crMPjuXWCwAAAHep2Bzp6sqJ78zUraldyanUmjZrf3XsR6wJAEBQcj7nfn9vLi8XZRAjAOklJN+f6d3lpT69emTnpy7++iY9fa4//KJnf9OuvumvDL3fp7yePvVeT/VJT5+SAu0M8xOXSsGy7/Z5l7+8nTVmLm9xfyELrdtbptAYyGnVuM97DRtTB6e85SzvvrbuPGNW5zwObiBUn4y/GvZO1C5W9fp1VcX2ibv+kGvrjqtrRL3ssfCX9evvSXGcAQAAHpQU8c0dxpH1mFgtmFCPVT5yE/CDxvtJPBeO/aLjVn8b0zoH40HHgrFmXNw53Zfk7V4/jrYAAICHYk4+Z/73tPmuNN+BSXmZpO/T2XWWVIr5Dr8mcy4q+flrcUFivGUk7ZdXFh3PeWWp9hG4pxYa8/3Rb79LX0YK59q/aLRQ8t3Trhxqc3Tl9vTp1gZqvJ/8pav1siFNegIdaNho27IUnA+Al40tdf1eRFd97eXz2utfadQsSrWu+3x/z/+9ztm2sznv9Ucq22ennA+Dl9IHuz6zjvZh+ktteidtFavbyue3VS22dRj60HDWXQjua1c6/Kzt2LoGmQ+kghpb3mu8up2rMtPwiT/OAAAAD9N9jSOPdmpO5QIN3PFndQZFVbdT9hMr76imtuI7qF2PW3v1iHhw8mPC4rFmec6+JG438ji6iwEA8GAk53OiROWXnOcK07hl1JQz7+dt0uR1guvsq58qXzSv7lHxgfkOj3t+1vx4Kzk+8UTHc0lxF/AwLHbD1Wfv9HH3o3YnY7439W12aJqMat1pEO4G9+ffvT9CN7Cv6WDyx1XWUdcpzySp0XJdrRuVdPc52w9cWpPfrqo4GGpk5xM5DY/Dtt9IyWu7WtSg83n6YWN+iXSaWKF9TXsZjz1O3aNpzfN7B87azvU98GkWe5wBAAAeqHsbR84kz8efOxrUDpaaeA5tz8aazdcz8eCgo8/mgNwk1ozal2JVblg7b7uubMcRAIB7ZV4+J0ZUfikYt4TyNqnzOkk5qwiL5qLSxg3z4q1UcUL4uJCvwipZLPnuePbOjvfuTg39/sUWLNtoqIF9uJD8nvqjps4r3qUry7g8JXTZbKGRun6hRorDS9yHP2xU3FTBPswk8jgVtFkcaJjqlwEAAIAVc+dxZFmvm/7YqmN97gxU28nUXF6A6VFn41R3qjgN54BFY01nX7zO74F9OQg2wBO2ewvxOAAAv1KqfM7CbN7mlvI6N8pFpYkbUsVbc+ITYIUtnHwPOfsnfdSu/vbMzi9TYVNF+3BhJuB3L23paqtRCI/rmVWvrkLwslmnIZGufl4jRYOGCv6HjZu4H6gT/MRL24t+VuRxGmk4KGpzsRYWAADAw3YP4ki3gWuGa7G9wjLl3m2Ps2z5+lpgeBd/mvYkWzjWdJRfO3Fv7L7M2e4y43EAAH6plPmchdm8za3kdW6Yi0oTN6SKt+bECcAKW0Ly/Uz7ux/19O3fdRu5d+Ufa8tpdkzGoxq3VKoEfx/L6/GW3wvHca08yPxiaB/6bngZS+99yp7vvfdqOB+YTTt+lT+ZcasmN9Kyl/NOx97qqR4cAyuprnbcrkqgJTNuHbo31PB/3QQAAFgr9yGO9GM009Ct7Sh1Ht3Wpdh8nX6ZeWPQ3iTWNPz1vzTD5wT2Zd52QyKOIwAA91mafE4G7cr0JquhvM1N8jpx3+E3yUXNixt88+KtTHFCghvm74C7kpB8P9O+O557SW++SF/elNzx3V8cX0gXx3oxGe99V9/e9vXp1SO73LKVdeTdgcL+QjfUwUxv8/JRVzV712O3PDi2VM+/C7SZvBs8+MNneZfaeL/+pb78tXykbs35MLTrPNxsOh9G85mbWyhijE9v/C5/DMyZfc0davODdznv/Lqam1AEjoMzFTpVjdKO4wkAALBy7kMc6Y2taswbcmYwiQFNXTqqOg3lbDcVM/HgSNVOYD1mmjSUbxJrGnac2MHs8DlztptwHAEAuO/S5XPSq3UPNCx434vuyAqTvM1ieZ2k7/Cb5aLi44awefHWvPhkvoXyd8A9kbu8vLyyj2/N6emparU0KWoA83z9+lVPnjyxc+uH/Wf/13n/VxnnFnFW4r1hks8VqXuV8QZpwJLxWYsg3g/LxzFdHbdzLsdqlQoaHlzxI/Q9wt8tFpHlfbOcMd8BAAAARPJ6nWUYcgYAAADASiD5DgAAANyanrzcO6l3AAAAYN2QfAcAAABuTVlHV1xeDgAAzNjnxATAuskNh8OrHz9+6OfPn4r7P6kszWvMVCqV7CYBAAAAAAAAAFht3HAVeGDW/WYg7D/7z81wVhPnFnF4bwDLw98Tgng/LB/HdHVwLtcH5xqLyPK+YdgZAAAAAAAAAACWjOQ7AAAAAAAAAABLRvIdAAAAAAAAAIAlI/kOAAAAAAAAAMCSPcDk+1itUk71np2N0KvnlEt6wa3y6pfLOVOp5cwBAAAAS9arE2sCAAAA91xi8v3i+IU2NjYm0/6ZLTAujvUirmwONzluktOTqa7bTJW728vaODENmkAdU+fye+/VGNTUvbrSVX9Peft0knGrdIc/FgAAADwgi8ZoSzYbXy4jnvNj5GXv00KxMAAAmLiex7q7GMQz7fgZWQ8/Xkr5/U+sANye+OT7xbH2Tp+rf3mpS2fqv32qj7v78nLsZ9ovvZHe9t2yy4+7TtkLHV+4hakUmyNdmQS1M42a56rcYgK+fJQ+Ee4at1SqtFXrevW7uupKhxk+hIqbKtiHAAAAWJKbxmhLlDm+nKunk3ZRtVpR7ZPlRsXLrysAAOsnmMcy01HZFtyhYtGJGyJiod6JEy/VanZuPmIF4PbEJ98fvdKnT6/0yJ/947me6pv+Mgn2s3/SR+2q8cqWPvu73j79olGG5HtQfu9ANbXltTMihpWJvKy2p/rkF8eSWgmtLvcXvOAKTcNtsmzcr5VFbU4y6GUdBT+EYpZ3ezw5DUINGiqYssmKA0PRuJP/Q4P3fKExkNoVt6zk7Mi1+trXmTIAAID1lhCjxcZcVmQMNy/2NDGnE2u2/B733jqn8dqS4rneidrFql6/rqrYPgnX2wjV3anPd/u8Y962ZsvdmDW4rkmVko7f9eNQJ2YFAMCR7fvTLYvNSyWt67qtgwPVBh19Dn71Ous+bNe0s2PnfbHbNEWzV/Al1cMrC708ReyUvE5gdaUf8/1ipC/6Xb89ch7+9U16Wpgk5n3f3Mz8AsbfdR5qSM3Xrhxqc+T92jhqSo1C2j9a50Og0JAmv1hG9JjKb6taHDjrDDZGfM7yL6UP9pfOUXP6K2N+r6+rbs38HKqRKbc/g/bqBTW2unZ7tqe/+6GU117fW4dqXnl/L6/yjrOOYKNr/FmdQVHVbX6DBAAAaywxRkuKudzS+TFgLGebzqLusIJXRwp3dFtOPGd6qBWr28q7+9h2qhasmdNYfRms+4GGjbYtU7ZtOQ3vl40tuy9m6suprilwGsQRxy/UMA4fhyNiVgDA2sv+/Vl2SuJikuRYJkpZO7WBOoHs+/hzR4Pazky8Ep/LipK9HrOux043XyfwMKVMvl/ouPlRT9/+Xc/sM2GP9Nvv9uECeu8bGhSryhKn17p+Q8HvOX+u72n+Yk2vIufVB/7CzkdAuMeU4TWius4HWKNgfo0LNvDCr89vV1UcDDWy89e4vzgW1Xw9/dhz6zv7y2RQeSdwJYD/wXkw2V8AAID1lBCjzYu5UsWA8Wrd2aT7HFniOVt3L2md13a1qEHn87Qx6ia1Z+puOnz4oraVGFtPXztht9ENXEMfFWOHjgMxKwBgjQwaheu9thf5/oyLSRbJHznMj/CDxnub7O/pvcnrB9bhyZDLWrAes0L7vKR1Ag9RquT72X5Jb/RWLX+YmWsuZDrDZxH80KqcNzXK0PiJNtAwNgM+I+WY7O6YV+6vcaZn/bRxF7pUt9BwtjyP30D0p4rzQZukrNfmV0i3JTPW585AtZ3ZD04AAID1FBejzY25ful9edLHc7PJcq9BHGiMjoZz4k3T6810Qg9s6yAmts7vqe8cuPOKd4wmQ8REbqOgzWJSjE3MCgBYH+Ex321ieaHvT0dsTJI1f+QI/hhuh7GL+gE+Wy5rgXrMdRvrBO6/ucn3s/0N7X57q35w/HfTzf3LSLODzPxuxqRJKfShdePEu5Fh2JqknuoR8nsf1PQ/OHt1FYKX6jqNl6L3sgS1wKW9/jTtuR/FbXSZy3jtr6i0YwAAAMJCMZprTsyVMQa8qXTxnJe0ln/PIDO5DeLAJeSFzbnxZvm1E5OmjR1NAt49Nl1tNQremK2R2xhpOEiOsYlZAQBrbcHvz/iYJHv+KPhj+GQYO1sykTmXtUg95rmNdQL3X0Ly/ULHL64n3l3P/qZdfdQ/ndn5sz/15suu/hY9Jk1GeT3e8nvuOMYtlcxNTGe0K8Ge6Iexv+xdY38RnI6j2VN9Zowp82tg6EZRvfdqxHxwukPm2MeRIsftjHD+PVQHf7mKaXxdG6sLAABg/STGaPNirtgYMF3smcoi8Zzdh6a9l5E/mbFYJ5eQ5x9rK1j3qDr6+//SDP2SNnY0PfPsQ7+ugbunpYqxiVkBAOtske/PuJjE/y6Pi2USeD+GV1RpB4eziZeYy5pbjwVipxvsG/DQxSff3YS68/+XNyptbGjDn/ZNxv2Z3vXf6tuufW73m97238WMB59d+airmvOh4fX8GeogOKaly2mgdKvqFLzeQe6vd6l7z5d15F2jbC9zOdTmh/CyphdVtRMYy6ty7jSI7K9x5SN1a84Hqy073Gw6H5pJzNiko/D6zBRI+HuXFnu9naYNSm+8T4PLdwEAAObEaHNjrvgYcH7sOd+i8ZzpoaaIcdK98WL98dRn6m7qeK3Hmh0rfjBn6Jde3e6/mbwbn3nD1JrjFzgOzlToVFMMDUnMCgBYZ4t8f8bFJPPzR7Hc5Lbzf9wP4ZlyWfPrkT12usG+AQ9c7vLy8so+vjWnp6eq1bI3YtaeaRxVzN2hM97gCyvt69evevLkiZ1bP+w/+7/O+7/KOLeI8+DfG+sQzxGzPhh81iKI98PycUxXx7qdS3N1YWF4oKvAjWPXBX+3WESW902qG67ibng9obh8FwAA4KFah3iOmBUAgIdtNByomPpGigCyIPl+b/XktWNoxgAAADxM6xDPEbMCAPBgmfHac7nUY8UDyI7k+71V1tHVlR2DEwAAAA/POsRzxKwAADxY+T313Zu9M3QccFtyw+Hw6sePH/r586fi/k8qS/MaM5VKJbtJAAAAAAAAAABWGzdcBR6Ydb8ZCPvP/nMznNXEuUUc3hvA8vD3hCDeD8vHMV0dnMv1wbnGIrK8bxh2BgAAAAAAAACAJSP5DgAAAAAAAADAkpF8BwAAAAAAAABgyUi+AwAAAAAAAACwZCTfAQAAsCbGapVyqvfsbIRePadc0gt+kcz16NWVK7WcPQQAAPfJfYktANyNxOT7xfELbWxsTKb9M1tg+eUvji/sMymZxkHO+fCx0119BrkfgIFGyrhV4gMRAADgHnPjt0AcmcvVdZvR22y8OJ+X4C+1wku4ceYNkuPZ6wEAAG6up3oo7ghOtxuD/HLjlkoz+zgbz8xDXg24Lj75fnGsvdPn6l9e6tKZ+m+f6uPuvrz8+5n2Nza0p4acp7Mxf8yVtmrdK11dmakrHd5NQ6J85Gy/v6e8nQcAAMD9V2yObBx5pVHzXJVbbPzel3iRuBUAgLtQ1pGNOa5GTRWdf82Rnb86ckpXhOkkW2hoa5Kr8/ZXjULmBDyAsPjk+6NX+vTplR75s38811N9019uJ/dnend5qU+v/NKsitos2IfmgyzUkPB6C8X+kjjzS5z3g1rEJcShS2/NL5UltVp+j3tvndNLf7zlC42B1K64rzEfLtNyX3RPJgAAANyN/N6BamrrJFVM6Av2YnNixITQ7lo8GBmLLmJOzDsjuR7OPny3z/ti6jkvvnV7rAXXS9gLAMAc2b7T574+NtZIWs6Ume/tYIxjyoPLxH2vO685bLudG46Cvybk99Tv1jRovLfb8dYVCiMmcZZXNptXcyXFTjMjY7jT5AXBuptp3nEF7qf0Y75fjPRFv+u3RfPtvvy2qsWBGoXoP/pevaDGVnfyS5vbmymYRC80pElvpyy95p1tOot23eVmf53Ma69vtlWUat62+3t5lXdqzofGyfSPe/xZnUFR1W36HAEAANwL4+86D3XsmK9dOdSm7bXmdepK25i7SSwaZBqTETFv6kals/zLYD0ONGy0bZnh1POl9GGy7qLatp6J8a3TOH7Z2LLxspn6ckJiAACQIDmPdd1iea80sYPJtZ1oxy0fqVlsO+UFDQ/81zsxz8uIeiXluso7qjmR1ve5wU50Xi0pJnHLKueTKwkmy9pfALIeV+C+Spl8v9Bx86Oevv27ntlnFuf9QXZr5kPB/HIVSMI7Af9hu6jm62lq3O3NNOjos3lN70Rt58/+YNIKmO01n6zWzXhJkPsh4/ekMp9HHQ1qBzRCAAAA7one+4YGxaqy9I2odadJZa/nfJpGpSNDLDpoFAI9tWxPMJ/byK2pG+helqkedvlQPbo1+9gI1yu/XVVxMNTIzMyNb6dlAABgjnl5rFmL5r1Sxg7TvFde21Uvme0vkn+85QQoNh64ZkuPowIa10DD6IVSSIhJ3A4U0+269Tv/7iXXsx5X4B5LlXw/2y/pjd6qtfAwM9e541a6v1yZ3kbBXvB+Ut6fKs4HT0BxUxk6Nt1QWa/Nr3JuC2Ssz52BajvTP3wAAAD8esHEduW8qVGGzhjRMjQqU8aiwXHpvZjXaQD7RkNni7MK2iymrEfk8mGh4WMKjcDrE+Jbc3m5E5yfV7zlGGoRAIA05uSxrlkg73XT2GGupA4A2a4wnBUbk+Qfayuw3d6JcxS2HgdiuqzHFbif5ibfz/Y3tPvtrfqB8d+XKb/3Qc3Qh0UtcKmrPwUueY39le52uL/KmUtz7a+M5N4BAADuViixfePEu5GhUbmMWLSw6Wxx1kjDQcp6RC4f0KurEBw+ZmRuEDeVGN+aBLy7XFdbjcINxrQHAGBdzMljXbNA3uumsUMSNwkek8R3e+In9YqfIykmcXu+TxPslXa4Z3/24wrcTwnJ9wsdv1h+4t384hXqRdN7r4b/YeGOB9/WYVwvG3uZ7LS8p7o73lNe5uoUrwePY9xSqbLg72H+JS4+W6eK+XWutmMv3wEAAMD9ky4mbFemV12OW4dqpx22JjYWzciPLwOZ7Uz1cBvJgXrMiX3doXnsY1eq+Nb0prMPAQBAtHl5rFmL5r1uGjskslfFBeIjl40vis3XNlZImXubzasFhGIS05vfjg/vTYGhorMeV+Aei0++n/2pN1+c/7+8UWljQxv+tH9mCrXvzpfc13x5U3LLXhxfuIsmMT3dq53AGJjuzRX8X67MePCjcLmZJo2aso68cWps2aE2P3i9ncpHXdXsHZVzhaEOQuNepuONPdVQwVnH9AcCO06WgyFnAAAA7rf5MWFRzW5VnYIXZ7q9sVL3no+PRbMxMW+gnqYenWqG4XNm6mH2M9iTrHykbs3cZM1b9+Fm02nIB8XEt736pD65nHeTs1AHNAAAMGNeHmvWonmvm8YOyfJ7fV11tya90N2p0FF15N841TMvzrqWV0uKSUyZpvvjTpPjkPW4AvdX7vLy8so+vjWnp6eq1bInw+8N0xCpSN3gr3DAHfn69auePHli59YP+8/+r/P+rzLOLeLw3rglxLdrib8nBPF+WD6O6ergXN4+MzLG7A8IvbpJ0I9CCf/bxrnGIrK8b1LdcHXduTd9YMgZAAAArAjiWwAAcJdGw8HMDVbH+n5uHwIrhOT7XD15bROaJgAAAFgFxLcAAOBulY9Gap4Hh50pqFP9tb3egV+B5PtcZR1dXTHeJQAAAFYE8S0AALhrZlx3/2ar3kTiHasoNxwOr378+KGfP38q7v+ksjSvMVOpVLKbBAAAAAAAAABgtXHDVeCBWfebgbD/7D83w1lNnFvE4b0BLA9/Twji/bB8HNPVwblcH5xrLCLL+4ZhZwAAAAAAAAAAWDKS7wAAAAAAAAAALBnJdwAAAAAAAAAAlozkOwAAAAAAAAAAS0byfVX16sqVWhrbWQAAAKyHXj2nXL1n5wAAAADclcTk+8XxC21sbEym/TNb4EgqSzZWq+Q0CHI5RbYJTNLYKbtJ4thtcASWH7dK1xogs6/5Fdxtxu13Rr+6/lHHEAAA4E6MWyqZeNGflhAT3Y9YZxonBydCMAAAAOBhik++Xxxr7/S5+peXunSm/tun+ri7LzfHnlSWUrFYVPvwekOpd9JWrVazc4spH13pqr+nvJ2PkuY1y9XTSbvo7Juz3yc3b0H9+voDAADcA6ajRqGj6siJha68aVTt6GXrV3apuF3F5miyb1fdmtqVnEortH8AAADAuohPvj96pU+fXumRP/vHcz3VN/11YWYSylLaOjhQbdDR52A7YtzSYbumnR0775vp3TTt/dNTPVdSq2V7y+fqzjO2V7j7Iq/3UKExkNNqcV/jN1ymrzHM65z1jM36/O2YdQV7H5ly+3LXbM8kb9uxeidqF6t6/bqqYvvk+mvj9jHm+XD9HaHXOXX9bp+fSKqvV1bvBfff31+vLOoYAgAA/FpOrFJpq9btay/QAyG/11fffcKPabznXTND8bk93EPxTlKsMy9+yhY/Xt+2LUhSPnIT8IPG+2ux23Rdc+LQtPGkXS+xHgAAALAc6cd8vxjpi37Xb37GPSipLFZZO7WBOoHs+/hzR4PajlMS5DRoXkof/J5Nzdke8wM1GlLXLT+aWTavvb63jNNKc5f3GmZRnPUUTrTjrmekZrGtSq6g4YG/XanxcrrdXr2gxpa3Tq/8XJWES55Nj/5idVv5/LaqzroPQ40aZx8Lzk5Mejl15bzAWVfc87OchtLL4OsONGy0bZknTX3blUNt2l5kXefcNN6bxliWYwgAAHCLxt91rpp2wgFfeuOWXja2bNxoJpPEj4t1TCI6In4KJbozxI+R23ZXMl95x9nrtvyLJ7PFofGxdHmn5gSAgU4h48/qDIqqbhPrAQAAAMuQMvl+oePmRz19+3c9s89MJZUlMwH/tBdPT+9N/vj1bGuqrKPA8Cr57aqKg6FGdt6odWeT7ouZriev7arXADuyK84/3nLaV3a7TuPpsF0M1TW/F9GT32df7zVkvHUPOp+nDSTTK95pUh1MWmB2n+Oet3MTbkNp5nXdwNA9Kesb7EXmNsbOv8c04gAAAO7AaKiBfbi4aRI7kY2vun4w6HDjJ53reyh+Shk/ulJuO0nWOHQmfgzF0jNJfa8jzEH6HwUAAAAAJEqVfD/bL+mN3qr16nrX9qSyuYIBvx2WJaqjTegS3UJjCY2uZTA9naaX7+ZyFWdPorkNmcC+eY2emQZScVMF+zAk7vmgVA3R9PUFAABYSfk99UdNnVe8eChxeJXI+KqgzeJAw2AvkLSybHuubHFdfCxd1mvTE94Nxsf63BmotvBlBQAAAABmzU2+n+1vaPfbW/UDY7z7ksrSmQb8k2FZbMlEr65C8BJdp9FStEV3qxa4bNifoi4f9hoyGjRUCDV6wkPuhHtFBcQ9H1TYTHFM0tYXAADgnprpqb0QkwR346CuthqF8PjwQZHx1UjDQVGbc3tGxEi77Vn2ashpXjxDXDcnlnY7hZihZ2xPf3LvAAAAwPIkJN8vdPwiLrmeVJaNF/BXVGkHh02J13u/YM/3ZQ6hEjlue4zeezWcRlrTjqXuT2a8zcmQO7YhOV1fT3Uzbmfc83ZuIv9YW8HXjVsqVQL9n7LUNwnD0AAAgDtlO25Urt/I1OtJnpcZ6cXrye0WhGOiENOL3T70BWMdGz9VAhnycesw9krNbCK2HcfuQ7H52hve5oZx3bVY2t9P0znk2r2XAAAAANxEfPL97E+9+eL8/+WNShsb2vCn/bPksqzcgN/5Py7YLx+pWzM3r/J6jR9uNhUYzTwVb5gXr+f5zS7x9Zkbc41U7RSml/CaKSIxbnr0K2LsTG/MUL/nVllH7h25/PUdavODGZsz7vlZM68rDHUQ6tWUvr5xln8MAQAAssvv9b0bmRamMU2hU9UHG2yVj7qqtStemYmJgvfB6dWncVDOu2npZHz2a7GOiZ8C6/88TTQAAHajSURBVHIms51R1P130kjY9qzBJPZzpkJH1VHwhvcZ47q5sbQdq97BkDMAAADAcuUuLy+v7ONbc3p6qlota8ocQJSvX7/qyZMndm79sP/s/zrv/yrj3CIO741fwPwwUJG6V/7NY7Gq+HtCEO+H5eOYrg7O5frgXGMRWd43qW64CgAAAGA1eVdqMuQMAAAAsGwk3wEAAIC11ZOXeyf1DgAAACwbyXcAAABgbZV1dHUVO/48AAAAgMXlhsPh1Y8fP/Tz50/F/Z9UluY1ZiqVSnaTAAAAAAAAAACsNm64Cjww634zEPaf/edmOKuJc4s4vDeA5eHvCUG8H5aPY7o6OJfrg3ONRWR53zDsDAAAAAAAAAAAS0byHQAAAAAAAACAJSP5DgAAAAAAAADAkpF8BwAAAAAAAABgyUi+AwAAYE2M1SrlVO/Z2Qi9ek65pBfcA/PrOH8/b6xXV67UcrYEAAAAIE5i8v3i+IU2NjYm0/6ZLXCEy/YVKJrLbTDkglNdN20bjFulhEaI1wAJb/N6g8St1x01IqLqf5f1AQAAuI9uI45Mkj0e8+LOUiu8hBvr3VJclxwHp+cf22Un7YlpAQAAsK7ik+8Xx9o7fa7+5aUunan/9qk+7vpJ9jP9GSj7uPtRu8HMfArF5khXV1fuNGqeq3LLDScjuM2rbk3tSrhhVD5ynu/vKW/n79p9qw8AAMB98CvjyPWJx3o6aRdVqxXVPlnu0SSmBQAAwLqKT74/eqVPn17pkT/7x3M91Tf9dWHmnuldsKzwVPr2l9yiBeT3DlRTW9M4f7anerBB1VM9V1KrVbdlJZWc1xYaA6ldcZ+b7WkUqXzkJuAHjfeTdbu9cgJdfdxeRJM6ONt0Vzu7fVO3iEt7Q5fimnKzvFl2dn3eslH1n61P8nHx6xC1DQAAgNUUjiPnxWS+9PHStXhs3FJpsuxNeoknxXWOVNuJjyM9GeLC3onaxapev66q2D4J18UI1cdZ13f7vCMuZo2LaaNjbCPpmFyPwetztgsAAADctfRjvl+M9EW/6zc/4z5xpj/ffNHT539MkvGZjb/rXEVtFtwZJ2guqLHVTejRNFCjIXXd8r76ffOaolTzlunvpexXU96ZSfoHOA2Ml40tuw1vO9PVBrd/pLJ9NpmzTOFQmyN/n+TMm33Kay9V/dMcF9Pumm6jW3O2+T5q5wAAAFZEKI5MJxgvTWOyNHqqF5wgcNLzvisdLjacSq8eEddNfiRwtvNS+jApK6oduZ3kODJLXNg7aatY3VY+v61qse3sVnBrThz6MrjfBxo22rbMhNQ1Z2OBhP34szqDoqrbETFtbIydtQ1wpKMs2wUAAADuQMrk+4WOmx/19O3f9cw+o7N9O977rjvszKdXC6fe1Xvf0KBYlRsnu0FzTd2jaUrb69F0ru+BNkCtmzbpfRMxiXnHItuvdacJ/Kh9SpT6uEy34TaEzr8v1CAEAAB4CEJxZEoLx2Smd7jz6oNJgruso5jhVAaNQqAHt+2d7hu3dNguqvl6Jq4bdPTZrUd4vfntqoqDoUZ2Pq3UcaGtj5e0zmu7WtSg83n6WhuHhva766zPN9OhZfy5M+ecRMTYi7QBorZbO5jsMwAAAHDXUiXfz/ZLeqO3agUT7M/eueO9u+PBF5qZb7oabJBUzpsa+Q2M0VCBpolV0GZxoGHWFsdN5PfUHzV1XvHqeDuXr2bYp/tyXAAAAO5YbBy5sAzxVHHTicDmC91ryO3FXbQlPnNV5DQ5n8tVNO1LbvLhgaFZCo2IOHB5ZpPlXrLf/yHAERmHBpXldUI3WfCxPncGqh3EnJO4GHuhWLes1+aqgOB2d7J2jwEAAABuz9zk+9n+hna/vVU/MMb7rPB48OmEGiTBBlNhU7NNEyca13CQ7XLiVGzvpdgY3TQO3Dp2teU08hYf0zNOhn36lccFAADgHouNIxeWIZ5aoAd6tFpg6BV/sj3Ve3UVgkOzjJoRceCyeElrDRoqhJL9A3X87HtkHBpWfu3U0QwBY3uwJ+bAo2LsBWNd94eCtNsFAAAAfrGE5PuFjl/EJN4vjvVif9rP/eIfpzHjwS/AjjNZCd2U6dC9AdTcy4mzDLFibhpVaTuNt9fTS1djmV439mGkvB5v+b19HHbds9qV6Q2lIvcpqf43OS4AAABrYUkxWRw7zMl0PPSe6tdu5ppC5Ljq8dyhdezjWIsONdh7r8agqKYdG96fTE/9QeO9N556/rG2gvsddVz9fXpphn7ZSRFfG4EYe9FY11/O/GCQersAAADArxGffD/7U2++OP9/eaOSO7a7nUzS/dEfev5td/Jc6Y30tv9uOh78jZgbR3VVa1cml9oWOtW5lxN7l8d6PXbihogJjb1Z6KjqNDJib87aq09fm/Nu/hQYgvKa8lGgzoWhDoLjYFq17oGGBW+dbm+mwD7Nr/9ixwUAAGCdzI/Jimp2q+rExGTJyjry7tBq47FDbX5YJBYzcd1I1U54XPicn8gvH6lba6tinz/cbOp6ZDmVJg6OY260qohx0r3x1v3x1Gf22xzXa73x7VjxgzlDv8TG2IvGut52DYacAQAAwH2Tu7y8vLKPb83p6alqtaQmw6obq1UqaHhwlZjAB9L4+vWrnjx5YufWD/vP/q/z/q8yzi3i8N7AXCahX5G6V4GbsSISf08I4v2wfBzT1cG5XB+caywiy/sm1Q1XAQAAAOA+8nrvM+QMAAAA7h+S7wAAAAAeqJ683DupdwAAANw/JN9/CTOGJUPOAAAAAMtV1tEVcTYAAADup9xwOLz68eOHfv78qbj/k8rSvMZMpVLJbhIAAAAAAAAAgNXGDVeBB2bdbwbC/rP/3AxnNXFuEYf3BrA8/D0hiPfD8nFMVwfncn1wrrGILO8bhp0BAAAAAAAAAGDJSL4DAAAAAAAAALBkJN8BAAAAAAAAAFgyku8AAAAAAAAAACzZA02+j9Uq5VTv2dkb6NVzyi1jRb9Kr65cqeUcAQAAAAAAAADAfZWYfL84fqGNjY3JtH9mCwLO9r2yF8cX9plk41ZJuVxd19Pdy0uoG25S/Rclqd1t5Zb4Y8AvTK675+Mh/fgAAADWmBcvmrgrOGUNZW4j/ola56+O6wAAAADcL/HJ94tj7Z0+V//yUpfO1H/7VB939xXKv5/ta/fbrnaf2vkU8nsHqqmtk9n2Tu+9GoOadsp2/obKR1e66u8pb+dvT08n7aJqtaLa13Yqu19XbwAAgIep2Bzp6sqJmczUdSLLSk6l1v1LcRPXAQAAAOstPvn+6JU+fXqlR/7sH8/1VN/016SD+4WOmx+12/i7CvaZdMraqelaorp30pZqO06pb7ZnU1Rv+Z7qk/KSgm2ua8PJjFsqTV6b1EMqzXYDeidqF6t6/bqqYvvk+mvjthvzfHK9nX38bp+fSKqvfzVB1HHyygqNgXMyKm7ZfWy0AgAAJCofuQn4QeP9tRjoenyUFP8sP6a6FtctvA0AAAAAD1H6Md8vRvqi3/WbzcZfHO/pze8f9e6ZN59F2cu+Bxobpve4yb1PU++9ekGNre6kV9Ooea7KzGW77cqhNkdeebc2UON9sHET5DRiCg1p0kuqKx1GXwKcZrtB5keDYnVb+fy2qsW2s9rgK+O2m7Y+TiPsZfB1Bxo2nAMVsPhxymuvb15fdA68t3x/j35ZAADgASrvhK6sjI+P4uOf24+pTHI9YhszHT3Sx7cAAAAA7ruUyXevl/vTt3+Xm2s3Q9K8+V0fF8m8GzMNJK/3eFOv/dz7uKXDdlHNyRN2uJpBR58DLaBaty+/beMm9M+/hxpIE2b9zhYPJg2hso6iLgFOud0J+/rqtllTXtvVogadz9M6xG03dX0+qzOYeV3X2U/fso8TAADAQ5c1njN+RUxl47ru0cw2dK7vxG0AAADASkqVfD/bL+mN3qr1ynR7v9Dx3hv9/vGdl4hfSFmvm9Mx0ie9x90530CNQvCy3IrCfb4zKm6mHB4n/XbHnzsaFKtyc++O/HZVxdmGXdx209RnNHRqM8+SjxMAAMCDt0h8dMsxVWRcV9BmcaDhyM4CAAAAWClzk+9n+xva/fZW/cn47xcafZE+7m5oY8NMJb1x5r+8KWnjxbFTmo6bqG4fqjX2bljq9R4PqqlrL8mdTtOeQJkNhkrXrkm73bE+d5wm1KChgt9IKzScRtVAnWD2PW67aepT2FTRPoy35OMEAADw0NirCqcjGC4SH91yTBUZ1400HBS1me0GSgAAAAAeiITk+4WOX8wm3o1nend5qcvJ1Nfbp9LTt31dhl43hztG+kCdl4fuDUtDuffI8dNvwA5zM11fT/WocdyzbLf3Xg2nsdS0Y3L6kxnvc3LDr7jtpq7PY20FXzduqVQJ9MFa1nHicmYAAPBQ2fio2HwtN/eeNj4Kxj+/Iqay26gEbsA6bkXEwQAAAABWRnzy/exPt0e7vrxRye3hbqf9M6/8xuwY6YOBagez452bG1eNVO0UApf+OlNUgjqVso5GTanhr+9Qmx8ixljPsF0zVI5T8Wu9obyxO/3x7OO2m7Y+M68rDHXgzE97Td38OHlD5Xi990s3bXACAAD8AoNJDGXio46qo+BNTufHR9fjn18RU5ltdFVrVybrL3SqGkXd9wcAAADASshdXl5e2ce35vT0VLVa4EahABb29etXPXnyxM6tH/af/V/n/V9lnFvE4b0BLA9/Twji/bB8HNPVwblcH5xrLCLL+ybVDVcBAAAAAAAAAEB6JN8BAAAAAAAAAFgyku8AAAAAAAAAACxZbjgcXv348UM/f/5U3P9JZWleY6ZSqWQ3CQAAAAAAAADAauOGq8ADs+43A2H/2X9uhrOaOLeIw3sDWB7+nhDE+2H5OKarg3O5PjjXWESW9w3DzgAAAAAAAAAAsGQk3wEAAAAAAAAAWDKS7wAAAAAAAAAALBnJdwAAAAAAAAAAlozkOwAAAPBQ9erKlVoa21kAAAAA90di8v3i+IU2NjYm0/6ZLdCFjl9Mn3enaWE645ZKuZxy/nTnjYaxWqVAfexU79liq1e/u7qOWyXlZip0l/UBAAC4K24MFBGrzZMldrqr2GvRfZuHuBEAAAD4teKT7xfH2jt9rv7lpS6dqf/2qT7u7iuYYt/96JW507tn9tkUTA+dQkfV0ZWurrxpVO3oZevumwLF5mhSp6tuTe1KTqVAvcpHzvP9PeXt/F27b/UBAAC4fT2dtIuq1Ypqn2TLUN80drr92GvxfZuHuBEAAAD4teKT749e6dOnV3rkz/7xXE/1TX9d2CcW1lO90lat29deIPLP7/XV95+Y6RU/7fXjLJsrqdWq27K684x52p8PTJOFZnu022XSKB+5CfhB4/1kGbfHUKAbktsjarJup25unj6qnl49Qj2YQpcJm3KzvFl2dn3esoXGQGpX3DL/B4HZ+iTvr1+HqG0AAAA8EL0TtYtVvX5dVbF9Eort4mKj2NgpMu68w9grYd9cofo66/pun3dk3ffoONZI2qfrcW59znYBAACAdZV+zPeLkb7od/3mZ+MdH3f9YWde6DhtUn78Xeeqaads569xAvqX0ge/R3yzqPZh8PLYgRoNqeuWH6lsXl85V9P2ojevV62rqyOzARP4F9TYcuYn6ztXJdSAmKO849S2rciOR07j52Vjy9bFTMEfFGbrmYazTOFQm5N9kTNv6prXXj+wb07Z5IeKkHT7265Mt9GtOdt8n/poAAAA3LneSVvF6rby+W1Vi20dBpK85Z2aE+wEktbjz+oMiqpuR8VOcXHn3cVeSfvmbu+lE2BOrtQ80LDRtmUZ9z02jk2zT+E49yjTMQcAAADWR8rk+4WOmx/19O3f5Q0u80ivPk2HnOm/ld6UwkPSxBoNnXA9SVlHgcth89tVFQdDjey8UesGktluMn9Lj+0C+cdb0vl3p9ngcAP/mrpuIt6T3ztQzVni+9I64sQk5h2heqYUvCIgc11T7m