File size: 10,561 Bytes
9b0d6c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import os
from time import perf_counter
import datasets
import numpy as np
import pandas as pd
import torch
from torch.utils.data import (
    Dataset as TorchDataset,
    DistributedSampler,
    WeightedRandomSampler,
)

from data_util.audioset_classes import as_strong_train_classes
from data_util.transforms import (
    Mp3DecodeTransform,
    SequentialTransform,
    AddPseudoLabelsTransform,
    strong_label_transform,
    target_transform
)

logger = datasets.logging.get_logger(__name__)


def init_hf_config(max_shard_size="2GB", verbose=True, in_mem_max=None):
    datasets.config.MAX_SHARD_SIZE = max_shard_size
    if verbose:
        datasets.logging.set_verbosity_info()
    if in_mem_max is not None:
        datasets.config.IN_MEMORY_MAX_SIZE = in_mem_max


def get_hf_local_path(path, local_datasets_path=None):
    if local_datasets_path is None:
        local_datasets_path = os.environ.get(
            "HF_DATASETS_LOCAL",
            os.path.join(os.environ.get("HF_DATASETS_CACHE"), "../local"),
        )
    path = os.path.join(local_datasets_path, path)
    return path


class catchtime:
    # context to measure loading time: https://stackoverflow.com/questions/33987060/python-context-manager-that-measures-time
    def __init__(self, debug_print="Time", logger=logger):
        self.debug_print = debug_print
        self.logger = logger

    def __enter__(self):
        self.start = perf_counter()
        return self

    def __exit__(self, type, value, traceback):
        self.time = perf_counter() - self.start
        readout = f"{self.debug_print}: {self.time:.3f} seconds"
        self.logger.info(readout)


def merge_overlapping_events(sample):
    events = pd.DataFrame(sample['events'][0])
    events = events.sort_values(by='onset')
    sample['events'] = [None]

    for l in events['event_label'].unique():
        rows = []
        for i, r in events.loc[events['event_label'] == l].iterrows():
            if len(rows) == 0 or rows[-1]['offset'] < r['onset']:
                rows.append(r)
            else:
                onset = min(rows[-1]['onset'], r['onset'])
                offset = max(rows[-1]['offset'], r['offset'])
                rows[-1]['onset'] = onset
                rows[-1]['offset'] = offset
        if sample["events"][0] is None:
            sample['events'][0] = pd.DataFrame(rows)
        else:
            sample["events"][0] = pd.concat([sample['events'][0], pd.DataFrame(rows)])
    return sample


def get_training_dataset(
        label_encoder,
        audio_length=10.0,
        sample_rate=16000,
        wavmix_p=0.0,
        pseudo_labels_file=None,
):
    init_hf_config()

    decode_transform = Mp3DecodeTransform(
        sample_rate=sample_rate, max_length=audio_length, debug_info_key="filename"
    )

    ds_list = []

    with catchtime("Loading audioset_strong"):
        as_ds = datasets.load_from_disk(get_hf_local_path("audioset_strong"))

    # label encode transformation
    if label_encoder is not None:
        # set list of label names to be encoded
        label_encoder.labels = as_strong_train_classes
        encode_label_fun = lambda x: strong_label_transform(x, strong_label_encoder=label_encoder)
    else:
        encode_label_fun = lambda x: x

    as_transforms = [
        decode_transform,
        merge_overlapping_events,
        encode_label_fun,
        target_transform,
    ]

    if pseudo_labels_file:
        as_transforms.append(AddPseudoLabelsTransform(pseudo_labels_file=pseudo_labels_file).add_pseudo_label_transform)

    as_ds.set_transform(SequentialTransform(as_transforms))

    ds_list.append(as_ds["balanced_train"])
    ds_list.append(as_ds["unbalanced_train"])
    dataset = torch.utils.data.ConcatDataset(ds_list)

    if wavmix_p > 0:
        print("Using Wavmix!")
        dataset = MixupDataset(dataset, rate=wavmix_p)
    return dataset


def get_eval_dataset(
        label_encoder,
        audio_length=10.0,
        sample_rate=16000
):
    init_hf_config()
    ds_list = []

    decode_transform = Mp3DecodeTransform(
        sample_rate=sample_rate, max_length=audio_length, debug_info_key="filename"
    )

    with catchtime(f"Loading audioset:"):
        as_ds = datasets.load_from_disk(get_hf_local_path("audioset_strong"))

    # label encode transformation
    if label_encoder is not None:
        label_encoder.labels = as_strong_train_classes
        encode_label_fun = lambda x: strong_label_transform(x, strong_label_encoder=label_encoder)
    else:
        encode_label_fun = lambda x: x

    as_transforms = [
        decode_transform,
        merge_overlapping_events,
        encode_label_fun,
        target_transform
    ]
    as_ds.set_transform(SequentialTransform(as_transforms))
    as_ds_eval = (
        as_ds["eval"]
    )
    ds_list.append(as_ds_eval)
    dataset = torch.utils.data.ConcatDataset(ds_list)
    return dataset


def get_full_dataset(label_encoder, audio_length=10.0, sample_rate=16000):
    init_hf_config()

    decode_transform = Mp3DecodeTransform(
        sample_rate=sample_rate, max_length=audio_length, debug_info_key="filename"
    )

    with catchtime(f"Loading audioset:"):
        as_ds = datasets.load_from_disk(get_hf_local_path("audioset_strong"))

