Spaces:
Sleeping
Sleeping
File size: 9,938 Bytes
9b0d6c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import torch
import random
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions.beta import Beta
def frame_shift(mels, labels, embeddings=None, pseudo_labels=None,
net_pooling=4, shift_range=0.125):
bsz, channels, n_bands, frames = mels.shape
abs_shift_mel = int(frames * shift_range)
if embeddings is not None:
embed_frames = embeddings.shape[-1]
embed_pool_fact = frames / embed_frames
for bindx in range(bsz):
shift = int(random.gauss(0, abs_shift_mel))
mels[bindx] = torch.roll(mels[bindx], shift, dims=-1)
label_shift = -abs(shift) / net_pooling if shift < 0 else shift / net_pooling
label_shift = round(label_shift)
labels[bindx] = torch.roll(labels[bindx], label_shift, dims=-1)
if pseudo_labels is not None:
pseudo_labels[bindx] = torch.roll(pseudo_labels[bindx], label_shift, dims=-1)
if embeddings is not None:
embed_shift = -abs(shift) / embed_pool_fact if shift < 0 else shift / embed_pool_fact
embed_shift = round(embed_shift)
embeddings[bindx] = torch.roll(embeddings[bindx], embed_shift, dims=-1)
out_args = [mels]
if embeddings is not None:
out_args.append(embeddings)
out_args.append(labels)
if pseudo_labels is not None:
out_args.append(pseudo_labels)
return tuple(out_args)
def time_mask(features, labels, embeddings=None, pseudo_labels=None, net_pooling=4,
min_mask_ratio=0.05, max_mask_ratio=0.2):
_, _, n_frame = labels.shape
if embeddings is not None:
embed_frames = embeddings.shape[-1]
embed_pool_fact = embed_frames / n_frame
t_width = torch.randint(low=int(n_frame * min_mask_ratio), high=int(n_frame * max_mask_ratio), size=(1,))
t_low = torch.randint(low=0, high=n_frame-t_width[0], size=(1,))
features[:, :, :, t_low * net_pooling:(t_low+t_width)*net_pooling] = 0
labels[:, :, t_low:t_low+t_width] = 0
if pseudo_labels is not None:
labels[:, :, t_low:t_low + t_width] = 0
if embeddings is not None:
low = round((t_low * embed_pool_fact).item())
high = round(((t_low + t_width) * embed_pool_fact).item())
embeddings[..., low:high] = 0
out_args = [features]
if embeddings is not None:
out_args.append(embeddings)
out_args.append(labels)
if pseudo_labels is not None:
out_args.append(pseudo_labels)
return tuple(out_args)
def mixup(data, embeddings=None, targets=None, pseudo_strong=None, alpha=0.2, beta=0.2, return_mix_coef=False):
with torch.no_grad():
batch_size = data.size(0)
c = np.random.beta(alpha, beta, size=batch_size)
c = np.maximum(c, 1 - c)
perm = torch.randperm(batch_size)
cd = torch.tensor(c, dtype=data.dtype, device=data.device).view(batch_size, *([1] * (data.ndim - 1)))
mixed_data = cd * data + (1 - cd) * data[perm, :]
if embeddings is not None:
ce = torch.tensor(c, dtype=embeddings.dtype, device=embeddings.device).view(batch_size, *([1] * (embeddings.ndim - 1)))
mixed_embeddings = ce * embeddings + (1 - ce) * embeddings[perm, :]
if targets is not None:
ct = torch.tensor(c, dtype=data.dtype, device=data.device).view(batch_size, *([1] * (targets.ndim - 1)))
mixed_target = torch.clamp(
ct * targets + (1 - ct) * targets[perm, :], min=0, max=1
)
if pseudo_strong is not None:
cp = torch.tensor(c, dtype=pseudo_strong.dtype, device=pseudo_strong.device).view(batch_size,
*([1] * (pseudo_strong.ndim - 1)))
mixed_pseudo_strong = cp * pseudo_strong + (1 - cp) * pseudo_strong[perm, :]
out_args = [mixed_data]
if embeddings is not None:
out_args.append(mixed_embeddings)
if targets is not None:
out_args.append(mixed_target)
if pseudo_strong is not None:
out_args.append(mixed_pseudo_strong)
if return_mix_coef:
out_args.append(perm)
out_args.append(c)
return tuple(out_args)
def filt_aug_(features, db_range=(-6, 6), n_band=(3, 6), min_bw=6):
batch_size, channels, n_freq_bin, _ = features.shape
n_freq_band = torch.randint(low=n_band[0], high=n_band[1], size=(1,)).item() # [low, high)
if n_freq_band > 1:
while n_freq_bin - n_freq_band * min_bw + 1 < 0:
min_bw -= 1
band_bndry_freqs = torch.sort(torch.randint(0, n_freq_bin - n_freq_band * min_bw + 1,
(n_freq_band - 1,)))[0] + \
torch.arange(1, n_freq_band) * min_bw
band_bndry_freqs = torch.cat((torch.tensor([0]), band_bndry_freqs, torch.tensor([n_freq_bin])))
