Spaces:
Sleeping
Sleeping
File size: 20,858 Bytes
9b0d6c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
import argparse
import random
from pathlib import Path
from typing import Dict
import pytorch_lightning as pl
import torch
import torch.nn as nn
import transformers
from einops import rearrange
from pytorch_lightning.loggers import WandbLogger
from torch.utils.data import DataLoader
import wandb
from data_util.dcase2016task2 import (get_training_dataset, get_validation_dataset, get_test_dataset,
label_vocab_nlabels, label_vocab_as_dict)
from helpers.augment import frame_shift, time_mask, mixup, filter_augmentation, mixstyle, RandomResizeCrop
from helpers.score import get_events_for_all_files, combine_target_events, EventBasedScore, SegmentBasedScore
from helpers.utils import worker_init_fn
from models.asit.ASIT_wrapper import ASiTWrapper
from models.atstframe.ATSTF_wrapper import ATSTWrapper
from models.beats.BEATs_wrapper import BEATsWrapper
from models.frame_passt.fpasst_wrapper import FPaSSTWrapper
from models.m2d.M2D_wrapper import M2DWrapper
from models.prediction_wrapper import PredictionsWrapper
class PLModule(pl.LightningModule):
def __init__(self, config):
super().__init__()
self.config = config
if config.pretrained == "scratch":
checkpoint = None
elif config.pretrained == "ssl":
checkpoint = "ssl"
elif config.pretrained == "weak":
checkpoint = "weak"
elif config.pretrained == "strong":
checkpoint = "strong_1"
else:
raise ValueError(f"Unknown pretrained checkpoint: {config.pretrained}")
# load transformer model
if config.model_name == "BEATs":
beats = BEATsWrapper()
model = PredictionsWrapper(beats, checkpoint=f"BEATs_{checkpoint}" if checkpoint else None,
seq_model_type=config.seq_model_type,
n_classes_strong=self.config.n_classes)
elif config.model_name == "ATST-F":
atst = ATSTWrapper()
model = PredictionsWrapper(atst, checkpoint=f"ATST-F_{checkpoint}" if checkpoint else None,
seq_model_type=config.seq_model_type,
n_classes_strong=self.config.n_classes)
elif config.model_name == "fpasst":
fpasst = FPaSSTWrapper()
model = PredictionsWrapper(fpasst, checkpoint=f"fpasst_{checkpoint}" if checkpoint else None,
seq_model_type=config.seq_model_type,
n_classes_strong=self.config.n_classes)
elif config.model_name == "M2D":
m2d = M2DWrapper()
model = PredictionsWrapper(m2d, checkpoint=f"M2D_{checkpoint}" if checkpoint else None,
seq_model_type=config.seq_model_type,
n_classes_strong=self.config.n_classes,
embed_dim=m2d.m2d.cfg.feature_d)
elif config.model_name == "ASIT":
asit = ASiTWrapper()
model = PredictionsWrapper(asit, checkpoint=f"ASIT_{checkpoint}" if checkpoint else None,
seq_model_type=config.seq_model_type,
n_classes_strong=self.config.n_classes)
else:
raise NotImplementedError(f"Model {config.model_name} not (yet) implemented")
self.model = model
self.strong_loss = nn.BCEWithLogitsLoss()
self.freq_warp = RandomResizeCrop((1, 1.0), time_scale=(1.0, 1.0))
task_path = Path(self.config.task_path)
label_vocab, nlabels = label_vocab_nlabels(task_path)
self.label_to_idx = label_vocab_as_dict(label_vocab, key="label", value="idx")
self.idx_to_label: Dict[int, str] = {
idx: label for (label, idx) in self.label_to_idx.items()
}
self.event_onset_200ms_fms = EventBasedScore(
label_to_idx=self.label_to_idx,
name="event_onset_200ms_fms",
scores=("f_measure", "precision", "recall"),
params={"evaluate_onset": True, "evaluate_offset": False, "t_collar": 0.2}
)
self.event_onset_50ms_fms = EventBasedScore(
label_to_idx=self.label_to_idx,
name="event_onset_50ms_fms",
scores=("f_measure", "precision", "recall"),
params={"evaluate_onset": True, "evaluate_offset": False, "t_collar": 0.05}
)
self.segment_1s_er = SegmentBasedScore(
label_to_idx=self.label_to_idx,
name="segment_1s_er",
scores=("error_rate",),
params={"time_resolution": 1.0},
maximize=False,
)
self.postprocessing_grid = {
"median_filter_ms": [
250
],
"min_duration": [
125
]
}
self.preds, self.tgts, self.fnames, self.timestamps = [], [], [], []
def forward(self, audio):
mel = self.model.mel_forward(audio)
y_strong, _ = self.model(mel)
return y_strong
def separate_params(self):
pt_params = []
seq_params = []
head_params = []
for name, p in self.named_parameters():
name = name[len("model."):]
if name.startswith('model'):
# the transformer
pt_params.append(p)
elif name.startswith('seq_model'):
# the optional sequence model
seq_params.append(p)
elif name.startswith('strong_head') or name.startswith('weak_head'):
# the prediction head
head_params.append(p)
else:
raise ValueError(f"Unexpected key in model: {name}")
if self.model.has_separate_params():
# split parameters into groups according to their depth in the network
# based on this, we can apply layer-wise learning rate decay
pt_params = self.model.separate_params()
else:
if self.config.lr_decay != 1.0:
raise ValueError(f"Model has no separate_params function. Can't apply layer-wise lr decay, but "
f"learning rate decay is set to {self.config.lr_decay}.")