9wG24jzT9eAAAA9924pcO2n9jNa7ta1KDzeRrLzHScGH/uaFCsKjoPPD/uTLTs2GvevtntHUx+CHDq33XW58u070ZEHJt6nwJxbtR2aweBTikAAADAekqVfD/bL+mN3qr1KtDtPeDRq4Z29VH/lPGeq3FCl8AWGsnJ+vxjbQUaA6a3kLYee42oyER/QZvFgYapW1UJ8nvqj5o6r3h1vZ1LazPU9bb3FwAA4I7NJpS9hHlHnydhWFleR2yTCR7rc2eg2kH8OOeZ4s5ZS4695u5bik4sqfc9Lo5daJ/Kem2uGghuN/4yVwAAAGBtzE2+n+1vaPfbW/UD479fc/GXvumpCrEvCEgaxsXo1VUIXgLrNAqKtiiS2/PdDNfiNRwq7UBPncJmxLIjDQdFbRbs7Dxm3E2nxrHtB9Nwceva1VajEB7TfSky1HUZ+wsAAHBveYldDRoqhBLmA3Wm2XeVXzvxoxkGxfbijo3jssads5Yae6XYt8jthaXedyMqjl1wn9wfCtJuFwAAAFgTCcn3Cx2/iE68n+2Hx3g/+/ONvjx9rj/SJN/9njGV8M2mTK+jqJ7jvfdzeiCZ3jl2LE5vClwCa8fKrIRuLHXo3sQq/vLbAHNDq0pbxebr6TpjmR5B9mGkvMyIOF6PIIdd96zgcYmsa9IQMTfdXwAAgPus916NQXFyrx9/MmOzB2+Q78dEhy/N8Cc7KeI4T2Tc+atirzT75l7xGRgHPiqeXGjfA3HsovvkL2d+MMhwzAEAAIBVFp98P/tTb744/395o5J7U1U77Z/p2d9+15vS9Lm5PeNn5Pf6TkPC3EzU9upxpkKnqg9mYMjykbo1J3C3zx9uNhUYyfI683pVJutxp5J/g1Zzs6yuau1pudnOKDC256xBozBdT6GjqtMAir7BlqNXn742592YKjA85jXlo0BdCkMdBMfotGrdAw3tcXF7Yl0bh9TrDRU9xE32/QUAAHgo3OEFI8YS98YkD15ZacdLH8wZ/mRO3PkrY690+1bWkRdEe9sz8eS13vop9z02jl10n7ztGgw5AwAAAHhyl5eXV/bxrTk9PVWtlphCX5jpMT/bIOjVTeNpFJ80v5fGapUKGh5cJSbwga9fv+rJkyd2bv2w/+z/Ou//KuPcIg7vjQfEJPQrUjd4JSruFf6eEMT7Yfk4pquDc7k+ONdYRJb3Taobrt5no+FgeoNV11jfz+1DAAAAAL+E13ufIWcAAAAA34NPvpePRmqeTy+LNZfNdqoPrdc7AAAA8JD15OXeSb0DAAAAvgeffPfGpQzfmOphJt69/WDIGQAAADw8ZR05cTixLAAAADCV++d//ucrP2ltRP2fVOb/H1f2+r9uu/+f/if/hfs/AAAAAAAAAACrLvdv/+2/9bLkt+Q/+vCfuf//t//5P7v/A7iZdb8ZCPvP/nMznNXEuUUc3hvA8vD3hCDeD8vHMV0dnMv1wbnGIrK8b1Zg2BkAAAAAAAAAAO4Xku8AAAAAAAAAACwZyXcAAAAAAAAAAJaM5DsAAAAAAAAAAEtG8h0AAABYEb16Trl6z84BAAAAuEuJyff/7//zUOX39cn0X4xsgRUuP9S/+h9twRxuoyAXnOq6102EcUulUH1zKrXGtjCdcatEQwgAAOAG3Hiq1FIoCrNx2myYFfnaCMRoAAAAAG5LfPL9f/wn/R+/PdW/fH2knjP9y//g39f/4+T/on9ji03i/T8NlPdeH+g//ndsYQrF5khXV1fuNGqeq3JfE/C9unKFhra6Xl3dadSUGoXMCXgAAAAsLr9dVXHQ0edgCDYaauD81z4JR5Kj4UDF6rbydh4AAAAAfrX45Pu/8zf9n/63f9O/Z2f/vcdPncbLpf4/bu/2/0b/t/9K+k9fTMtvIr93oJramraZxmqVgj3Np4n5a72TTHI8lLjvqR7q/RS/Lu+1JbVaZh2zZYaz7GHb/aHgqGyfMvJ76ndrGjTe29d72wh1mjL1cntbeWWFhtMsbFfc7UyS9jM96q8tHyhzp8kLkvYJAABgReW3VS0O1Alk33snTqxWq6nYPgnFeCftoqrbNvUeGXMlxGiJsdb1+LGVNT6NiQGvDxnj1SOyw0dSHBmSHDe6sfWkzNkvd1PeMqF1TmJbdyYmhk7eFgAAALBu0o/5/j9cOuH0hv4Xpnf7//j/04Xz33/5aTokTflf/zfuyxYy/q5zFbVZcGecoL2gxlY3sme82+Mp0LhyFlWxGEjcu+uqaccmy3v1iHWFLkEeqNGQum75kYI5do0/qzMINNyCyjvOVs71PaItFJbXXt9styjVvHr098z6nEbLS+nDpF5FtQ8DDZrKuZqjaZm7rP0FYP4+AQAArKK8tqtFDYb+WIg2yf56R1vBjhy9E2duS4/dEC4u5oqL0dLEWuH4cS9TfBofA5Z3aqYL/2Q98bGos46CU4HJlaRdaRJHBiXH1SaB/7KxZffDTH3ZQ5DC9RiaGBUAAAAIS5l8/+/0r/r/Rvn/oKL/lZl1E/HSf/jCDjnzv/sXyv+//s/XxoRPq/e+oUGxKrdd4TYyauoGupp7PeNtojv/ONC4GutzRzo4cEptFnzsPDGo7XhJdKdBceg0yJqvZ9Y1c7lyrTuTdA/xG25RBpq0/TIr66i/N7kU2ruMeih3dW4Dbbrd/OMtOTvoNVxS7hMAAMAqcuMiP0FtYiY3hizL5K0n8eD3cyfAs/FgUswVZZH4MUt8mlQft3PHNGnvLXdwPSHu/rhQ08GkILzOiXlxtSvwI0FGoWNAjAoAAABckyr5/m/+9Rv9S/0L/e//1/+ufcawveCNf+d/qf/wfy5d/A//nX1ivkGjMLkktXLe1MhvMNhxO8MK2iz6ie5g42qk4ZbTkClsSp3PTlPHNHYGTltrGvS7vXIKwctfK04TI4uk3u1+b/3FhC7zLTSm++024KbbNZdTa+txoEF1030CAAB4oAIJajc5bWMk02t8EBMPxsZcsbLGWtni0/j6lPXa9IR3s+FRcW1AcdOJkOeYF1eboRRHTZ1XvLrc/H5GxKgAAABA0Nzk+7/513X9H/7//0L/MjD+u/5nG04jxx//fTHBG65eBXvqOA2Von045TRiBtNE96Rx1TvRuXnSjP8p06vGvG465IynFriU1p9SXlLrJsFjereHLmdeQK+uQvAyX6fhM9lvt+f7tPFSaYd7LN1onwAAAB60aaLb3FR1kpw2SXnTy7rn9faexINJMVes7LFW6vh0Tn0mQyzaXutxuXcl9d73pYir3QS8W5euthqFhLHj0yBGBQAAAIISku//nf7V/zUi8W64Pd3/3/ovv9ue7qOu/uV//+/rP3wc7Bm/IPdGWm1VApH/uHWotj8sjWEbV+9PzrXlZr/zerw10PD9idqTS3oddl2HC/fisb2PKv7Np6xxS6WKuRHra7sts31zBbStsy2/xh86JoI79I597PZSsmOPelPwsuab7hMAAMDD5iW6X+qwHUxOez26O4fBIV6uC8VcvmCMtmislTY+nXGtPn4sbHrExy1ne/9P69hTPWps9TRx9YQ5fvZh2tg2iBgVAAAAuCY++e4m1J3///v/u/5T/6aqkxur/rv6j1/8C+m/euM9d/Jv9L/ZOdB/7A9DcyPm5ldd1dqVySWrhU51OiyNy/R4Gqjd3po0uEwjrN1uz1yaa9Y1UrUzHeLGnTLc+Cm/19dVdyt8CW2ho+poelMuo3wUqHNhqINuzZZ4vPE8Gyo45e4lveUjdWtOY8iu83Cz6TSiLFOm6f6706TON98nAACAB81NdA80CA29Ym/G6jwfigeTYi7HtRht4VgrZXw6pz7+fhixQ8442zoaNeUEqLZ+h9r8EDHmu7svCXF1rz55PpfzbpbqX2w5L7a9jhgVAAAAmJX7t//2317Zx7fiP/rwn7n//7f/+T+7/2M+Mw7o7A8OvbppnI1CCX+sp69fv+rJkyd2bv2w/+z/Ou//KuPcIs5avjdMUrwidYNXPwJLwGctgng/LB/HdHVwLtcH5xqLyPK+SXXDVfxaZvzS8A1Wx/p+bh8CAABgpbk3208YqgYAAADAw0Dy/R4qH43UPA8OO1NQp0qvdwAAgNXXk5d7J/UOAAAAPHQk3+8lM2amf7NVbyLxDgAAsA7KOnJiP3/sdQAAAAAPV+6f//mfr/wErxH1f1KZ/39c2ev/uu3+f/qf/Bfu/wAAAAAAAAAArLrc5eWllyW/Raenp6rVanYOwE2s+81A2H/2n5vhrCbOLeLw3gCWh78nBPF+WD6O6ergXK4PzjUWkeV9w7AzAAAAAAAAAAAsGcl3AAAAAAAAAACWjOQ7AAAAAAAAAABLRvIdAAAAAAAAAIAlW93ke6+uXKmlsZ1dF716Trl6z84BAABgHRETAgAAAHcvMfl+cfxCGxsbk2n/zBac7Yeen0778l+SxG0M5IJTXfe1aTBula41XNz630pif6xWKadSK7xmtw4Lbi+q/gAAAA9RZEw0bqnkxJOz4U7a+OlBx0p23ycx9Rp2PAEAAADus/jk+8Wx9k6fq395qUtn6r99qo+7Nrn+7J37XHD6uOs8v/s3PTPlKRSbI11dXbnTqHmuyj1OwM8qHzn17u8pb+cBAABw+/LbVRUHHX0OZphHQw2c/9on4UhyNByoWN1e3XjNXOVZ6Kg68uJpN6audvRyphMHAAAAgLsTn3x/9EqfPr3SI3/2j+d6qm/668I+EXRxrObHp3r797Sp97D83oFqastrM/VUz5XUajkNilCveK9XeGxv+VDPH2f57/Z5l7dsqFPT7LA0Mz2H6j1vmULDac61K+5zfo/065fxJtXN37bZL7/cqd9N2kXX6mqfD4mvPwAAwIOU31a1OFAnkH3vnbRVrNVUbJ8E4q+eTtpFVbdt6j0ydkqKlZJiu+uxamu297yJM68tE4jZYmK5uBjzegznrK/SVq3b117g14X8Xl/94BMhSftkquTsw6TMj1W9ZUJVCsXQC8btAAAAwJpIP+b7xUhf9Lt+87PxAWd/vtGX3YZeRZSlMv6ucxW1WbDzGqjRkLpuL54jld0AvqDGVjemt7xT/tJZYNKb/kDDRtstScdpOBSCy3elw8/a7pvtFOW0bNznoxsz8+rmaVcOtWl7JnVrzv69X7QJ4tT1pfRhsq2i2odRlxjntZeq/gAAAA9FXtvVogbDkZ23SfbXO9qadOQwT584c1t67IY+cbFTfKzUq0fEdqEhXcKx6p7pkR9I/juhrYrFQH3cWLemnbKZiY/lyjs104V/sh6NP6szCPyI4AutL4058eq4pZeNLbs/Zgon9ZPNxu1pjh8AAACwHlIm3y903Pyop2//HjGszJn+6aMZcWaxXu9G731Dg2JVwXZFresF7y634VFT92jawvB6y5/ru4nibfnBpJVQ1lHXabyk5TbQZpZPO6zMvLpZwZ5JbsPq/HtsA2TQKAR6CtkeWRPhunmXXw/lN0EBAABWWf7x1jRBbZLQbgxZlhdeedHV+Pu5E3zt2FgyY+w0bumwXVTz9UxsNzPcTShWzT8OJP/H+tyRDg6caNCvj/PEIE19yjtODDlN2nvLHVxPhNuhdlJLFa8GfizIKBy3pzt+AAAAwDpIlXw/2y/pjd6qFdG1/eK4qY9P3yrriDPBBHPlvKlRUrI7soFR0GZxILfjU9YGSJTiprPGBcyr2wKC4+F7vYWKtsQTuiy40Lj5vgMAADwUgQS1m5zeeuzGkKZzw6DzWWM3+T1QLdAtPHvsNFCjYF/vThVni0mCyf+Rhls7Khc2pcz1Keu16QnvZsGvL7ewefFqfk/9UVPnFa9ONx+qMOvxAwAAAFbT3OT72f6Gdr+9VT8w/vvUmf5880W7jaiyZKEE87xe5k7jJZx+NpyGzcAOVRNZntGivcfn1W3ZenUVgpcFOw2lG+87AADAgzFNdJubqk6S0yYpb3pX97xe3pOc9UKxUy0wBIs/JQ/FMkn+9050boJAMz69TG9vExemr4/bE9707Le91SNz7zM95OdKE6+aBLxbp662GoWYewqllf34AQAAAKsoIfl+oeMXSYl32+tdu7rBiDPpuDfXaqsSaAWMW4dq+0PV2Et9D/1eOuYmVpVg/5q8vCuU7fKz5bYBM1nejMUZHJcyYYiYuXW7Ze6QPfZxrKT6AwAAPDBeovulDtvB5LTXk7tzGBzi5brI2CkYK9nYbhoXpmST/+9PzrXlDjZv4s+Bhu9P1M5SHz+2ND3iY5ezPeQr4Zv4mx71kb3WM8Wr5jjah/Ni6CiLHj8AAABgBcUn38/+1Jsvzv9f3qi0saENf9o/88ptr/foceCXzdwQq6tauzK5fLXQqQaGqinraNSU/KFsCkMdzPQiKh8FljfloTHhZ5bPHWrzg7dubxzOhgrO89GX4M6r25KVj9StOY0nu63DzaaCezJrfv0BAAAeGDfRPdAgNGygvRmr83xoqJY5sdP1WMnEdiNVO+F78OTm3jDU9MgfqN3emvwgYH4kaLfbmerj74eRNORMfq8vL3yd1tHEoB8iu5fPiVd79cnzuZx3s1R/ePjkGDrKoscPAAAAWD25y8vLK/v41pyenqpWmxeoA0jj69evevLkiZ1bP+w/+7/O+7/KOLeIs5bvDZMMr0jdq8CNTIEl4LMWQbwflo9jujo4l+uDc41FZHnfpLrhKgAAAIBfo3fSNt3eSbwDAAAADxzJdwAAAODe6MnLvZN6BwAAAB46ku8AAADAvVHW0dXVZMx1AAAAAA9XbjgcXv348UM/f/5U3P9JZWleY6ZSqWQ3CQAAAAAAAADAauOGq8ADs+43A2H/2X9uhrOaOLeIw3sDWB7+nhDE+2H5OKarg3O5PjjXWESW9w3DzgAAAAAAAAAAsGQk3wEAAAAAAAAAWDKS7wAAAAAAAAAALBnJdwAAAAAAAAAAlozku9Wr55Sr9+wcAAAAHqL7FNMRXwIAAADrLTH5fnH8QhsbG5Np/8wWGGf7obIXxxe2YD63IZILTnXdtFkybpXmN27GLZWC2y21NLZFAAAAuP9uI46MQ3wJAAAA4Cbik+8Xx9o7fa7+5aUunan/9qk+7u7Ly7+faX/3m972vbLL/lvpzZ4y5N9VbI50dXXlTqPmuSq32HBy9erKFTqqjrxtututdvSyRfMIAADgIfnlcWQc4ksAAAAACeKT749e6dOnV3rkz/7xXE/1TX+ZBPvFX86j3/XbpPA3Z25x+b0D1dTWyaTVNFarFOhBFGpQ9VTPldRqOY0dt6ykkvPaQmMgtSvuc6VrDR5nmUpbtW5fe3n7lCO/11c/+ERIUh1sT6hJmVMfd5PeMqEOUqZRNukBNVt3f53J2wIAAEC063HkjJme6dM4zY/bTHzml4djOuJLAAAAADeRfsz3i5G++An3R6/U2P2o3Q3TE/5Cxy929e1tS6/8ZHxW4+86V1GbBXfGaSgU1NjqJvRoGqjRkLpuudPA6ZvXFOW0ftzXX2vwuOuvaads5+eaUwenEfeysWW379Uhto11TbDuRzJV6tUjtsUlywAAAPOF4shZPdVfSh8mMVZR7cNwjNWuHGrT9lzv1pw47b2J9vLaI74EAAAAcEMpk+8XOm5+1NO3f9cz+8yzd5f66CbgS3qjt2otnHl3GgfvGxoUq9o2DYzxZ3UGNXWPpi0Zr0fTub4HWgu1rtewSGU0dJokGaSqQ0IPqzlCdXcaWoftopqvZ7Y16OgzrSMAAIBEoTjymrKO+nvyi/LbVRUHQ43svBHsuV7eqUnn39MlqIkvAQAAAMyRKvl+tj+bYD/T/saG/ulvdjz456cqbbzINOb7oFGYXAZbOW9q5DeMIhsyBW0WBxoGW0q3aV4d8nvqj5o6r3j1v34ZclYDNQrBy4IrTtMLAAAAUWLjyAihoVwKjWwJ82UivgQAAADWztzk+9n+hna/vVU/MP77xXFTH5++1d9tN/hHr1p6+/SLTv+RPvsevFHWVbDBVNhU0T6cGmk4iLucOIXyjhLHAp2Vpg6mgeTWv6stpwEYGoczs1rgEmN/ynKpMQAAwPqIjSNn9eoqBIdyGTUjYrwFEV8CAAAAmCMh+W7Gcr+eeDce/