band_factors = torch.rand((batch_size, n_freq_band + 1)).to(features) * (db_range[1] - db_range[0]) + db_range[0]
freq_filt = torch.ones((batch_size, n_freq_bin, 1)).to(features)
for i in range(n_freq_band):
for j in range(batch_size):
freq_filt[j, band_bndry_freqs[i]:band_bndry_freqs[i+1], :] = \
torch.linspace(band_factors[j, i], band_factors[j, i+1],
band_bndry_freqs[i+1] - band_bndry_freqs[i]).unsqueeze(-1)
freq_filt = 10 ** (freq_filt / 20)
return features * freq_filt.unsqueeze(1)
else:
return features
def filter_augmentation(features, n_transform=1, filter_db_range=(-6, 6),
filter_bands=(3, 6), filter_minimum_bandwidth=6):
if n_transform == 2:
feature_list = []
for _ in range(n_transform):
features_temp = features
features_temp = filt_aug_(features_temp, db_range=filter_db_range, n_band=filter_bands,
min_bw=filter_minimum_bandwidth)
feature_list.append(features_temp)
return feature_list
elif n_transform == 1:
features = filt_aug_(features, db_range=filter_db_range, n_band=filter_bands,
min_bw=filter_minimum_bandwidth)
return [features, features]
else:
return [features, features]
def mixstyle(x, alpha=0.4, eps=1e-6):
batch_size = x.size(0)
# frequency-wise statistics
f_mu = x.mean(dim=3, keepdim=True)
f_var = x.var(dim=3, keepdim=True)
f_sig = (f_var + eps).sqrt() # compute instance standard deviation
f_mu, f_sig = f_mu.detach(), f_sig.detach() # block gradients
x_normed = (x - f_mu) / f_sig # normalize input
lmda = Beta(alpha, alpha).sample((batch_size, 1, 1, 1)).to(x.device, dtype=x.dtype) # sample instance-wise convex weights
lmda = torch.max(lmda, 1-lmda)
perm = torch.randperm(batch_size).to(x.device) # generate shuffling indices
f_mu_perm, f_sig_perm = f_mu[perm], f_sig[perm] # shuffling
mu_mix = f_mu * lmda + f_mu_perm * (1 - lmda) # generate mixed mean
sig_mix = f_sig * lmda + f_sig_perm * (1 - lmda) # generate mixed standard deviation
x = x_normed * sig_mix + mu_mix # denormalize input using the mixed statistics
return x
class RandomResizeCrop(nn.Module):
"""Random Resize Crop block.
Args:
virtual_crop_scale: Virtual crop area `(F ratio, T ratio)` in ratio to input size.
freq_scale: Random frequency range `(min, max)`.
time_scale: Random time frame range `(min, max)`.
"""
def __init__(self, virtual_crop_scale=(1.0, 1.5), freq_scale=(0.6, 1.0), time_scale=(0.6, 1.5)):
super().__init__()
self.virtual_crop_scale = virtual_crop_scale
self.freq_scale = freq_scale
self.time_scale = time_scale
self.interpolation = 'bicubic'
assert time_scale[1] >= 1.0 and freq_scale[1] >= 1.0
@staticmethod
def get_params(virtual_crop_size, in_size, time_scale, freq_scale):
canvas_h, canvas_w = virtual_crop_size
src_h, src_w = in_size
h = np.clip(int(np.random.uniform(*freq_scale) * src_h), 1, canvas_h)
w = np.clip(int(np.random.uniform(*time_scale) * src_w), 1, canvas_w)
i = random.randint(0, canvas_h - h) if canvas_h > h else 0
j = random.randint(0, canvas_w - w) if canvas_w > w else 0
return i, j, h, w
def forward(self, lms):
# spec_output = []
# for lms in specs:
# lms = lms.unsqueeze(0)
# make virtual_crop_arear empty space (virtual crop area) and copy the input log mel spectrogram to th the center
virtual_crop_size = [int(s * c) for s, c in zip(lms.shape[-2:], self.virtual_crop_scale)]
virtual_crop_area = (torch.zeros((lms.shape[0], virtual_crop_size[0], virtual_crop_size[1]))
.to(torch.float).to(lms.device))
_, lh, lw = virtual_crop_area.shape
c, h, w = lms.shape
x, y = (lw - w) // 2, (lh - h) // 2
virtual_crop_area[:, y:y+h, x:x+w] = lms
# get random area
i, j, h, w = self.get_params(virtual_crop_area.shape[-2:], lms.shape[-2:], self.time_scale, self.freq_scale)
crop = virtual_crop_area[:, i:i+h, j:j+w]
# print(f'shapes {virtual_crop_area.shape} {crop.shape} -> {lms.shape}')
lms = F.interpolate(crop.unsqueeze(1), size=lms.shape[-2:],
mode=self.interpolation, align_corners=True).squeeze(1)
# spec_output.append(lms.float())
return lms.float() # torch.concat(lms, dim=0)
def __repr__(self):
format_string = self.__class__.__name__ + f'(virtual_crop_size={self.virtual_crop_scale}'
format_string += ', time_scale={0}'.format(tuple(round(s, 4) for s in self.time_scale))
format_string += ', freq_scale={0})'.format(tuple(round(r, 4) for r in self.freq_scale))
return format_string
|