return pt_params, seq_params, head_params
def get_optimizer(
self,
lr,
lr_decay=1.0,
transformer_lr=None,
transformer_frozen=False,
adamw=False,
weight_decay=0.01,
betas=(0.9, 0.999)
):
pt_params, seq_params, head_params = self.separate_params()
param_groups = [
{'params': head_params, 'lr': lr}, # model head (besides base model and seq model)
]
if transformer_frozen:
for p in pt_params + seq_params:
if isinstance(p, list):
for p_i in p:
p_i.detach_()
else:
p.detach_()
else:
if transformer_lr is None:
transformer_lr = lr
if isinstance(pt_params, list) and isinstance(pt_params[0], list):
# apply lr decay
scale_lrs = [transformer_lr * (lr_decay ** i) for i in range(1, len(pt_params) + 1)]
param_groups = param_groups + [{"params": pt_params[i], "lr": scale_lrs[i]} for i in
range(len(pt_params))]
else:
param_groups.append(
{'params': pt_params, 'lr': transformer_lr}, # pretrained model
)
param_groups.append(
{'params': seq_params, 'lr': lr}, # pretrained model
)
# do not apply weight decay to biases and batch norms
param_groups_split = []
for param_group in param_groups:
params_1D, params_2D = [], []
lr = param_group['lr']
for param in param_group['params']:
if param.ndimension() >= 2:
params_2D.append(param)
elif param.ndimension() <= 1:
params_1D.append(param)
param_groups_split += [{'params': params_2D, 'lr': lr, 'weight_decay': weight_decay},
{'params': params_1D, 'lr': lr}]
if weight_decay > 0:
assert adamw
if adamw:
print(f"\nUsing adamw weight_decay={weight_decay}!\n")
return torch.optim.AdamW(param_groups_split, lr=lr, weight_decay=weight_decay, betas=betas)
return torch.optim.Adam(param_groups_split, lr=lr, betas=betas)
def get_lr_scheduler(
self,
optimizer,
num_training_steps,
schedule_mode="cos",
gamma: float = 0.999996,
num_warmup_steps=4000,
lr_end=1e-7,
):
if schedule_mode in {"exp"}:
return torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma)
if schedule_mode in {"cosine", "cos"}:
return transformers.get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
)
if schedule_mode in {"linear"}:
print("Linear schedule!")
return transformers.get_polynomial_decay_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
power=1.0,
lr_end=lr_end,
)
raise RuntimeError(f"schedule_mode={schedule_mode} Unknown.")
def configure_optimizers(self):
"""
This is the way pytorch lightening requires optimizers and learning rate schedulers to be defined.
The specified items are used automatically in the optimization loop (no need to call optimizer.step() yourself).
