Spaces:
Sleeping
Sleeping
File size: 10,561 Bytes
9b0d6c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os
from time import perf_counter
import datasets
import numpy as np
import pandas as pd
import torch
from torch.utils.data import (
Dataset as TorchDataset,
DistributedSampler,
WeightedRandomSampler,
)
from data_util.audioset_classes import as_strong_train_classes
from data_util.transforms import (
Mp3DecodeTransform,
SequentialTransform,
AddPseudoLabelsTransform,
strong_label_transform,
target_transform
)
logger = datasets.logging.get_logger(__name__)
def init_hf_config(max_shard_size="2GB", verbose=True, in_mem_max=None):
datasets.config.MAX_SHARD_SIZE = max_shard_size
if verbose:
datasets.logging.set_verbosity_info()
if in_mem_max is not None:
datasets.config.IN_MEMORY_MAX_SIZE = in_mem_max
def get_hf_local_path(path, local_datasets_path=None):
if local_datasets_path is None:
local_datasets_path = os.environ.get(
"HF_DATASETS_LOCAL",
os.path.join(os.environ.get("HF_DATASETS_CACHE"), "../local"),
)
path = os.path.join(local_datasets_path, path)
return path
class catchtime:
# context to measure loading time: https://stackoverflow.com/questions/33987060/python-context-manager-that-measures-time
def __init__(self, debug_print="Time", logger=logger):
self.debug_print = debug_print
self.logger = logger
def __enter__(self):
self.start = perf_counter()
return self
def __exit__(self, type, value, traceback):
self.time = perf_counter() - self.start
readout = f"{self.debug_print}: {self.time:.3f} seconds"
self.logger.info(readout)
def merge_overlapping_events(sample):
events = pd.DataFrame(sample['events'][0])
events = events.sort_values(by='onset')
sample['events'] = [None]
for l in events['event_label'].unique():
rows = []
for i, r in events.loc[events['event_label'] == l].iterrows():
if len(rows) == 0 or rows[-1]['offset'] < r['onset']:
rows.append(r)
else:
onset = min(rows[-1]['onset'], r['onset'])
offset = max(rows[-1]['offset'], r['offset'])
rows[-1]['onset'] = onset
rows[-1]['offset'] = offset
if sample["events"][0] is None:
sample['events'][0] = pd.DataFrame(rows)
else:
sample["events"][0] = pd.concat([sample['events'][0], pd.DataFrame(rows)])
return sample
def get_training_dataset(
label_encoder,
audio_length=10.0,
sample_rate=16000,
wavmix_p=0.0,
pseudo_labels_file=None,
):
init_hf_config()
decode_transform = Mp3DecodeTransform(
sample_rate=sample_rate, max_length=audio_length, debug_info_key="filename"
)
ds_list = []
with catchtime("Loading audioset_strong"):
as_ds = datasets.load_from_disk(get_hf_local_path("audioset_strong"))
# label encode transformation
if label_encoder is not None:
# set list of label names to be encoded
label_encoder.labels = as_strong_train_classes
encode_label_fun = lambda x: strong_label_transform(x, strong_label_encoder=label_encoder)
else:
encode_label_fun = lambda x: x
as_transforms = [
decode_transform,
merge_overlapping_events,
encode_label_fun,
target_transform,
]
if pseudo_labels_file:
as_transforms.append(AddPseudoLabelsTransform(pseudo_labels_file=pseudo_labels_file).add_pseudo_label_transform)
as_ds.set_transform(SequentialTransform(as_transforms))
ds_list.append(as_ds["balanced_train"])
ds_list.append(as_ds["unbalanced_train"])
dataset = torch.utils.data.ConcatDataset(ds_list)
if wavmix_p > 0:
print("Using Wavmix!")
dataset = MixupDataset(dataset, rate=wavmix_p)
return dataset
def get_eval_dataset(
label_encoder,
audio_length=10.0,
sample_rate=16000
):
init_hf_config()
ds_list = []
decode_transform = Mp3DecodeTransform(
sample_rate=sample_rate, max_length=audio_length, debug_info_key="filename"
)
with catchtime(f"Loading audioset:"):
as_ds = datasets.load_from_disk(get_hf_local_path("audioset_strong"))
# label encode transformation
if label_encoder is not None:
label_encoder.labels = as_strong_train_classes
encode_label_fun = lambda x: strong_label_transform(x, strong_label_encoder=label_encoder)
else:
encode_label_fun = lambda x: x
as_transforms = [
decode_transform,
merge_overlapping_events,
encode_label_fun,
target_transform
]
as_ds.set_transform(SequentialTransform(as_transforms))
as_ds_eval = (
as_ds["eval"]
)
ds_list.append(as_ds_eval)
dataset = torch.utils.data.ConcatDataset(ds_list)
return dataset
def get_full_dataset(label_encoder, audio_length=10.0, sample_rate=16000):
init_hf_config()
decode_transform = Mp3DecodeTransform(
sample_rate=sample_rate, max_length=audio_length, debug_info_key="filename"
)
with catchtime(f"Loading audioset:"):
as_ds = datasets.load_from_disk(get_hf_local_path("audioset_strong"))
# label encode transformation
if label_encoder is not None:
label_encoder.labels = as_strong_train_classes
encode_label_fun = lambda x: strong_label_transform(x, strong_label_encoder=label_encoder)
else:
encode_label_fun = lambda x: x
as_transforms = [
decode_transform,
merge_overlapping_events,
encode_label_fun,
]
as_ds.set_transform(SequentialTransform(as_transforms))
ds_list = []
ds_list.append(as_ds["balanced_train"])
ds_list.append(as_ds["unbalanced_train"])
ds_list.append(as_ds["eval"])
dataset = torch.utils.data.ConcatDataset(ds_list)
return dataset
def get_uniform_sample_weights(dataset):
"""
:return: float tensor of shape len(full_training_set) representing the weights of each sample.