fa79GXkvMK6+IdOv0i/T+7AegP5bVWLbVUCrY1x61Dt2MuJA2IvEy7rtRnjs+LfuMpjekJF9irKVAfTY8k+dJp+j7ektt8KMzf4qszpY2S3dXjj3k0AAABI4g5RYx+nRnwJAAAAYEHxyfezP/Xmi/P/lzcqbWxow5/2z8yA73a8d/tc6Y30tq93/oDwN2JucNVVrV2ZXCZb6FQTLyc2vDE8GyrEXKab3+tr1FTo8luz3g+R3X/m1KFXnzyfy3k3s/KH7ywfBZYrDHXQrXkFscy2Rqp2ppdPuxM3xAIAALiZ8pG6tbYqNr463GxqXmQWRHwJAAAA4CZyl5eXV/bxrTk9PVWtlqWpAyDO169f9eTJEzu3fth/9n+d93+VcW4Rh/cGsDz8PSGI98PycUxXB+dyfXCusYgs75tUN1wFAAAAAAAAAADpkXwHAAAAAAAAAGDJSL4DAAAAAAAAALBkueFwePXjxw/9/PlTcf8nlaV5jZlKpZLdJAAAAAAAAAAAq40brgIPzLrfDIT9Z/+5Gc5q4twiDu8NYHn4e0IQ74fl45iuDs7l+uBcYxFZ3jcMOwMAAAAAAAAAwJKRfAcAAAAAAAAAYMlIvgMAAAAAAAAAsGQk3wEAAAAAAAAAWDKS745ePadcvWfnrs8DAABgjfTqypVaGtvZ20bsCQAAAKymxOT7xfELbWxsTKb9M1tgnO0Hyl7o+MI+P9dYrZLTwMjlFNnGMI0dpyzY4HEbJL+wAbRapsc7OJVat380x60SDUkAALBEUXFNXQ8i2hi3VArWm9gWAAAAWHnxyfeLY+2dPlf/8lKXztR/+1Qfd/fl5t9N4n33m972vbLLj7/rTcmWpVQsFtU+vN7o6J20VavV7JynfHSlq/6e8nYe2dW6zjG8mk79PY4mAAB4mIrNkY1pRmoW26rc9x/7TeeSQkfV0TQWG1U7evkLOkMAAAAAuDvxyfdHr/Tp0ys98mf/eK6n+qa/LqSLv75JT5/rD7/w2d+0a8vS2jo4UG3Q0edgm2Pc0mG7pp0dO2/NXorr9qie9BwqadJumelRNF1ktpdUxh5Sc9Zb7/VUn5QH6uOat+2kcn/9dtaYuQw69likcP0SZ297017xaeoWte9eWaExkNoVt8xf503qCwAAEJbXdrUonX+fxEbJ8YuJW5z4o2WvtPTLQrGeU/7dfXHAAuuccMorbdW6fQX7PuT3+gmdIZK2FxdP+bGZ+xJPKG6Mq2fytgAAAAAsLv2Y7xcjfdHv+u2R9Oi336UvI4Vz7V80ypB8l8raqQ3UCWTfx587GtR2nJIETuPoZWNLXdtr6OrKb8g4DYpCQ5r0hOpKtmd9r15QY6trn7/SqHmuSupLfZ31vpQ+TJa93mO/XTnUpu3J1HX2qfF+2mRJ3rZp7ESUp230xB6LdMo7NafyJ9NtjT+rMyiquu2tJM1xi973vPb63rFyWppumdu4vGF9AQAAwsb63BmoWN22V0imia2ceMUJGb145MiJO51lXgZjyAMNG237Ws/8mGh2nQHj7zpXTTuJAW7QnH24UTx1vZ43i5MBAAAAJEmZfL/QcfOjnr79u56Z2Wfv9HH3o3YnY7439e2p+8JMTPJ30HhvG0M9vTftntdpWiZtnUxbUJ7eifNsTQeT1kdZR2aoGqeBctguhtab34vodR/LrsfO5berKg6GGtl5I9iTyU1o+72v5m3bTXbX1D2aKXeaaN9Tt3gijkWEdiWiR1N5x9nWdHn3x49iVW7uPeVxi933WOnqCwAAEGfQKNiYpqBGoONA2tiq1g0kyO0yoRiyGxgCMXVMNJN0942GGtiHqaTah8XjqfC+3zROBgAAAJAkVfL9bL+kN3qr1it/nBmTf7fjvbtTQ79/sQVZBJO/JnnuJ36T5PfUHzV1bpPJoRuHFjdVsA/DBmoUgsnnirPV9EKX9hYa2RpQSduObIwVtFkcaBjM7sdJOhYzwmO++40uc/WB03xzT4DXc6x2EBxb/2bH7ZoM9QUAAIgzHfPdmbpbTrxih15ZJLZKlRxfckyUZN4+LD2e+oX7BgAAAKyZucn3s/0N7X57q35g/Pdrzv5JH7Wrv7nd4rMo67UZxuWk595odXrJ8Bym0eE2uLraahSmY1vO9EifqgUuzfWnlJfo9uoqBC/tdRo7RVuUTsK2C5sR6xppOChqM/pXhOvijkVK5dfO/pihZ2wvq/Al0Tc4bnFuWF8AAIAQtzOHTUwvEltFLjPrBjHRzJWGc6XZh6XGU7cQ7wEAAABwJSTfL3T8IkXiXWfa3w0MSZORO4xLu6JKO3i5b1qmF5B9aBs2h5PePz3VzXiV+W1Vi8Hnb6b3PkPP93nbtuWVQItp3DoMXAGQ1+Mtv2e6Y9xSqRLXFylwLLLw6/hyZrz9ZR232GFoFqwvAABAkDv0oE1Mz42tIuQfaysYQ87GWzeOiWxnk4p/Y1SPubIystd6pn0IxlNZ4kZrWfEeAAAAgEjxyfezP/XGDCXz5Y1Kk7HdnWn/TLo41ovJc7v69ravT4EhaTJxg37n/3k3WvX16oHLYr0bRHlDYpZ1NGpKkzFAD7X5wQyhYm7+OVK14z9vp7Q3kiofqVtzGkB2ucPNpgKjgM4xb9umvKtauzIpK3SqGgXGmC8fBcoLQx0ExyCNPRbXhcd8D16inNe2cwIGg4FzCoIL3/C4Obzx8Rsq+NvLUF8AAIA40zHfnanSDtyDZn5sdd1MDGnirdCVjkuIifb68jYxXd7U60Nkx5M5+5AQTyXGjZFuvm8AAAAA4uUuLy+v7ONbc3p6qlotfcoaQLyvX7/qyZMndm79sP/s/zrv/yrj3CIO7w1gefh7QhDvh+XjmK4OzuX64FxjEVneN6luuAoAAAAAAAAAANIj+Q4AAAAAAAAAwJKRfAcAAAAAAAAAYMlyw+Hw6sePH/r586fi/k8qS/MaM5VKJbtJAAAAAAAAAABWGzdcBR6Ydb8ZCPvP/nMznNXEuUUc3hvA8vD3hCDeD8vHMV0dnMv1wbnGIrK8bxh2BgAAAAAAAACAJSP5DgAAAAAAAADAkpF8BwAAAAAAAABgyUi+AwAAAAAAAACwZCTf76teXblSS2M7CwAAgOXo1XPK1Xt2DgAAAABuR2Ly/eL4hTY2Nuy0rzP7vOviWC8mZRvaDxUmGatVcho8uZwi2zwm6eyU3STx7DaoAsuPW6VrDazZ1/wK7jbj9vsG7mJfAAAAfr1pHBmcyKMDAAAAuI8Sku9n+vP0ufqXl7p0po+7H7U7ybCfab/0Rnrbd8suP+465S90fGGLUygWi2ofXk8Y907aqtVqdm4x5aMrXfX3lLfzUdK8Zrl6OmkXnX1z9vtkuS3EX78vAAAAd6fYHOnqyol/zNStqV3JqdSiGwIAAACA+yUh+f5M7z690iM796jwVPr2l9z8+tk/6aN21XhlS5/9XW+fftEoQ/J96+BAtUFHn4PtpHFLh+2adnbsvM95vhTZu6mneq6kVsv2ls/VnWdsT3D3RV7vqEJjIKdV5r7Gb5hNX2OY1znrGZv1+dsx6wr2rjLl9uWu2Z5X3rZj9U7ULlb1+nVVxfbJ9deG9tHZ1nf7vCNcV8PbdvS+mFWVAvUK1jupztePZX3OdgEAAO5c+chNwA8a7wNxTcY4LSbWnBeDAQAAAECSlGO+n+nPN1/09PkfbjL+4q9v0tPCJDHv+/ZXhuy7ytqpDdQJZN/Hnzsa1HackqCe6i+lD7Z306g522N+oEZD6rrlRzPL5rXX95ZRresu39+L6x/urKdwoh13PSM1i21VcgUND/ztSo2X0+326gU1trx1euXnqiQM/WJ69Ber28rnt1V11n0YarQ5DbmXzk5MenEdaNho2zLnSO3UpGDCfvxZnUFR1e2IfXEajy8bW/Z4mKkvb5dNYzGizqHGaPhYHmXZLgAAwF0p76imtvyLC7PFafGxZqYYDAAAAABmJCffz/btmO5mWJmP+uT3dL/mkX773T7MwDRopr2Uenpv8s+vw+lzk6Q/Cgypkt+uqjgYamTnjVp3Num+mOl68tquegn7I7vi/OMtyd+u20O/GKprfi+iJ7/Pvt5rqHnrHnQ+TxuAbkOupoPJDwPOPncDQ+/MNCjdHymKVcW3+6avnbDb6Po75HDrrHN9D9Q5dCyjtls7sMl8AACAeyhrnJYUaxILAQAAALiB5OT7s3femO7O1C80r990deJCpjN8ZsEGjR2WJbozd2AYlUJDA/v83TI95aeXJ+dyFWdPos0my71GXaABOBrO2SdzlYDpeGUO1FifOwPVDmLGeM/vqT9q6rzi1WtyWXTkNgraLA40DP6SEVLWa9P7K7jdnWlDFgAA4H5KH6cZ8bEmsRAAAACAxaUcdkZ69MdzPdU3mZFlHplu7l9G3vjvAb//FtczPs60QTMZlsWWTPTqKgSHURk1VbRFd6sWGNrFn/whXoK8hpoGDRVCjbrAkDuFzbn7VH7t7Le57Nn2YE9s95kEvFufrrYaBW/c0shtjDQcFLVZsLMR3B8K0m4XAADgLphOHE5sNo1T0sZpjjmxJrEQAAAAgEXFJ98vjvVif9rP/eIfp/qi3+Xm15/9Tbv6qH/yi8/+1Jsvu/rbMzufgdegqajSDg67Eq/3fsGe7+ffp8O83FTkuO0xeu/VGBTVHAUbf954opMhd/KPteU0GSfrMzf9qsz0z/K3+TJqXPw4pme7fWiXr4RuzHoYe7XBhL+c+cEg9XYBAAB+ERs3FZuvvTglS5wW4VqsSSwEAAAAYEHxyfdHf+j5t1075vuGSm+kt/138vLrz/Su/1bfdr2yjd1vgbKM3AaN839cY6Z8pG7N3PzU6zV+uNlUYDT0VLxhXrye55NhWG7E3Mh1pGqnML1E2UwRN/IyPfoVMTaoN966P4ZoWUfuHV3t+gpDHVzr4W/Hih/Mudy5Vw/UybvZmDfMu6lzV7V2ZVJe6FQ1CoxxGs2Of+/gMmsAAHAfDPyYyUyFjqqj4E3108dprrmxJrEQAAAAgMXkLi8vr+zjW3N6eqpaLWvKHPeGSehXpO7Vcm5si5v5+vWrnjx5YufWD/vP/q/z/q8yzi3i3Iv3BrEQVgSftQji/bB8HNPVwblcH5xrLCLL+yb1mO9YX17vfS6zBgAA64lYCAAAAMAiSL5jjp689ibNTQAAsI6IhQAAAAAshuQ75ijr6OrKjhsPAACwboiFAAAAACwmNxwOr378+KGfP38q7v+ksjSvMVOpVLKbBAAAAAAAAABgtXHDVeCBWfebgbD/7D83w1lNnFvE4b0BLA9/Twji/bB8HNPVwblcH5xrLCLL+4ZhZwAAAAAAAAAAWDKS7wAAAAAAAAAALBnJdwAAAAAAAAAAlozkOwAAAAAAAAAAS7ZCyfexWqWc6j07CwAAAMzq1ZUrtZzI8f7p1XPKPbhg9hfF4Pf4vAEAAABxEpPvF8cvtLGxYad9ndnnfX75i+ML+8w8PdVzTqMicqo7pQAAAEC8+5KgHrdKqerh1pekcaK0xxIAAAB4aBKS72f68/S5+peXunSmj7sftbvvp9/PtL+xoT019PapfSqVso6urnRlplFTRedfc2Tnr46cUgAAAGB1lI+cOLe/p7ydBwAAALA+EpLvz/Tu0ys9snOPCk+lb3/J6+PulF1e6tMrv3Q5rvdk8i5jLbVMXyHzuKTWONh73sx7r5xKKvfWF9/bPqncv6R23vYBAADwa6SIz8YtlYJl3+3zLn95O2vMDG/i9soOrdtbptAYSO2K+7wXq5o6OOUtZ3n3tV4ceS2+DdUn5XAtM8uE9/Gm8WvS8mHXj4UtcMVtI+kYxx1LR+J5M+Lrfa0nvdleaL+8unovSXOMAAAAgMWkHPP9TH+++aKnz/+YJONvQ3mn5gTeJ9PAePxZnUFR1W2/r9BAjcKhNm1v+VFTzny4gdCuTMu7Nef17/1SE1gX1Njq2p72ZvlzVSaB+LxyT/z6AQAAcBcS47+XDak5svHdgYaNti1LYdzSy8aWujY2vLrqay+f117fxIlFqebFjf29QKzqbM57fdRVnT3VX0of7PrMOtqHKYakye+pH1hGxaq88Pjm8WuvHrF81DA5kcfCljkWi5HjjuW885a83/ntqoqBNsX4u3PIim2dBJ44V007gRNEjA8AAIDbkJx8P9u3473vusPOLLun+zXlHScMngbG488dDWoHocC+1p0G+vm9A+f15/oeaB0Ey91k/vl3r/HgJvJr6h5No+zQ8vPKrdj1AwAA4E7Mi/8OJsFkWUddpzyTQNI2hVo3aShFZ/uBIWjcJPFgqJGdn6+n9yYn/cGu46bx67ilw3ZRzdczyw86+hwZ4MYfi6XGyPPO27z9zj/W1qSuYzlNCh0cOKX2oHhtjJ3QeSLGBwAAwG1ITr4/e+eO926mfqEZedPV5SrrtekB5EbKJlAeqBbskhJpoGGaFsto6LxyVkGbRbv8vHIAAAA8LJHxXQamx/moqfOKNxzJZEiUGwgN3VJoZKpfr15RO9gxZSnx60CNgj/cipmcbdiSkFs4FrHmnbe5+12Wlz83dRxpuLWjcmFT6nx2Whhp2xgAAADAzaUcdkZ69MdzPdU3/eUN+n5rJpeJ2h4t8+PiojYL9mESJ+Au2odTTjA+sMvPKwcAAMDDEhnfZTQZ8qWrrUYh3RjtcXp1FYJDt4ya6evnLFtph3t7Lyd+ddbp12cyTXuBhyzzWCSZd95S7LfpvT4wyfbeic7Nk/ltVWV69JvXpWljAAAAADcXn3y/ONaL/Wk/94t/nOqLftdvtzzyjBsYF9uqmJ5AM5eDGu3K9AZI49ah2pMxL+fw1xtoJYSWn1cOAACAh8UOP3IYvIlnJdivO6/HW058ORnzcLY8yPSstg99NxyapPc+bc/3nupOva4NaXPT+NUuPzk+qUUci1gpj3HwWM47b2n22wxnOejo/cm5th67wb5Tj4GG70/UjmhjAAAAALchPvn+6A89/7Zrx3zfUOmN9Lb/Ts/cwjPtu8+X9OaL9OVNyX3Ni+NldIvPa7vqRfNRl4PWugcaFrzLXd2eQ4FxM5OZGzp1VWtXJpfVFjpVjSbLzysHAADAw1LWkXeHfi++Kwx1MNPbvHwUiP9MeXBs8V59Ehfmct4NPv2O59547Q0VnLLUQ7CUj9SttVWx6zzcbCqwtXi9E3comLYd8sVMXt75pvGrWX6kasceH3+KuuFqwrGYJ/EYO64fy3nnLc1+m6FnBmq3tya93E1v+Ha7zZAzAAAA+GVyl5eXV/bxrTk9PVWtlqpp4THBfUXqXgV794zVKhU0PLhKHegDq+jr16968uSJnVs/7D/7v877v8o4t4jDewNYHv6eEMT7Yfk4pquDc7k+ONdYRJb3Teox33+l3knbdHvnclAAAAAAAAAAwIN0D5PvPXm5d1LvAAAAAAAAAICH6R4m38s6uooaWsaM7ciQMwAAAAAAAACA+y83HA6vfvz4oZ8/fyru/6SyNK8xU6lUspsEAAAAAAAAAGC13c8brgKIte43A2H/2X9uhrOaOLeIw3sDWB7+nhDE+2H5OKarg3O5PjjXWESW9829vOEqAAAAAAAAAAAPGcl3AAAAAAAAAACWjOQ7AAAAAAAAAABLRvIdAAAAAAAAAIAlI/l+Q716Trl6z84BAADgwerVlSu1NLazAAAAAHATicn3i+MX2tjYsNO+zuzzRrhsQ/vBwlg91XM55SKnulOanZv8XqiRNFarNFuHnMijAwAA3EfLjyOXJyquXE6dxq1Sqo4eaWPiqPUtHk8DAAAASJKQfD/Tn6fP1b+81KUzfdz9qF0/w35xrL1AWf/tU6c8nJyPVtbR1ZWuzDRqquj8a47s/NWRU5pd+chZtr+nvJ3Pqtgc2e07U7emdiWnUoumBwAAwP2y/Dhy2YJxZbfWVuUX9uq4SUx803gaAAAAQLSE5Pszvfv0So/s3KPCU+nbX7pwZ17pU7Dsj+d6qm/6yy28CdOjqaRWqx7uMTRuqRToSRRsx4SHffF6HdV7wZ5RzvrS5tLLR24CftB4H+ipNNuTaU4vppi6Xh+exluvn+h3eyFNlstQZwAAADiyx5HhMmfZ7/b5iYxxYEB5pyadfw/0Jk9e1/VY0Ht9oTGQ2hX3eS9ujN7Pa7Hmtf2OW198nOovG66rV5YUbxPXAgAAAJ6UY76f6c83X/T0+R+ThHvIxUhf9Lt+iyzMaqBGQ+pOejE5gf1L6YPtRTRqFtU+TL4stl051KbtCdWtOet7H2xMzFHeUU1tndhFevWCGlvdSS+mUfNcldjLcuPr6jbA2ifThsv4szqDoqrbebdx9LKxZffZTH3t0fUIAAAgoyxx5Fitl86LJ73VDzRstN0SX7Y4MMhZ96Gzrq3Hk97kieuKjAXz2ut7dVbNW64/CRBn93OWs9+F4L51pcPP2o5dX5BJrkfUdebHgth4m7gWAAAAmEhOvp/t2zHdd91hZz69isquX+i4+VFP3/5dz+wzN1XrBhsRZR0FLoPNb1dVHAw1svNRat1pkH+911EGTuPhsF1U8/W0Nvm9A9UGHX2OXGFCXWeS+uPPHQ1qB4HGyLQMAAAAi0kdR7odIWo6mARjzmu7TtzoyxwHSoNGwfb2LqhTHenqyC6bal3ZYsHwfs7onThrm9m3tMPK2OPS9evucOuqc30P7HdyvE1cCwAAABjJyfdn79wx3d1x3QtNzd501TjbL+mN3qoVmZhfjtClq4WGBvb5X2OgRsG/bNZMFac5ES++rmW9Nr2t3JbIWJ87A9V2bKMmv6f+qKnzirccY84DAAAsR2xsNhqmiCmzxYGTMd+vDWNoJKzrNmLB4qYK9mEmkceloM3iQMOk3i8+4loAAABgIuWwM9Hjup/tb2j321v1A+O/L12vrkLw0lX3Blu3yPYU8vPich5PL5v1p5jLZ+fU1e1tZYaesT2KpttwmIaKu1xXW41CeDxSAAAAZJcUmxU2U8SUGeLAoPJrNYttHYYSz3PWtexYcM6VorEij8tIw0FRm2mz+cS1AAAAgCs++X5xrBf7037uF/84DYzrfqHjF78g8R6h9/4We76PWypV2io2X3uX8ea3Vb3WcErvWl3t+iqm11VtJ+ZSYdOzyD4EAADA0oRis/xjbSkQ59k4cOJGcWBeeweB3u+Z1hURC2YdQtEOdzjdXk/14Fj1Sevz49VAxnzcOlS7WJW5VVE2xLUAAABYb/HJ90d/6Pm3XTvm+4ZKb6S3/XfeuO5nf+rNF+f/L29UsuXuFEjWL035SN2a0wCwl+gebjadxsTyTMfmdKZCR9VR8OZT5kZXI1U7gdeYKe5GW3Prmtd21WuBTIacMXr1wPq9G1wFhtkEAADAIhJjs7KORk3JjwULQx2ErlrMGAfOCt3vZ866EmJBb5z6hgpOWfohXGb2LXeozQ/emO/z12fq2lWtXZnUqdCpapR2zHjiWgAAAGAid3l5eWUf35rT01PVastMmT9gpkFSkbpXCTfJAhJ8/fpVT548sXPrh/1n/9d5/1cZ5xZxeG8Ay8PfE4J4Pywfx3R1cC7XB+cai8jyvkk95juWo3fSNt3eSbwDAAAAAAAAwAoj+f5L9eTl3km9AwAAAAAAAMAqI/n+S5V1dHXFuJcAAAAAAAAAsOJyw+Hw6sePH/r586fi/k8qS/MaM5VKJbtJAAAAAAAAAABWGzdcBR6Ydb8ZCPvP/nMznNXEuUUc3hvA8vD3hCDeD8vHMV0dnMv1wbnGIrK8bxh2BgAAAAAAAACAJSP5DgAAAAAAAADAkpF8BwAAAAAAAABgyUi+AwAAAAAAAACwZCTfAQAAsDJ69Zxy9Z6dAwAAAIC7k5h8vzh+oY2NDTvt68w+bySVzeM2inLBqa6bNpHGrdLSGlrLXBcAAACWbNxSKRhLlloa2yIAAAAAuC8Sku9n+vP0ufqXl7p0po+7H7W776fYk8rSKTZHurq6cqdR81yVJSTgAQAAsOJ6deUKHVVHXhzpxpLVjl62SL8DAAAAuF8Sku/P9O7TKz2yc48KT6Vvf+nCnUsqyy6/d6Ca2jpxs+891XMltVpOwyrUK36sVinQw2nm+UJjILUrbllp0viKW8bj9nCflDnbHCetCwAAAHfLiRMrbdW6fe3l7VOO/F5f/eATIVnjQfdZd5nQhZAm6T/pYZ81XgUAAACwjlKO+X6mP9980dPnf0wS7lNJZSmNv+tcRW0W7LwGajSkrtub6UhltyFTUGOrG9FbPq+9vpkvymmJuWV+46tXj1jGbzSNW3rZ2LLbMJNpxMWvCwAAAHfMjRlr2inb+bmSYkhTHBUPugumMBuvzok9AQAAAKyd5OT72b4d033XHVrm06tAej2pLKPe+4YGxaq2A42dWtdrxLjGn9UZ1NQ9mra0vN7y5/oe15pxGlOH7aKar2eWGXT0ebKM39seAAAA995oqIF9mEqqGHLxeDAcr6aJPQEAAACsk+Tk+7N37pjuZuoXmuEbqyaVpTBoFCaX5FbOmxr19xTb0SiyoVXQZnGg4cjORhqoUQhe+ltxmldWfk/9UVPnFa+M4WUAAABWzLwYcunxYELsCQAAAGDtpBx2Rnr0x3M91Tf9FTGwe1JZnOANV6+SEu9GYVNF+3BqpOEgOFRNlFrgMmJ/ClxObBpc7nNdbTUK4XE9AQAAcL+UdwL3CUohTQy51HhwTuwJAAAAYK3EJ98vjvVif9qX/eIfp/qi3/WbGV0mqew25LdVLbZVCbSGxq1DtWeGqtH59+mYmnaZw1Q9mEwPKPvQF1wXAAAA7oGyXjeLalf8G6N6zE1TI3utp40hXcF4MK/HW1Lbz/KPWypV5vRhzxR7AgAAAFgH8cn3R3/o+bddO677hkpvpLf9d3o2r+xWmBuhdlVrVyaX8RY61dBQNfntqoqDhgqTS4bNMiNVO9PhbdzJv+lVrx543rs5lj8c6PV1AQAA4D7I7/U1aio0vIuJCz9Edi+fE0MmxIPlo8ByhaEOujWvINac2BMAAADA2sldXl5e2ce35vT0VLXavAYLgDS+fv2qJ0+e2Ln1w/6z/+u8/6uMc4s4vDeA5eHvCUG8H5aPY7o6OJfrg3ONRWR536Qe8x0AAAAAAAAAAKRD8h0AAAAAAAAAgCUj+Q4AAAAAAAAAwJLlhsPh1Y8fP/Tz50/F/Z9UluY1ZiqVSnaTAAAAAAAAAACsNm64Cjww634zEPaf/edmOKuJc4s4vDeA5eHvCUG8H5aPY7o6OJfrg3ONRWR53zDsDAAAAAAAAAAAS0byHQAAAAAAAACAJSP5DgAAAAAAAADAkpF8BwAAAAAAAABgyUi+AwAAACFjtUo51Xt2FgAAAAAWkJh8vzh+oY2NDTvt68w+H3S275W/OL6wz8zjNWZyueBUV7Bt06s7z5VazivTGbdKytE6AgAAWGE91UPxY3AKx5K/TlRcmy5pnyXezRobpzM/JgcAAABwMwnJ9zP9efpc/ctLXTrTx92P2t2fSb+f7Wv32652n9r5DIrNka6urtypW2urEmillI+c5/t7ytt5AAAArLuyjmzseDVqquj8a47s/NWRU3p3gnHtVbemdiWnUis5VZ4l3r3N2Hha95GaxXBMDgAAAOBmEpLvz/Tu0ys9snOPCk+lb39p2r/9QsfNj9pt/F0F+8yiyjs16fz7pDeP27snFPjP9szxe+V4zxcaAzmtHLdsXkMHAAAAq8j0jC+p1aoH4kUvVgyFlT2nPNiLfNxSaRJjxvRaN8uYdacJM8tHbgJ+0Hhv49WoeoXj3bjY149rw+X+PgWvBJipm1tfv8xOkTsWlNd2tRiKyeOPTYo6AAAAAEg75vuZ/nzzRU+f/zFJxl8c7+nN7x/17pl9YmFO8H7YlrYex/TmMcF9QY2t7qRH0ah5rorbcMlrr2/mnYZCzSvv79FfHgAAYD0N1GhIXTdmTNMbvqd6wVlg0vu7Kx3ODO9iEtmVc+clfaUOM8s7qqmtk0myOrlebkeU9olN1jvGn9UZFFXdjt9gu3KoTdvzv1tz1v/eX9rZJ7e+ftxs4+SjeUdjrM+dgYrVbRuTO+t5KX1w6+ytpz1zbOLrAAAAAMBITr6f7dvx3nfdYWc+vbKp94tj7b35XR9vkHkfNAq2l0xBnarT4IlrELiNj5q6gfL83oHToDnXd3rXAAAAIKDWzTAETe9EbSeqPJhk1cs6Cg7v8r2lUtbEe4zEes0k68efOxoUq0rIvTvrm9YpdBXp+LsTJW/psS3LP94K92afEYzJG6GEf/hY5LerKg6GGtl5I7YOAAAAAFzJyfdn79zx3s3ULzTtTVcvdLz3Rr9/fKebdHqfjC8Zuiw3wmiogX04VdBmcaBhMPoHAAAAsipuxg6h2G40IuLQ21CW1/ndRMReD/TawYJjvOcfayvQSaV3knSF6ex49VtqFKbDx4xbJZuYd6bCrzoWAAAAwOpIOeyM9OiP53qqb/rr4kKjL9LHXdMj3kwlvXHmv7wpaePFcWBM+JTKr92bOx3GDRJZ2FTRPpwaaTgoavOmg80DAABgvc305g6qdc1wK1Lj5cxQNPPYHvU7qbvgm5C4qaIZesZe9Zll2RC35/tAjYKXNK+0w1eQJnJ74NsOLr26Co0tO1SOM7k3uQUAAACQRXzy/eJYL/bP7Iwz+49TfdHv+u3RM72zveG9qa+3T6Wnb/u6DNygNb289g4Ser/nt1UttlUJ3CRq3DpUe/ZSXC5zBQAAQEheZtQVr0e5w9xAtNL2Hht2uJdpJ5Ce6sGbsTryex/UVEOFuTcstew2is3X6Ye/MWzMe/iyo0FtJ9uyQeaqUXsvJG/KOgxPdAeX3nt6vgMAAABZxSffH/2h5992be/2DZXeSG/7NxtqJta1m1IFmZuqdlVrVyaXvRY6VY2ujUHpNIqcslJcD3oAAACsnfJRII4sDHXQrdkSo6wjt2u7P+75oTY/zA73Mo1F4+LM6bjpZhsdVUdX6mceJD6v7WpRg8FAtYW7vTvKR+pqGje708wPCkGhulfa03HczXpqbVVs2eFm04nXAQAAAGSRu7y8vLKPb83p6alqNcJ1YBm+fv2qJ0+e2Ln1w/6z/+u8/6uMc4s4vDeyMeO0z3ZU6dVN8ny0wA8CWDX8PSGI98PycUxXB+dyfXCusYgs75vUY74DAAAAuN9Gw8HMDVbH+n5uHwIAAAD4pUi+AwAAACuifDRS8zw47ExBnSq93gEAAIC7QPIdAAAAWBlmjHr/ZqveROIdAAAAuBu54XB49ePHD/38+VNx/yeVpXmNmUqlkt0kAAAAAAAAAACrjRuuAg/Mut8MhP1n/7kZzmri3CIO7w1gefh7QhDvh+XjmK4OzuX64FxjEVneNww7AwAAAAAAAADAkpF8BwAAAAAAAABgyUi+AwAAAAAAAACwZCTfAQAAAAAAAABYMpLvjl49p1y9Z+euz2PWWK1SThwiAACwqogHAQAAANxUYvL94viFNjY27LSvM/u8U6LjF/7zdtqflibzEre5XEzytld3y3KllvNK/6nwPDLyj6mdgsd93CqlalhyDgAAwH1AUhwAAADAQ5GQfD/Tn6fP1b+81KUzfdz9qN2ZBPvuR6/Mnd49s8+mUywW1T68nsztnbRVq9XsnKd8dKWr/p7ydh4ZjFsqVZxj2nWO4ZWZulLEcZ+HcwAAAAAAAAAA6SUk35/p3adXemTnHhWeSt/+0oWdv6mtgwPVBh19DmaBxy0dtmva2bHz1mwPJ7e39qQnd0ktfx0m0RzZw3va296b6srUX2rOeuu9nuqT8kB9XPO2nVTur9/OGqYXe6AHeuyxCClqs2AfqqwjN4nurbvQGEjtirt8yV3Y7IuznpbfW96rT2IvM7dnfXDbyfucrs4AAADz+LFSfCwWH3ckxytB1+Mgb1kvdprOR69rfh2jYs352wQAAABw36Uc8/1Mf775oqfP/5gk442Pu/6wMy90nDkrX9ZObaBOIPs+/tzRoLbjlCRwGicvG1vqur24zdTXntsd22nQFBpSc3Sth3evXlBjq2ufv9Koea5K6iFUnPW+lD5Mlr3eY79dOdTmyCvvOvvUeD9tKCVv2zSiIsoTGn8hscciIL+tatGpU2E2yZ3XXt/bH9W87fcnCzuvdw6lt96j5PNhEu+Vc+ewT7eduM9p6gwAAJBBbCwWG3dki8HKOzVnIyfTsvFndQZFVbe9ICZNrBkfL0bHsIU52wQAAABw/yUn38/2bXJ91x125tOrST94vfo0HXKm/1Z6UwqOCZ+OacgMGu9to6Kn96bd8Tox1Wu1dTLbMuqdOM/WdDDJ5Noe3k6j67BdDK03vxfR6z6W31Pck9+uqjgYamTnjVp3mkB2G2fn3yeJ5sRtu42omrpHM+U61/dUdTMijkWIl2R3G3mFiJ5WMWrdOUl347sZ0iaceJ+7z655dQYAAEgvNhZzRcQdWWOw8o5TNl2P22GkWJWbB08Za8bWMS6Gjdpm7WAacwEAAAC495KT78/eTRPshabCN12devSqoV191D9lz75PGxWm4eE3YpLk99QfNXVe8S7LDV16W9zUZHSVED/x7E8VZ6vphS5XLjSctWWRsO3RMGJdBW0WBxoGs/txko7FDHfMdrcnliJ6wS+m3Yg7Fgn7nKHOAAAANxIXd2SOwcwVm07s4watY33uDFQ7CN4L52axZnQMW9Zrc8VlcJs7c7tGAAAAALhHUg47Iz3647me6pv+ihpe5uIvp+SpCsExaVKZNirMjVaL1e1AIyaBaUjZy3K3GoXpmOgzPdKnaoHLjf0p0Fs7Sa+uQvByZacBV7RF6SRsu7AZsa6RhoPgGO1zxB2LGPm9D2qmTe7PYW7i6ibzX84O4TPneGesMwAAwMKi4o4FYrDyaycGNMPA2F7z4Tz4DWJNIyaGda+4jN0mAAAAgPsuPvl+cawX+9Ou7Bf/ONUX/a7fHpnRaMJjvJ/9+UZfnj7XH5mT736joqJKO3i5bVqmh5J9aHvRH056UvdUN2NtumOeB5+/md77DD3f523bllcC2edx6zBwBUBej7f8XlaOsRnmJa4fVeBYBJhe+6He5b33asw2LEOXZmfjJvPVUMHfh0zHO7rOAAAAyxeIO+bGYBH8GOflzD2KMsU+EeJiWPPQr6e58nLefZEAAAAA3DvxyfdHf+j5t1075vuGSm+kt/13euYUPfvb73pT8m+2uqHdb2/V//QqdDPW1NxGhfN/2gaFucHn5JJe7+ZW3nCdZR15Y6rYskNtfjCXA5sxz0eqdvzn7TRzE6xY5SN1a06jxy53uNl0Gkhpzdu2Ke+q1q5MygqdqkaBMebLR4HywlAH3cDWY4/FlEmOh7Y/M0a7N4Z9QwWnbLEhYKb74C0/Z59T1BkAAGApYuOO+THYdXltO0HrYDA7/Mu8eG+euBjW8LZpMOQMAAAA8PDkLi8vr+zjW3N6eqpaLX3KGkC8r1+/6smTJ3Zu/bD/7P867/8q49wiztq/N8wPCBWpe5XiZvjAHHzWIoj3w/JxTFcH53J9cK6xiCzvm9RjvgMAAAD4tcx9kVJfIQoAAADgXiH5DgAAANxLPXm5d1LvAAAAwENE8h0AAAC4l8o6urri/jgAAADAA5UbDodXP3780M+fPxX3f1JZmteYqVQq2U0CAAAAAAAAALDauOEq8MCs+81A2H/2n5vhrCbOLeLw3gCWh78nBPF+WD6O6ergXK4PzjUWkeV9w7AzAAAAAAAAAAAsGcl3AAAAAAAAAACWjOQ7AAAAAAAAAABLRvIdAAAAAAAAAIAlI/mepFdXrtTS2M7igeI8AgAAzNWr55Sr9+zc/XFf6wUAAADMk5h8vzh+oY2NDTvt68w+7wuXv9DxhS1IY9xSKecE0oHpYcTUPdVn6j2d6k7pwzZulTI1bqJe7zaQbjnZ7W7DOebLfs/8iroDAIBFjdUq+XHXdCq1bv7NvYoxQNa4Ll7Ucb+fce9dxaYAAABAlITk+5n+PH2u/uWlLp3p4+5H7e5P0+8m8V4KlF9eftKrR7ZwHtMTudDQVvdKV1f+1JUqDyF5XdaRX+dRU0XnX3Pk78ORU4rykXMs+nvK2/nl6+mkXVStVlT7ZLnvmNuvOwAAuKlaKIa8Un/v5t/cxADzFZujyTHv1tpO6H7/I3eDcwsAAIC7kpB8f6Z3n17Jz6c