File size: 8,902 Bytes
9b0d6c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""
Code from:
https://github.com/DCASE-REPO/DESED_task
"""

from collections import OrderedDict
import numpy as np
import pandas as pd

from dcase_util.data import DecisionEncoder


class ManyHotEncoder:
    """"
        Adapted after DecisionEncoder.find_contiguous_regions method in
        https://github.com/DCASE-REPO/dcase_util/blob/master/dcase_util/data/decisions.py

        Encode labels into numpy arrays where 1 correspond to presence of the class and 0 absence.
        Multiple 1 can appear on the same line, it is for multi label problem.
    Args:
        labels: list, the classes which will be encoded
        n_frames: int, (Default value = None) only useful for strong labels. The number of frames of a segment.
    Attributes:
        labels: list, the classes which will be encoded
        n_frames: int, only useful for strong labels. The number of frames of a segment.
    """

    def __init__(
            self, labels, audio_len=10, frame_hop=160, net_pooling=4, fs=16000
    ):
        if type(labels) in [np.ndarray, np.array]:
            labels = labels.tolist()
        elif isinstance(labels, (dict, OrderedDict)):
            labels = list(labels.keys())
        self.labels = labels
        self.audio_len = audio_len
        self.frame_hop = frame_hop
        self.fs = fs
        self.net_pooling = net_pooling
        n_frames = self.audio_len * self.fs
        self.n_frames = int(int((n_frames / self.frame_hop)) / self.net_pooling)

    def encode_weak(self, labels):
        """ Encode a list of weak labels into a numpy array

        Args:
            labels: list, list of labels to encode (to a vector of 0 and 1)

        Returns:
            numpy.array
            A vector containing 1 for each label, and 0 everywhere else
        """
        # useful for tensor empty labels
        if type(labels) is str:
            if labels == "empty":
                y = np.zeros(len(self.labels)) - 1
                return y
            else:
                labels = labels.split(",")
        if type(labels) is pd.DataFrame:
            if labels.empty:
                labels = []
            elif "event_label" in labels.columns:
                labels = labels["event_label"]
        y = np.zeros(len(self.labels))
        for label in labels:
            if not pd.isna(label):
                i = self.labels.index(label)
                y[i] = 1
        return y

    def _time_to_frame(self, time):
        samples = time * self.fs
        frame = (samples) / self.frame_hop
        return np.clip(frame / self.net_pooling, a_min=0, a_max=self.n_frames)

    def _frame_to_time(self, frame):
        frame = frame * self.net_pooling / (self.fs / self.frame_hop)
        return np.clip(frame, a_min=0, a_max=self.audio_len)

    def encode_strong_df(self, label_df):
        """Encode a list (or pandas Dataframe or Serie) of strong labels, they correspond to a given filename

        Args:
            label_df: pandas DataFrame or Series, contains filename, onset (in frames) and offset (in frames)
                If only filename (no onset offset) is specified, it will return the event on all the frames
                onset and offset should be in frames
        Returns:
            numpy.array
            Encoded labels, 1 where the label is present, 0 otherwise
        """

        assert any(
            [x is not None for x in [self.audio_len, self.frame_hop]]
        )

        samples_len = self.n_frames
        if type(label_df) is str:
            if label_df == "empty":
                y = np.zeros((samples_len, len(self.labels))) - 1
                return y
        y = np.zeros((samples_len, len(self.labels)))
        if type(label_df) is pd.DataFrame:
            if {"onset", "offset", "event_label"}.issubset(label_df.columns):
                for _, row in label_df.iterrows():
                    if not pd.isna(row["event_label"]):
                        i = self.labels.index(row["event_label"])
                        onset = int(self._time_to_frame(row["onset"]))
                        offset = int(np.ceil(self._time_to_frame(row["offset"])))
                        if "confidence" in label_df.columns:
                            y[onset:offset, i] = row["confidence"]  # support confidence
                        else:
                            y[
                            onset:offset, i
                            ] = 1  # means offset not included (hypothesis of overlapping frames, so ok)

        elif type(label_df) in [
            pd.Series,
            list,
            np.ndarray,
        ]:  # list of list or list of strings
            if type(label_df) is pd.Series:
                if {"onset", "offset", "event_label"}.issubset(
                        label_df.index
                ):  # means only one value
                    if not pd.isna(label_df["event_label"]):
                        i = self.labels.index(label_df["event_label"])
                        onset = int(self._time_to_frame(label_df["onset"]))
                        offset = int(np.ceil(self._time_to_frame(label_df["offset"])))

                        if "confidence" in label_df.columns:
                            y[onset:offset, i] = label_df["confidence"]
                        else:
                            y[onset:offset, i] = 1
                    return y

            for event_label in label_df:
                # List of string, so weak labels to be encoded in strong
                if type(event_label) is str:
                    if event_label != "":
                        i = self.labels.index(event_label)
                        y[:, i] = 1

                # List of list, with [label, onset, offset]
                elif len(event_label) == 3:
                    if event_label[0] != "":
                        i = self.labels.index(event_label[0])
                        onset = int(self._time_to_frame(event_label[1]))
                        offset = int(np.ceil(self._time_to_frame(event_label[2])))
                        y[onset:offset, i] = 1
                # List of list, with [label, onset, offset, confidence]
                elif len(event_label) == 4:
                    if event_label[0] != "":
                        i = self.labels.index(event_label[0])
                        onset = int(self._time_to_frame(event_label[1]))
                        offset = int(np.ceil(self._time_to_frame(event_label[2])))
                        y[onset:offset, i] = event_label[3]

                else:
                    raise NotImplementedError(
                        "cannot encode strong, type mismatch: {}".format(
                            type(event_label)
                        )
                    )

        else:
            raise NotImplementedError(
                "To encode_strong, type is pandas.Dataframe with onset, offset and event_label"
                "columns, or it is a list or pandas Series of event labels, "
                "type given: {}".format(type(label_df))
            )
        return y

    def decode_weak(self, labels):
        """ Decode the encoded weak labels
        Args:
            labels: numpy.array, the encoded labels to be decoded

        Returns:
            list
            Decoded labels, list of string

        """
        result_labels = []
        for i, value in enumerate(labels):
            if value == 1:
                result_labels.append(self.labels[i])
        return result_labels

    def decode_strong(self, labels):
        """ Decode the encoded strong labels
        Args:
            labels: numpy.array, the encoded labels to be decoded
        Returns:
            list
            Decoded labels, list of list: [[label, onset offset], ...]

        """
        result_labels = []
        for i, label_column in enumerate(labels.T):
            change_indices = DecisionEncoder().find_contiguous_regions(label_column)

            # append [label, onset, offset] in the result list
            for row in change_indices:
                result_labels.append(
                    [
                        self.labels[i],
                        self._frame_to_time(row[0]),
                        self._frame_to_time(row[1]),
                    ]
                )
        return result_labels

    def state_dict(self):
        return {
            "labels": self.labels,
            "audio_len": self.audio_len,
            "frame_hop": self.frame_hop,
            "net_pooling": self.net_pooling,
            "fs": self.fs,
        }

    @classmethod
    def load_state_dict(cls, state_dict):
        labels = state_dict["labels"]
        audio_len = state_dict["audio_len"]
        frame_hop = state_dict["frame_hop"]
        net_pooling = state_dict["net_pooling"]
        fs = state_dict["fs"]
        return cls(labels, audio_len, frame_hop, net_pooling, fs)