    # label encode transformation
    if label_encoder is not None:
        label_encoder.labels = as_strong_train_classes
        encode_label_fun = lambda x: strong_label_transform(x, strong_label_encoder=label_encoder)
    else:
        encode_label_fun = lambda x: x

    as_transforms = [
        decode_transform,
        merge_overlapping_events,
        encode_label_fun,
    ]

    as_ds.set_transform(SequentialTransform(as_transforms))
    ds_list = []
    ds_list.append(as_ds["balanced_train"])
    ds_list.append(as_ds["unbalanced_train"])
    ds_list.append(as_ds["eval"])

    dataset = torch.utils.data.ConcatDataset(ds_list)
    return dataset


def get_uniform_sample_weights(dataset):
    """
    :return: float tensor of shape len(full_training_set) representing the weights of each sample.
    """
    return torch.ones(len(dataset)).float()


def get_temporal_count_balanced_sample_weights(dataset, sample_weight_offset=30,
                                               save_folder="/share/rk8/shared/as_strong"):
    """
    :return: float tensor of shape len(full_training_set) representing the weights of each sample.
    """
    # the order of balanced_train_hdf5, unbalanced_train_hdf5 is important.
    # should match get_full_training_set
    os.makedirs(save_folder, exist_ok=True)
    save_file = os.path.join(save_folder, f"weights_temporal_count_offset_{sample_weight_offset}.pt")
    if os.path.exists(save_file):
        return torch.load(save_file)

    from tqdm import tqdm

    all_y = []
    for sample in tqdm(dataset, desc="Calculating sample weights."):
        all_y.append(sample["event_count"])
    all_y = torch.from_numpy(np.stack(all_y, axis=0))
    per_class = all_y.long().sum(0).float().reshape(1, -1)  # frequencies per class

    per_class = sample_weight_offset + per_class  # offset low freq classes
    if sample_weight_offset > 0:
        print(f"Warning: sample_weight_offset={sample_weight_offset} minnow={per_class.min()}")
    per_class_weights = 1000. / per_class
    all_weight = all_y * per_class_weights
    all_weight = all_weight.sum(dim=1)

    torch.save(all_weight, save_file)
    return all_weight


class MixupDataset(TorchDataset):
    """ Mixing Up wave forms
    """

    def __init__(self, dataset, beta=2, rate=0.5):
        self.beta = beta
        self.rate = rate
        self.dataset = dataset
        print(f"Mixing up waveforms from dataset of len {len(dataset)}")

    def __getitem__(self, index):
        if torch.rand(1) < self.rate:
            batch1 = self.dataset[index]
            idx2 = torch.randint(len(self.dataset), (1,)).item()
            batch2 = self.dataset[idx2]
            x1, x2 = batch1['audio'], batch2['audio']
            y1, y2 = batch1['strong'], batch2['strong']
            if 'pseudo_strong' in batch1:
                p1, p2 = batch1['pseudo_strong'], batch2['pseudo_strong']
            l = np.random.beta(self.beta, self.beta)
            l = max(l, 1. - l)
            x1 = x1 - x1.mean()
            x2 = x2 - x2.mean()
            x = (x1 * l + x2 * (1. - l))
            x = x - x.mean()
            batch1['audio'] = x
            batch1['strong'] = (y1 * l + y2 * (1. - l))
            if 'pseudo_strong' in batch1:
                batch1['pseudo_strong'] = (p1 * l + p2 * (1. - l))
            return batch1
        return self.dataset[index]

    def __len__(self):
        return len(self.dataset)


class DistributedSamplerWrapper(DistributedSampler):
    def __init__(
        self, sampler, dataset, num_replicas=None, rank=None, shuffle: bool = True
    ):
        super(DistributedSamplerWrapper, self).__init__(
            dataset, num_replicas, rank, shuffle
        )
        # source: @awaelchli https://github.com/PyTorchLightning/pytorch-lightning/issues/3238
        self.sampler = sampler

    def __iter__(self):
        if self.sampler.generator is None:
            self.sampler.generator = torch.Generator()
        self.sampler.generator.manual_seed(self.seed + self.epoch)
        indices = list(self.sampler)
        if self.epoch < 2:
            logger.info(
                f"\n DistributedSamplerWrapper (rank {self.rank}) :  {indices[:3]} \n\n"
            )
        indices = indices[self.rank : self.total_size : self.num_replicas]
        return iter(indices)


def get_weighted_sampler(
        samples_weights,
        epoch_len=100_000,
        sampler_replace=False,
):
    num_nodes = int(os.environ.get("WORLD_SIZE", 1))
    ddp = int(os.environ.get("DDP", 1))
    num_nodes = max(ddp, num_nodes)
    rank = int(os.environ.get("NODE_RANK", 0))
    return DistributedSamplerWrapper(
        sampler=WeightedRandomSampler(
            samples_weights, num_samples=epoch_len, replacement=sampler_replace
        ),
        dataset=range(epoch_len),
        num_replicas=num_nodes,
        rank=rank,
    )


if __name__ == "__main__":
    from helpers.encode import ManyHotEncoder

    encoder = ManyHotEncoder([], 10., 160, net_pooling=4, fs=16_000)

    train_ds = get_training_dataset(
        encoder, audio_length=10.0, sample_rate=16_000
    )

    valid_ds = get_eval_dataset(
        encoder, audio_length=10.0, sample_rate=16_000
    )

    print("Len train dataset: ", len(train_ds))
    print("Len valid dataset: ", len(valid_ds))