/KjyVvv0lr3P7mf58I71tTcvT66leabuNpqNQptoktf3kteldXlKrVZ/pWTPb6yaYrPfKQm2A0HAjfnmw57qzjWAXmFBvfKfsu30+k5i6z/T0n9Zzfr3cHjzXysxy5nHC/th1T5cNHq/ZepZUcl5baAykdsV9btKLLLLu3rqjXu/2LgqdiKR6zN//a3onaherev26qmL7JLAuK+E8xtUtru7Rx97Icmzrqs/ZLgAAuKnkmCJbDHD9u9wrSfr+T96+V27mg+Vm+eA6g683Ft2eV5Y+rsuuvFOTzr87W/Il1dVh4vLAdt3J3bi/H97LXPOGDLzj2DQ+PgQAAADCUo75bpLtX/T0+R9esv3iL31z/jvd84eccaZAr/hEJnGqmnbmdhEfqNGQum7vGpOUN4FwQY2t7qTHzah5rspsYD9Hu3KoTdtTvVtztvHeX9pZ/0tng5MePQcaNtq2LKvZujvB+0vpw6TeRbUPww2K2Ho5jYuXjS27LjP1Ne3c5byuMF1u1JQz7x+PNMcrWM+++n2vbqp5y3i9yOLqntde5OtnpTtv8eflut5JW8XqtvL5bVWLbR2GWjzJ59FtKAYT9uPP6gyKqm5H1D322Gc9tkc6yrJdAACwsLiYIlMM4Ap/l6eNRZNjGme+cKIdd/mRmk4cU8kVNDzw1+fEci+nMWKvHrG9maR09Pbi4rT5MWk6zrE4dOKrrceT3uTJdXW2WzmfXC06qVe4J05KdxybJsbmAAAAQFhy8v1s3ybXd91hZz7548pcjPTF+e95yw4503+rpx93lTb/HhTuORIOemvdwDAubgOppm4gSM/vHaimc33P0GKodacBcqjHjl3/wSR6Luuo65QvKFR3s67Apa757aqKg6FGdt6IrZerrbjRVYLLhY5HyuMVrmeU+XVPlLoeSfsf4DR4Dtt+Qzmv7WpRg87n6WvnncfyjrPt6fEcf+5oUKwqPgcecewXObZR260d0FgDAGAB7YofO0bFjzExReYYYOa7fEkxzXSdXhzjPDG5GjT/eEvy4ywb8zRfz2xv0NHnDNsLu1lcN2gU7DEvqFMdTZPn8+o6/u4cpS09tht29zOxnknuQ2waH5sDAAAAQcnJ92fv7Hjul+oXmgrfdPV3/TYZk+YPPXdHpclyx1VPfq/v9RqZl+geDTWwD6cK2iwONEwdbSeIXP/yhH5kKDTSbyu/p/6oqXPbyJw/TIk9Hks8XgvX3VjyeZttKHsNrkAjdO55LMu0n7yx4sf63BmodhAzBmjcsV9on8p6bXpmBbc7//IPAAAQITzm+7yOBL4MMUCUJcc06Zie8jYGc6eKFr0u03eTuG4y5rsTtw8a70M/eiTWNf9YW4HktrmKMdhrPqs7jU0zx+YAAABYZymHnTH59ed6qm9y8+uPCtPHWc30OkqtsKmifTg10nBQ1GbBzt5E5PqXpFdXIXh5qhOwZ9qWCfLdZbvaahTmjM1pj8eyjtdN677U8+Y1lJ3WngqhBtdAHT/7nuI8ll87+2AuO7c9nxJz4FHHfsF9cn8oSLtdAACwdJligFlLjWnSqgWGN/GnaY/szG4a1/nKr90hc8JD/yXU1e35Pk3OV9rhnueZ3IfYNFNsDgAAgHUWn3y/ONaLwDgyF/841Re/t7vb0/2LTv9hs+9nf+rNl6d6/kea26/aHsCVjDd4suN7VwILjVuH7o03vV7QeZkrWL3eTI5xS6VKhr5Bbo+cQCMi6/IZ9N5n7KEzYXrl2IdWuzK9yVPoeMw9XgkSLgOOrHvSZcM3qces3ns1nIaRP16oP5mxPSe9r9KcR3+s+Jdm6JedlL3lAsd+0X3ylzM/GKTeLgAAWJqFYgBrmTFNGn5db9qzOmtcl0peeweB3u/z6mp6m9tx2L0peLXCzWL4O41NI2JzAAAAICg++W4S7N92JzdULb2R3vbf6ZlXqFett9Kbkle++1G7Hz/JHxJ+HneomcDlmu7kBNnF5uuERpC5iVJXtXZlskyhU9UoMOZj+ShQXhjqINOY7WUdOXWSP5alWX7R3kCzykfq1pwg39b7cLOp1DXr1Sf7a8bXNDeHCnYUqnUPNCx45W4voMnxmH+8onjDuHg9y93LaOfU/drrr1msHlHcS5Qjxkn3xun0r6ZIcx7tWPGDOUO/xB77RffJju3qYMgZAAAWFx7zPcvQHyljgEjLi2nSMdsbqdrxx1m308wNV5NkjesyCV3NOqeuZruaHrdQmVucIYa/69h0TmwOAAAABOUuLy+v7ONbc3p6qlpt4dAekcZqlQoaHlwR8D8kpsFWkbqpx6e97uvXr3ry5ImdWz/sP/u/zvu/yji3iMN74+EzY7TPJrh7dZM4H6m/8Bg6WAR/Twji/bB8HNPVwblcH5xrLCLL+yb1mO8Abs7rvc+QMwAAYH2MhoOZG6yO9f3cPgQAAABWGMl34Jfpycu9k3oHAADro3w0UvM8OOxMQZ0qvd4BAACw+ki+P1hmvEqGnHlYyjq64pwBAIB148WtwRvmk3gHAADAOsgNh8OrHz9+6OfPn4r7P6kszWvMVCqV7CYBAAAAAAAAAFht3HAVeGDW/WYg7D/7z81wVhPnFnF4bwDLw98Tgng/LB/HdHVwLtcH5xqLyPK+YdgZAAAAAAAAAACWjOQ7AAAAAAAAAABLRvIdAAAAAAAAAIAlI/kOAAAAAAAAAMCSrUnyfaxWKad6z84CAAAAN9Cr55QjuAQAAACQIDH5fnH8QhsbG3ba15l9Xmf7geeDU+A1sbxEeC4XnpbZdhm3SjSGAAAAVpCb9A7FkXUtI+pbXvyYLtZ196PUcl7960Xt613WBwAAAFhVCcn3M/15+lz9y0tdOtPH3Y/a3bep9Wfv3OeC08dd5/ndv+mZ94q5is2Rrq6uvKlbU7uSU6lFuA8AAIBkwThy1DxXZUkJ+GWaF+uWj5zn+3vK2/m7dt/qAwAAAKyChOT7M7379EqP7NyjwlPp21+6sPMhF8dqfnyqt39Pm3qfUT5yGyWDxvtAw2m219BMo2rcUulabyJvmUJjIKeF4z4fTuj3VJ8sUxK5fgAAgIctv3egmto6mQSKyTGk2+s7FA8mxI+R8eYCImLd2WFrrtfLPGtiV+dxq26fN/vi1TdUl55TPum1bsrN8lFxb/y+Xh9GJ+k4+nUgtgYAAACSpBzz/Ux/vvmip8//mCTjg87+fKMvu/9Te3fPm0bWhnH84mu4s8KsLMelK+isFAtWIleukFJl0FOZZl1Zsiy5chqoVuAqkitX0VqBLVbuoHLpICsQueNbJDzzcoDhZYYBjxMb/3+r0TKvnHNmLJ25c7hPSR9m7Ywrtzf24tQoWipt1cdHNQ1fKpyO/nvp03BfRrVTd19aB01/XbZ/bvNgNH6nlj/VZsc/p263VPoYfMEAAADAs9P9pltltGl5K6pkZ/QhB4HjbkXvS1uqm339flMH6bD+Y1h/c0kTfd0xM8tl9snps5Zk9lWVM1ujOedYo35vpyxn3W2D6L7yyJx2NOhbAwAAANGig+/D3O4FL+3MPzOj69f698LNOLPkqPdZnBeQ01pG5b9GrxfeqKbWpb54bzw5VQM/i03v7ivTaqtj1sPY9dGLTG7Plm6/Lf8CBQAAgN+u8bGkVmZfu24fr/tFly1b9epEH1K3+jbs9IUEwKcs199cXni57HrcoPtIsN873QZzxGpH+tYAAADAPNHB90Bu96ZVnjmh6v15WRfbJ1o240w4d8RO8KeueeeVZGTsp7mW89JltgMAAGC1tUrWsB+Yvy2rMwiSd9oz+oSWNjMttd2oefpAzU5Zt3n/3HnzDf2y/uaC5VqOaYM45rUjAAAAgFhipp2R1t+81bbu9H0s6bufjqZQGuWGX1rjs2qytTccYGMHfno7WMzomkZRVvCnuc7LSsY/CQAAACtubDLT4CSh1uaMPmFH7dYgLY3DDXR759a1VbLC87gn3d+c6utOiFuupQXaYJ447QgAAABgrvDg+/253h2Oxrnf/3elG23oVSDK7o16V0EPzjjjTmaVrzkvUn/5P6lN72o/U9NpzFE/3s+NzechfvYKAADwspg+ZH5sItNT1QZpaca4I7nNx4GI/uPM/mZck33dSDPKNSatP7ak2iBHjbn2pFp+NAHqzDaI6isv1I4AAAAAwoQH39ff6O1dweR8X1P2WDppnmkUZzeTsJ78L7AtvuDPhVPWpfY7wQmf3MmgOtq/DBzjLoMJV3NV1W3nhcBsP90sy/bO8/k5OUuynH2P87NdAAAAPD1uH7Iuu5Yf9h+ty/1RWppGcdSvTPkTig7Smk/1H+f0N+eJ7utOiCjXLLlqoI5WW0f16ZLZ9SO1TQpHbwT/VP76qL7ynHYEAAAAEEuq1+v1zedHc3V1Jdte5HUFQJivX7/q9evXZu3lof7U/yXXf5VxbxGGZ2NRXVWyltpH/cgAPl4m/p4QxPOQPNp0dXAvXw7uNZaxyHMTO+c7AAAAAAAAAACIh+A7AAAAAAAAAAAJI/gOAAAArAw3XzspZwAAAICnINVut/s/fvzQz58/Ffb/qH1xjnGXbDZrvhIAAAAAAAAAgNXGhKvAM/PSJwOh/tSfyXBWE/cWYXg2gOTw94Qgnofk0aarg3v5cnCvsYxFnhvSzgAAAAAAAAAAkDCC7wAAAAAAAAAAJIzgOwAAAAAAAAAACSP4DgAAAAAAAABAwgi+AwAAAAAAAACQsMjg+/35O62trZnlUNdmu+f6MLBvTe/O782O+RrFlFLFhlmbzzs+W1HXrAMAAOBlWrQfGUujqFTKua5ZgpfvVrLJfx8AAACAFyEi+H6tv6/eqtnrqecsF4ULFQ4H4fdrHRbudNL09/WaJ9LxgRaIvy8kV+2r3zxQ2qwDAAAAiehWlM3XZNed/mbfXerSKYM+AAAAADxcRPB9R2f/fNC6WVu3tqW77/Li6/ffdacNvRrufOWsLaurStYdYdRQcTjiKKtK4I1nfMTR4Hiz6nJHKw1HxrvXcc6vDEYwFVWcGiHlXyMb/BIAAAA8P27wfNiHDPYR/f7eYLvbJwwfv57RpmU+KqeqN+jDP98qtaRa3rvGqO8Yde3pvmjDO97t3wb7u4Ptg/Xx/i8AAACA5y9mzvdr/X18o+23b/xg/PoHldyR8F4qmnudvyvo7qSiD4Ng/BJq+VNtdvwRR3W7pdLH8Nej+ZzzS1LdG71UVXXPdr7g8+ilqPtFl62M9ncZSw8AAPB8NVS0nE5fuTM1ar1RtFTaqpvtfXXKt8rPSmOY3tV+xuk7WpPB77QOmu55Gcn2r9M8cPuObsB8xrXHAvDjfdHcYJv1WXveto7KmZpzjqX20eAaUuk9I+4BAACAVRIdfB/mdS94aWf+CUTXd85MKpq1rI51ospDIu8Ou96U9z7jyLnB8ttvD3r5sOuDFx1Hbk+2avps3oi6Xy7Vso+G3wcAAIBnqPHZ6eHZOhp26syo9W5Fp7WMyn8Ne4NKHxzJbl3qy3T03Quye4M/rBgj0L1BHLbq1Ylr61bfAueN9UWN0ba0dvf9oP7gMuk/tqRWWx1/FQAAAMAKiA6+75z5Od2dpWmVNZp09VqHa2v690+z7+2VsmvvHi3n+8Pl9Fc5o5oXfe/qy2VL9t7k6xAAAACencymhhljxgyC6YMlr5rZM4s3x9BgBPrUKPiATtu58iRLm5mW2kTOAQAAAATETDsjrb95q23d6fu9dH9e1sX2if63Y/Z9qOhk+0ZX/z3Z6LvSu/vKuKlnzGglYu8AAAArIHS0uG3SvgSX0S8tw6QPPqkcFUi3NpUxH0c6areCeeMBAAAAICr4fn+ud4f+OHfX/X9XujGTrK6/2pBuOv7kq677/3R1I20MZ2B9TGm5v8r1R7E73Em28lHjmAwvn2dNeauklr039TNgAAAAPDMmteDpcJh6Q0U3r7vp9422h3Mn9h+bhL/xUaXJQHowHeKgTxmYzL9bOVUtsy+mEwIAAAAQFB58X3+jt3cFk/N9Tdlj6aR5Jm+w+86Zyffu71vzd+rMjIR/bLlqXXYt7/+E2GrrqG6bPVFMbk0HKWcAAABWQU5VP0+MSS1zqs1PB06vz83j3tH+5WC7WWZMuOqOdB87Ln+rcmc0Qt779WSrJMvZ5wfp3WsH+qLOYl3uq+PmmvdPAQAAAABPqtfr9c3nR3N1dSXbjhMgn80dkWS1j9QPTGy1lEbReaGS6v3pCbCA5+Lr1696/fq1WXt5qD/1f8n1X2XcW4Th2QCSw98Tgngekkebrg7u5cvBvcYyFnluYud8/5067ZYyCSTRbHyuucPeCbwDAAAAAAAAAB7V0w6+u/ncUynla7aO5s2ONVdDfuyd0DsAAAAAAAAA4HE97eB7+kDNfl/9RNLE5FR1rvXQzDUAAAAAAAAAAMyTarfb/R8/fujnz58K+3/UvjjHuEs2mzVfCQAAAAAAAADAansWE64CGHnpk4FQf+rPZDiriXuLMDwbQHL4e0IQz0PyaNPVwb18ObjXWMYiz82zmHAVAAAAAAAAAIDnhOA7AAAAAAAAAAAJI/gOAAAAAAAAAEDCCL4DAAAAAAAAAJCw5xl8bxSVylbUNauJSvDajWJKqWLDrAEAAAAAAAAAXorI4Pv9+Tutra2Z5VDXZrvn+jCw753O7832GJIOSnvXixkwX+TY3+Eh5fPOTY0vxP4BAAAAAAAA4NeLCL5f6++rt2r2euo5y0XhQoVDE353A++FO500/X29iw0dZyeC879QrtpXv3mgtFmPssixv8NDy5cpd9TvO9cwSzVndgAAAAAAAAAAfpmI4PuOzv75oHWztm5tS3ff5Q5wv/9+J22/1ZvBzp0/VdCdvi8w+n2kq0rWHaHdUHE4YjurSnDod7eibHDfN7PdCI6kD372+dfPmgtO7Y+89qBsZtU1mZZm7PzokebdSnZ43FQdjfHyxWib2Pxrjb6/qLGizqzH/PrHqRMAAAAAAAAAvDQxc75f6+/jG22/feMF49dfbUg3HS8QP3KjzlLBd18tf6rNjj9au263VPoYCEC/L0nDEd1HapdqZt+03J7tXOzzKLDc/aLLVkb7u7PGki927WkNFd9Ln8wo8045o9ppSMqYbkXvS1uqm2P7/aYOYg5vD2+buNwguqXSVt18t1vWW+WHAXinHlawHepSWD2CHlAnAAAAAAAAAFhl0cH3YV73gpd25p8PZqj7zpmfhmaY872su21/17Ls+ihw6wXQb7/5wV8veG7raBjVzalad/aHye3JVk2fTXy6++VSrcy+ZsfeF7z2FOf4QIqY9O6+Mq22OmZ92qhciwhtmxlaJSswEt0E100964EcNOmDI6edbvXNvVDjs1OyiXaInfpmuToBAAAAAAAAwCqLDr7vnPk53Z2laZUVnHR158zke/eWkjZuzI6kddpqmY/x5OQPfncjwl19uWzJPgoJJC987WljaVesUvj10gdqdsq6zfvHDtLgJG0853vVaQ3HzHpa2sy01B78S0Fm09myoF9UJwAAAAAAAAB4bmKmnZHW37zVdlhe9+t/daGC/twx60myNpUxH+PK/VVWxk09Y0Z874VNOrrEtcc0irKCaVc6zveaXTO5wWrv2Lq2SlZkfvhEzaxnR+1WRpuDiHvkiP0Iv6tOAAAAAAAAAPCEhQff78/17nAwzt1Z/e9KN9rQq8Ekq0PXOixcaPvkf3qM2LvSf2hLNZ0ORlW7E4Pm5+RlT+9qP+Oc8/5SLXvPH/09y9xrp/XH1mAUvWPOdzc+Rox8H+OOOjcffwXTHvlAZLxbOVVtkI7HpOoZtoObA96bVHWR+v/iOgEAAAAAAADAExYefF9/o7d3BZPTfU3ZY+mkeeYH2N3A/DDfe0F3J81RPvjE5VTtlKVBLnOrraN5I8yV1u5+Rq1WS3bosHfX/GvnqnXZtfxofzAnfK6qul1T3t3nLKebZYVmjG8U/Wt4iz/5aSAF+yNL66AZqIezWJf76gzzuk+0Q+pUm5/8fZH1/611AgAAAAAAAICnK9Xr9frm86O5urqSbYeGpQEs4OvXr3r9+rVZe3moP/V/yfVfZdxbhOHZAJLD3xOCeB6SR5uuDu