:return: dict containing optimizer and learning rate scheduler
"""
optimizer = self.get_optimizer(self.config.max_lr,
lr_decay=self.config.lr_decay,
transformer_lr=self.config.transformer_lr,
transformer_frozen=self.config.transformer_frozen,
adamw=False if self.config.no_adamw else True,
weight_decay=self.config.weight_decay)
num_training_steps = self.trainer.estimated_stepping_batches
scheduler = self.get_lr_scheduler(optimizer, num_training_steps,
schedule_mode=self.config.schedule_mode,
lr_end=self.config.lr_end)
lr_scheduler_config = {
"scheduler": scheduler,
"interval": "step",
"frequency": 1
}
return [optimizer], [lr_scheduler_config]
def training_step(self, train_batch, batch_idx):
"""
:param train_batch: contains one batch from train dataloader
:param batch_idx
:return: a dict containing at least loss that is used to update model parameters, can also contain
other items that can be processed in 'training_epoch_end' to log other metrics than loss
"""
audios, labels, fnames, timestamps = train_batch
if self.config.transformer_frozen:
self.model.model.eval()
self.model.seq_model.eval()
mel = self.model.mel_forward(audios)
# time rolling
if self.config.frame_shift_range > 0:
mel, labels = frame_shift(
mel,
labels,
shift_range=self.config.frame_shift_range
)
# mixup
if self.config.mixup_p > random.random():
mel, labels = mixup(
mel,
targets=labels
)
# mixstyle
if self.config.mixstyle_p > random.random():
mel = mixstyle(
mel
)
# time masking
if self.config.max_time_mask_size > 0:
mel, labels, pseudo_labels = time_mask(
mel,
labels,
max_mask_ratio=self.config.max_time_mask_size
)
# frequency masking
if self.config.filter_augment_p > random.random():
mel, _ = filter_augmentation(
mel
)
# frequency warping
if self.config.freq_warp_p > random.random():
mel = mel.squeeze(1)
mel = self.freq_warp(mel)
mel = mel.unsqueeze(1)
# forward through network; use strong head
y_hat_strong, _ = self.model(mel)
loss = self.strong_loss(y_hat_strong, labels)
# logging
self.log('epoch', self.current_epoch)
for i, param_group in enumerate(self.trainer.optimizers[0].param_groups):
self.log(f'trainer/lr_optimizer_{i}', param_group['lr'])
self.log("train/loss", loss.detach().cpu(), prog_bar=True)
return loss
def _score_step(self, batch):
audios, labels, fnames, timestamps = batch
strong_preds = self.forward(audios)
self.preds.append(strong_preds)
self.tgts.append(labels)
self.fnames.append(fnames)
self.timestamps.append(timestamps)
def _score_epoch_end(self, name="val"):
preds = torch.cat(self.preds)
tgts = torch.cat(self.tgts)
fnames = [item for sublist in self.fnames for item in sublist]
timestamps = torch.cat(self.timestamps)
val_loss = self.strong_loss(preds, tgts)
self.log(f"{name}/loss", val_loss, prog_bar=True)
# the following function expects one prediction per timestamp (sequence dimension must be flattened)
seq_len = preds.size(-1)
preds = rearrange(preds, 'bs c t -> (bs t) c').float()
timestamps = rearrange(timestamps, 'bs t -> (bs t)').float()
fnames = [fname for fname in fnames for _ in range(seq_len)]
predicted_events_by_postprocessing = get_events_for_all_files(
preds,
fnames,
timestamps,
self.idx_to_label,
self.postprocessing_grid
)
# we only have one postprocessing configurations (aligned with HEAR challenge)
key = list(predicted_events_by_postprocessing.keys())[0]
predicted_events = predicted_events_by_postprocessing[key]
# load ground truth for test fold
task_path = Path(self.config.task_path)
test_target_events = combine_target_events(["valid" if name == "val" else "test"], task_path)
onset_fms = self.event_onset_200ms_fms(predicted_events, test_target_events)
onset_fms_50 = self.event_onset_50ms_fms(predicted_events, test_target_events)
segment_1s_er = self.segment_1s_er(predicted_events, test_target_events)
self.log(f"{name}/onset_fms", onset_fms[0][1])
self.log(f"{name}/onset_fms_50", onset_fms_50[0][1])
self.log(f"{name}/segment_1s_er", segment_1s_er[0][1])
# free buffers
self.preds, self.tgts, self.fnames, self.timestamps = [], [], [], []
def validation_step(self, batch, batch_idx):
self._score_step(batch)
def on_validation_epoch_end(self):
self._score_epoch_end(name="val")
def test_step(self, batch, batch_idx):
self._score_step(batch)
def on_test_epoch_end(self):
self._score_epoch_end(name="test")
def train(config):