"""
return torch.ones(len(dataset)).float()
def get_temporal_count_balanced_sample_weights(dataset, sample_weight_offset=30,
save_folder="/share/rk8/shared/as_strong"):
"""
:return: float tensor of shape len(full_training_set) representing the weights of each sample.
"""
# the order of balanced_train_hdf5, unbalanced_train_hdf5 is important.
# should match get_full_training_set
os.makedirs(save_folder, exist_ok=True)
save_file = os.path.join(save_folder, f"weights_temporal_count_offset_{sample_weight_offset}.pt")
if os.path.exists(save_file):
return torch.load(save_file)
from tqdm import tqdm
all_y = []
for sample in tqdm(dataset, desc="Calculating sample weights."):
all_y.append(sample["event_count"])
all_y = torch.from_numpy(np.stack(all_y, axis=0))
per_class = all_y.long().sum(0).float().reshape(1, -1) # frequencies per class
per_class = sample_weight_offset + per_class # offset low freq classes
if sample_weight_offset > 0:
print(f"Warning: sample_weight_offset={sample_weight_offset} minnow={per_class.min()}")
per_class_weights = 1000. / per_class
all_weight = all_y * per_class_weights
all_weight = all_weight.sum(dim=1)
torch.save(all_weight, save_file)
return all_weight
class MixupDataset(TorchDataset):
""" Mixing Up wave forms
"""
def __init__(self, dataset, beta=2, rate=0.5):
self.beta = beta
self.rate = rate
self.dataset = dataset
print(f"Mixing up waveforms from dataset of len {len(dataset)}")
def __getitem__(self, index):
if torch.rand(1) < self.rate:
batch1 = self.dataset[index]
idx2 = torch.randint(len(self.dataset), (1,)).item()
batch2 = self.dataset[idx2]
x1, x2 = batch1['audio'], batch2['audio']
y1, y2 = batch1['strong'], batch2['strong']
if 'pseudo_strong' in batch1:
p1, p2 = batch1['pseudo_strong'], batch2['pseudo_strong']
l = np.random.beta(self.beta, self.beta)
l = max(l, 1. - l)
x1 = x1 - x1.mean()
x2 = x2 - x2.mean()
x = (x1 * l + x2 * (1. - l))
x = x - x.mean()
batch1['audio'] = x
batch1['strong'] = (y1 * l + y2 * (1. - l))
if 'pseudo_strong' in batch1:
batch1['pseudo_strong'] = (p1 * l + p2 * (1. - l))
return batch1
return self.dataset[index]
def __len__(self):
return len(self.dataset)
class DistributedSamplerWrapper(DistributedSampler):
def __init__(
self, sampler, dataset, num_replicas=None, rank=None, shuffle: bool = True
):
super(DistributedSamplerWrapper, self).__init__(
dataset, num_replicas, rank, shuffle
)
# source: @awaelchli https://github.com/PyTorchLightning/pytorch-lightning/issues/3238
self.sampler = sampler
def __iter__(self):
if self.sampler.generator is None:
self.sampler.generator = torch.Generator()
self.sampler.generator.manual_seed(self.seed + self.epoch)
indices = list(self.sampler)
if self.epoch < 2:
logger.info(
f"\n DistributedSamplerWrapper (rank {self.rank}) : {indices[:3]} \n\n"
)
indices = indices[self.rank : self.total_size : self.num_replicas]
return iter(indices)
def get_weighted_sampler(
samples_weights,
epoch_len=100_000,
sampler_replace=False,
):
num_nodes = int(os.environ.get("WORLD_SIZE", 1))
ddp = int(os.environ.get("DDP", 1))
num_nodes = max(ddp, num_nodes)
rank = int(os.environ.get("NODE_RANK", 0))
return DistributedSamplerWrapper(
sampler=WeightedRandomSampler(
samples_weights, num_samples=epoch_len, replacement=sampler_replace
),
dataset=range(epoch_len),
num_replicas=num_nodes,
rank=rank,
)
if __name__ == "__main__":
from helpers.encode import ManyHotEncoder
encoder = ManyHotEncoder([], 10., 160, net_pooling=4, fs=16_000)
train_ds = get_training_dataset(
encoder, audio_length=10.0, sample_rate=16_000
)
valid_ds = get_eval_dataset(
encoder, audio_length=10.0, sample_rate=16_000
)
print("Len train dataset: ", len(train_ds))
print("Len valid dataset: ", len(valid_ds))
|