7ly8G9xjIWeW5i53wHAAAAAAAAAADxEHwHAAAAAAAAACBhBN8BAAAAAAAAAEhYqt1u93/8+KGfP38q7P9R++Ic4y7ZbNZ8JQAAAAAAAAAAq40JV4Fn5qVPBkL9qT+T4awm7i3C8GwAyeHvCUE8D8mjTVcH9/Ll4F5jGYs8N6SdAQAAAAAAAAAgYQTfAQAAAAAAAABIGMF3AAAAAAAAAAASRvAdAAAAAAAAAICEPcPge1eVbErFhlmdoVFMKRV1AAAAAAAAAAAAjyhW8P36cE1ra2t6d35vtjjuz/XO2eZud5fDa7M9Bi84ngouRT1mqNz7vmxFXbMeraHiWNmCy+OW81foVrIL/cPErOMXa89F+P+wMtnuk8V9vO+f79e2BwAAAAAAAIDnan7w/fpQhbuCCttm3XOtw+yxdNJUr9dT76Kgi8I7BWPz82TKHfX7fW/plG+Vf8TAdq7qfE/zQGmzHi2nqilXv1NWxvmv3DHr/aqzF4u15+KCz0a/bquWTylbGYW2H/v7F/XUygMAAAAAAADg95sTfL/XeflChdL/ZJktnut/5WxV6cO6v77zP51s36izQPA9KH1wJFs1ffai7zPSyjSKM0YWB0eoZxWIzU7xRiYHL9itKBsxsjqa+73O91WcMnnnm380CL3moD7h5fVGU0/tc89zP0fVc3KkePAfMCbLmVXWOdYqtaRa3ts2DGjPLLt/7VnHT7VnZDnm1z9SruoF4Fulj8NrTn7/7PabdZ8GZfFO8409W+5+9/xZZX0i7QEAAAAAAADgWYgMvt+fH+h440JnO2aDcf/9Ttq2ZELvQ3ffl4y+d7/pVhltjkX4o9Xyp9o0I9I7ZalkBQOcURoqWiVpOLq6Lp0umjKkpZJzifpwNLxzzffSJzNau1POqDZxzWB567Zz/kdT2m5F70tb5lru0tTBcAi1c5wVVk83iGuptFU35836BUGwnE01m37ZZPvnNL0vCit7Wgczj58UpxwR9Y8jtxf4x5kJ89pv7D7FEdbmT6g9AAAAAAAAADx54cH3+3MdHG/oYjLyPtO6Xm2Yj0tofCypldnX7qxYZgi7Pgqy+iPnb/UtTgS98Vk15+ijYeA0p+oSKUPsejCYO36N9O6+Mq22OmbdFSxvbs+Wbr8FgvMhgWVHaD27X3TZslWvjkoxqx3GyznL/LJHil2OqPo/VFT7LZ4qaOlny/Uk2gMAAAAAAADA7xYSfL/X+cGxNi7OFCf07h7vDoZfRKtkDdNy5G/L6jw4Z3ZL7bgR48zmeBqdBIylPrFKTmliSh+o2SnrNu+fG8xtPpupZ6c94zssbWYWaAdj6bK7EizHUhZuv2UsUJff3R4AAAAAAAAAnoTQ4HvnRroorGltzV2yOnbWb46zWnt3Lm+Y+03HOWrcxqvJRDThxibVTGSyygXS1iwysjuORlFWMPVJx52odQFuANk7t66tkjWek3yKqae1OeM7Omq3Fkvf8+CyJ1WOKObXCnthQ9gXar9lLFCXX9EeAAAAAAAAAJ68kOD7js56PfWGS1Mn29L2SVO9fz5ofedPFXShf6/N4dd/6/imoD/jDZOfI60/tqTaII+IOxlovuZ/DqjlR5NUdiunqsVNW2Pyh58OR0g3VJyazPVhvDQ65vNi3BHS5qMRWs/0rvYzNeXHJh6N2Q4RKU5mlj0qJcpDyhGHuf+Z8l8x0sdMt9+4hJ6t39keAAAAAAAAAJ6FyAlXw+3orHmiu8HI+MKdTppxU9TMl6vWZdfyJg1KW0d12+wZyKhc39el5aca8UZuxx49n1PVn0XTpFo51eanB468z1VVt2vKe9dL6XSzrMkSh2oUTTncxZ+oM5AuXHb9SO2Z9XQnAA20k7v/cn9u+h4/p3tJlnO8l6JlTtmnjp+yXDmiBFMSpaxL7XfCJjd1zGm/SfOfrag2/z3tAQAAAAAAAOD5SfV6vb75/Giurq5k27HD0fB0Vclaah/1I4PJSNLzaPOvX7/q9evXZu3lof7U/yXXf5VxbxGGZwNIDn9PCOJ5SB5tujq4ly8H9xrLWOS5WXLkOwAAAAAAAAAACEPwHQAAAAAAAACAhBF8f7Lc3OGknPm1aHMAAAAAAAAAyUi12+3+jx8/9PPnT4X9P2pfnGPcJZvNmq8EAAAAAAAAAGC1MeEq8My89MlAqD/1ZzKc1cS9RRieDSA5/D0hiOchebTp6uBevhzcayxjkeeGtDMAAAAAAAAAACSM4DsAAAAAAAAAAAkj+A4AAAAAAAAAQKKk/wOKG3Kojze3HwAAAABJRU5ErkJggg=="
}
},
"cell_type": "markdown",
"id": "398e6da8",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "d4357af0",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Weather</th>\n",
" <th>Worker Strike</th>\n",
" <th>Administrative Issue</th>\n",
" <th>Human Error</th>\n",
" <th>Cyber Attack</th>\n",
" <th>Terrorism</th>\n",
" <th>Accident</th>\n",
" <th>Others</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Flooding</td>\n",
" <td>Mine Workers Strike</td>\n",
" <td>Port Congestion</td>\n",
" <td>Workplace Accident</td>\n",
" <td>Network Disruption</td>\n",
" <td>Bombing</td>\n",
" <td>Maritime Accident</td>\n",
" <td>Miscellaneous Events</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Severe Winds</td>\n",
" <td>Production Halt</td>\n",
" <td>Police Operations</td>\n",
" <td>Individuals in Focus</td>\n",
" <td>Ransomware</td>\n",
" <td>Warehouse Theft</td>\n",
" <td>Vehicle Accident</td>\n",
" <td>Miscellaneous Strikes</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Weather Advisory</td>\n",
" <td>Protest</td>\n",
" <td>Roadway Closure</td>\n",
" <td>Military Operations</td>\n",
" <td>Data breach</td>\n",
" <td>Public Safety</td>\n",
" <td>Death</td>\n",
" <td>Outbreak of disease</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Tropical Cyclone</td>\n",
" <td>Riot</td>\n",
" <td>Disruption</td>\n",
" <td>Flight Delays</td>\n",
" <td>Phishing</td>\n",
" <td>Security</td>\n",
" <td>Injury</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Storm</td>\n",
" <td>Port Strike</td>\n",
" <td>Cargo</td>\n",
" <td>Cancellations</td>\n",
" <td>NaN</td>\n",
" <td>Organized Crime</td>\n",
" <td>Non-industrial Fire</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Weather Worker Strike Administrative Issue \\\n",
"0 Flooding Mine Workers Strike Port Congestion \n",
"1 Severe Winds Production Halt Police Operations \n",
"2 Weather Advisory Protest Roadway Closure \n",
"3 Tropical Cyclone Riot Disruption \n",
"4 Storm Port Strike Cargo \n",
"\n",
" Human Error Cyber Attack Terrorism \\\n",
"0 Workplace Accident Network Disruption Bombing \n",
"1 Individuals in Focus Ransomware Warehouse Theft \n",
"2 Military Operations Data breach Public Safety \n",
"3 Flight Delays Phishing Security \n",
"4 Cancellations NaN Organized Crime \n",
"\n",
" Accident Others \n",
"0 Maritime Accident Miscellaneous Events \n",
"1 Vehicle Accident Miscellaneous Strikes \n",
"2 Death Outbreak of disease \n",
"3 Injury NaN \n",
"4 Non-industrial Fire NaN "
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"new_labels_df = pd.read_excel(\"data/new_labels.xlsx\")\n",
"new_labels_df.head()"
]
},
{
"cell_type": "markdown",
"id": "407189c9",
"metadata": {},
"source": [
"#### convert them into lists"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "73939327",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Weather\n",
"\n",
"['Flooding', 'Severe Winds', 'Weather Advisory', 'Tropical Cyclone', 'Storm', 'Earthquake', 'Tornado', 'Typhoon', 'Landslide', 'Water', 'Hurricane', 'Wildfire', 'Blizzard', 'Hail']\n",
"\n",
"\n",
"Worker Strike\n",
"\n",
"['Mine Workers Strike', 'Production Halt', 'Protest', 'Riot', 'Port Strike', 'General Strike', 'Civil Service Strike', 'Civil Unrest Advisory', 'Cargo Transportation Strike', 'Energy Sector Strike']\n",
"\n",
"\n",
"Administrative Issue\n",
"\n",
"['Port Congestion', 'Police Operations', 'Roadway Closure', 'Disruption', 'Cargo', 'Industrial Action', 'Port Disruption', 'Cargo Disruption', 'Power Outage', 'Port Closure', 'Maritime Advisory', 'Train Delays', 'Ground Transportation Advisory', 'Public Transportation Disruption', 'Trade Regulation', 'Customs Regulation', 'Regulatory Advisory', 'Industry Directives', 'Security Advisory', 'Public Holidays', 'Customs Delay', 'Public Health Advisory', 'Detention', 'Aviation Advisory', 'Waterway closure', 'Waterway Closure', 'Plant Closure', 'Border Closure', 'Delay', 'Industrial zone shutdown', 'Trade Restrictions', 'Closure', 'Truck Driving Ban', 'Insolvency', 'Environmental Regulations', 'Postal Disruption', 'Ice Storm', 'Travel Warning']\n",
"\n",
"\n",
"Human Error\n",
"\n",
"['Workplace Accident', 'Individuals in Focus', 'Military Operations', 'Flight Delays', 'Cancellations', 'Political Info', 'Event']\n",
"\n",
"\n",
"Cyber Attack\n",
"\n",
"['Network Disruption', 'Ransomware', 'Data breach', 'Phishing']\n",
"\n",
"\n",
"Terrorism\n",
"\n",
"['Bombing', 'Warehouse Theft', 'Public Safety', 'Security', 'Organized Crime', 'Hazmat Response', 'Piracy', 'Kidnap', 'Shooting', 'Robbery', 'Cargo theft', 'Bomb Detonation', 'Terror Attack', 'Outbreak Of War', 'Militant Action']\n",
"\n",
"\n",
"Accident\n",
"\n",
"['Maritime Accident', 'Vehicle Accident', 'Death', 'Injury', 'Non-industrial Fire', 'Chemical Spill', 'Industrial Fire', 'Fuel Disruption', 'Airline Incident', 'Crash', 'Explosion', 'Train Accident', 'Derailment', 'Sewage Disruption', 'Barge Accident', 'Bridge Collapse', 'Structure Collapse', 'Airport Accident', 'Force Majeure', 'Telecom Outage']\n",
"\n",
"\n",
"Others\n",
"\n",
"['Miscellaneous Events', 'Miscellaneous Strikes', 'Outbreak of disease']\n"
]
}
],
"source": [
"new_labels_dict = new_labels_df.to_dict(orient=\"list\")\n",
"\n",
"\n",
"for key, value in new_labels_dict.items():\n",
" new_labels_dict[key] = [item for item in value if not pd.isnull(item)]\n",
"\n",
"for category in new_labels_dict:\n",
" print(\"\\n\")\n",
" print(category + \"\\n\")\n",
" print(new_labels_dict[category])"
]
},
{
"cell_type": "markdown",
"id": "8516af0e",
"metadata": {},
"source": [
"### create a new column with the summarized label"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "0d316bb4",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Details</th>\n",
" <th>Category</th>\n",