# Example for fine-tuning pre-trained transformers on a downstream task.
# logging is done using wandb
wandb_logger = WandbLogger(
project="PTSED",
notes="Downstream Training on office sound event detection.",
tags=["DCASE 2016 Task 2", "Sound Event Detection"],
config=config,
name=config.experiment_name
)
train_set = get_training_dataset(config.task_path, wavmix_p=config.wavmix_p)
val_ds = get_validation_dataset(config.task_path)
test_ds = get_test_dataset(config.task_path)
# train dataloader
train_dl = DataLoader(dataset=train_set,
worker_init_fn=worker_init_fn,
num_workers=config.num_workers,
batch_size=config.batch_size,
shuffle=True)
# validation dataloader
valid_dl = DataLoader(dataset=val_ds,
worker_init_fn=worker_init_fn,
num_workers=config.num_workers,
batch_size=config.batch_size,
shuffle=False,
drop_last=False)
# test dataloader
test_dl = DataLoader(dataset=test_ds,
worker_init_fn=worker_init_fn,
num_workers=config.num_workers,
batch_size=config.batch_size,
shuffle=False,
drop_last=False)
# create pytorch lightening module
pl_module = PLModule(config)
# create the pytorch lightening trainer by specifying the number of epochs to train, the logger,
# on which kind of device(s) to train and possible callbacks
trainer = pl.Trainer(max_epochs=config.n_epochs,
logger=wandb_logger,
accelerator='auto',
devices=config.num_devices,
precision=config.precision,
num_sanity_val_steps=0,
check_val_every_n_epoch=config.check_val_every_n_epoch
)
# start training and validation for the specified number of epochs
trainer.fit(
pl_module,
train_dataloaders=train_dl,
val_dataloaders=valid_dl,
)
test_results = trainer.test(pl_module, dataloaders=test_dl)
print(test_results)
wandb.finish()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Configuration Parser. ')
# general
parser.add_argument('--task_path', type=str, required=True)
parser.add_argument('--experiment_name', type=str, default="DCASE2016Task2")
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--num_workers', type=int, default=16)
parser.add_argument('--num_devices', type=int, default=1)
parser.add_argument('--precision', type=int, default=16)
parser.add_argument('--check_val_every_n_epoch', type=int, default=10)
# model
parser.add_argument('--model_name', type=str,
choices=["ATST-F", "BEATs", "fpasst", "M2D", "ASIT"],
default="ATST-F") # used also for training
# "scratch" = no pretraining
# "ssl" = SSL pre-trained
# "weak" = AudioSet Weak pre-trained
# "strong" = AudioSet Strong pre-trained
parser.add_argument('--pretrained', type=str, choices=["scratch", "ssl", "weak", "strong"],
default="strong")
parser.add_argument('--seq_model_type', type=str, choices=["rnn"],
default=None)
parser.add_argument('--n_classes', type=int, default=11)
# training
parser.add_argument('--n_epochs', type=int, default=300)
# augmentation
parser.add_argument('--wavmix_p', type=float, default=0.5)
parser.add_argument('--freq_warp_p', type=float, default=0.0)
parser.add_argument('--filter_augment_p', type=float, default=0.0)
parser.add_argument('--frame_shift_range', type=float, default=0.0) # in seconds
parser.add_argument('--mixup_p', type=float, default=0.5)
parser.add_argument('--mixstyle_p', type=float, default=0.0)
parser.add_argument('--max_time_mask_size', type=float, default=0.0)
# optimizer
parser.add_argument('--no_adamw', action='store_true', default=False)
parser.add_argument('--weight_decay', type=float, default=0.001)
parser.add_argument('--transformer_frozen', action='store_true', dest='transformer_frozen',
default=False,
help='Disable training for the transformer.')
# lr schedule
parser.add_argument('--schedule_mode', type=str, default="cos")
parser.add_argument('--max_lr', type=float, default=1.06e-4)
parser.add_argument('--transformer_lr', type=float, default=None)
parser.add_argument('--lr_decay', type=float, default=1.0)
parser.add_argument('--lr_end', type=float, default=1e-7)
parser.add_argument('--warmup_steps', type=int, default=100)
args = parser.parse_args()
train(args)
|