" <th>Details_cleaned</th>\n",
" <th>Category_cleaned</th>\n",
" <th>Category_single</th>\n",
" <th>Summarized_label</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Media sources indicate that workers at the Gra...</td>\n",
" <td>Mine Workers Strike</td>\n",
" <td>medium source indicate worker grasberg mine ex...</td>\n",
" <td>Mine Workers Strike</td>\n",
" <td>Mine Workers Strike</td>\n",
" <td>Worker Strike</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>News sources are stating that recent typhoons ...</td>\n",
" <td>Travel Warning</td>\n",
" <td>news source stating recent typhoon impact hong...</td>\n",
" <td>Travel Warning</td>\n",
" <td>Travel Warning</td>\n",
" <td>Administrative Issue</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>The persisting port congestion at Shanghai’s Y...</td>\n",
" <td>Port Congestion</td>\n",
" <td>persisting port congestion shanghai ’ yangshan...</td>\n",
" <td>Port Congestion</td>\n",
" <td>Port Congestion</td>\n",
" <td>Administrative Issue</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Updated local media sources from Jakarta indic...</td>\n",
" <td>Bombing, Police Operations</td>\n",
" <td>updated local medium source jakarta indicate e...</td>\n",
" <td>Bombing, Police Operations</td>\n",
" <td>Bombing</td>\n",
" <td>Terrorism</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>According to local police in Jakarta, two expl...</td>\n",
" <td>Bombing, Police Operations</td>\n",
" <td>according local police jakarta two explosion c...</td>\n",
" <td>Bombing, Police Operations</td>\n",
" <td>Bombing</td>\n",
" <td>Terrorism</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5777</th>\n",
" <td>Intelligence received by Everstream Analytics ...</td>\n",
" <td>Ice Storm</td>\n",
" <td>intelligence received everstream analytics ind...</td>\n",
" <td>Ice Storm</td>\n",
" <td>Ice Storm</td>\n",
" <td>Administrative Issue</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5778</th>\n",
" <td>Meteorological sources indicate that a series ...</td>\n",
" <td>Roadway Closure / Disruption, Ground Transport...</td>\n",
" <td>meteorological source indicate series winter s...</td>\n",
" <td>Roadway Closure / Disruption, Ground Transport...</td>\n",
" <td>Roadway Closure</td>\n",
" <td>Administrative Issue</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5779</th>\n",
" <td>Industry sources report on December 7 that Svi...</td>\n",
" <td>Industrial Action</td>\n",
" <td>industry source report december 7 svitzer aust...</td>\n",
" <td>Industrial Action</td>\n",
" <td>Industrial Action</td>\n",
" <td>Administrative Issue</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5780</th>\n",
" <td>Industry sources indicate on December 14 that ...</td>\n",
" <td>Port Strike</td>\n",
" <td>industry source indicate december 14 worker dp...</td>\n",
" <td>Port Strike</td>\n",
" <td>Port Strike</td>\n",
" <td>Worker Strike</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5781</th>\n",
" <td>On November 17, Dutch media sources reported t...</td>\n",
" <td>Port Strike</td>\n",
" <td>november 17 dutch medium source reported worke...</td>\n",
" <td>Port Strike</td>\n",
" <td>Port Strike</td>\n",
" <td>Worker Strike</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5780 rows × 6 columns</p>\n",
"</div>"
],
"text/plain": [
" Details \\\n",
"0 Media sources indicate that workers at the Gra... \n",
"1 News sources are stating that recent typhoons ... \n",
"2 The persisting port congestion at Shanghai’s Y... \n",
"3 Updated local media sources from Jakarta indic... \n",
"4 According to local police in Jakarta, two expl... \n",
"... ... \n",
"5777 Intelligence received by Everstream Analytics ... \n",
"5778 Meteorological sources indicate that a series ... \n",
"5779 Industry sources report on December 7 that Svi... \n",
"5780 Industry sources indicate on December 14 that ... \n",
"5781 On November 17, Dutch media sources reported t... \n",
"\n",
" Category \\\n",
"0 Mine Workers Strike \n",
"1 Travel Warning \n",
"2 Port Congestion \n",
"3 Bombing, Police Operations \n",
"4 Bombing, Police Operations \n",
"... ... \n",
"5777 Ice Storm \n",
"5778 Roadway Closure / Disruption, Ground Transport... \n",
"5779 Industrial Action \n",
"5780 Port Strike \n",
"5781 Port Strike \n",
"\n",
" Details_cleaned \\\n",
"0 medium source indicate worker grasberg mine ex... \n",
"1 news source stating recent typhoon impact hong... \n",
"2 persisting port congestion shanghai ’ yangshan... \n",
"3 updated local medium source jakarta indicate e... \n",
"4 according local police jakarta two explosion c... \n",
"... ... \n",
"5777 intelligence received everstream analytics ind... \n",
"5778 meteorological source indicate series winter s... \n",
"5779 industry source report december 7 svitzer aust... \n",
"5780 industry source indicate december 14 worker dp... \n",
"5781 november 17 dutch medium source reported worke... \n",
"\n",
" Category_cleaned Category_single \\\n",
"0 Mine Workers Strike Mine Workers Strike \n",
"1 Travel Warning Travel Warning \n",
"2 Port Congestion Port Congestion \n",
"3 Bombing, Police Operations Bombing \n",
"4 Bombing, Police Operations Bombing \n",
"... ... ... \n",
"5777 Ice Storm Ice Storm \n",
"5778 Roadway Closure / Disruption, Ground Transport... Roadway Closure \n",
"5779 Industrial Action Industrial Action \n",
"5780 Port Strike Port Strike \n",
"5781 Port Strike Port Strike \n",
"\n",
" Summarized_label \n",
"0 Worker Strike \n",
"1 Administrative Issue \n",
"2 Administrative Issue \n",
"3 Terrorism \n",
"4 Terrorism \n",
"... ... \n",
"5777 Administrative Issue \n",
"5778 Administrative Issue \n",
"5779 Administrative Issue \n",
"5780 Worker Strike \n",
"5781 Worker Strike \n",
"\n",
"[5780 rows x 6 columns]"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result_df[\"Summarized_label\"] = None\n",
"\n",
"for index, row in result_df.iterrows():\n",
" value = row[\"Category_single\"]\n",
" for key, values in new_labels_dict.items():\n",
" if value in values:\n",
" result_df.at[index, \"Summarized_label\"] = key\n",
" break # No need to check other keys if match found\n",
"result_df"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "27d12104",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Details</th>\n",
" <th>Category</th>\n",
" <th>Details_cleaned</th>\n",
" <th>Category_cleaned</th>\n",
" <th>Category_single</th>\n",
" <th>Summarized_label</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>5780</td>\n",
" <td>5780</td>\n",
" <td>5780</td>\n",
" <td>5780</td>\n",
" <td>5780</td>\n",
" <td>5780</td>\n",
" </tr>\n",
" <tr>\n",
" <th>unique</th>\n",
" <td>5750</td>\n",
" <td>857</td>\n",
" <td>5744</td>\n",
" <td>857</td>\n",
" <td>94</td>\n",
" <td>8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>top</th>\n",
" <td>Updated media sources indicated on December 4 ...</td>\n",
" <td>Port Congestion</td>\n",
" <td>source indicated july 23 captain port united s...</td>\n",
" <td>Port Congestion</td>\n",
" <td>Port Congestion</td>\n",
" <td>Administrative Issue</td>\n",
" </tr>\n",
" <tr>\n",
" <th>freq</th>\n",
" <td>3</td>\n",
" <td>710</td>\n",
" <td>3</td>\n",
" <td>710</td>\n",
" <td>791</td>\n",
" <td>3210</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Details Category \\\n",
"count 5780 5780 \n",
"unique 5750 857 \n",
"top Updated media sources indicated on December 4 ... Port Congestion \n",
"freq 3 710 \n",
"\n",
" Details_cleaned Category_cleaned \\\n",
"count 5780 5780 \n",
"unique 5744 857 \n",
"top source indicated july 23 captain port united s... Port Congestion \n",
"freq 3 710 \n",
"\n",
" Category_single Summarized_label \n",
"count 5780 5780 \n",
"unique 94 8 \n",
"top Port Congestion Administrative Issue \n",
"freq 791 3210 "
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result_df.describe()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "b708ae97",
"metadata": {},
"outputs": [],
"source": [
"result_df.to_csv(\"data/processed_data.csv\", index=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|