Spaces:
Sleeping
Sleeping
File size: 15,356 Bytes
9b0d6c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
"""
score functions from: https://hearbenchmark.com/hear-tasks.html
"""
import json
from collections import ChainMap
from pathlib import Path
from typing import Dict, Optional, Tuple, Union, List, Any
import more_itertools
import numpy as np
import sed_eval
import torch
from dcase_util.containers import MetaDataContainer
from scipy.ndimage import median_filter
from sklearn.model_selection import ParameterGrid
from tqdm import tqdm
def validate_score_return_type(ret: Union[Tuple[Tuple[str, float], ...], float]):
"""
Valid return types for the metric are
- tuple(tuple(string: name of the subtype, float: the value)): This is the
case with sed eval metrics. They can return (("f_measure", value),
("precision", value), ...), depending on the scores
the metric should is supposed to return. This is set as `scores`
attribute in the metric.
- float: Standard metric behaviour
The downstream prediction pipeline is able to handle these two types.
In case of the tuple return type, the value of the first entry in the
tuple will be used as an optimisation criterion wherever required.
For instance, if the return is (("f_measure", value), ("precision", value)),
the value corresponding to the f_measure will be used ( for instance in
early stopping if this metric is the primary score for the task )
"""
if isinstance(ret, tuple):
assert all(
type(s) == tuple and type(s[0]) == str and type(s[1]) == float for s in ret
), (
"If the return type of the score is a tuple, all the elements "
"in the tuple should be tuple of type (string, float)"
)
elif isinstance(ret, float):
pass
else:
raise ValueError(
f"Return type {type(ret)} is unexpected. Return type of "
"the score function should either be a "
"tuple(tuple) or float. "
)
class ScoreFunction:
"""
A simple abstract base class for score functions
"""
# TODO: Remove label_to_idx?
def __init__(
self,
label_to_idx: Dict[str, int],
name: Optional[str] = None,
maximize: bool = True,
):
"""
:param label_to_idx: Map from label string to integer index.
:param name: Override the name of this scoring function.
:param maximize: Maximize this score? (Otherwise, it's a loss or energy
we want to minimize, and I guess technically isn't a score.)
"""
self.label_to_idx = label_to_idx
if name:
self.name = name
self.maximize = maximize
def __call__(self, *args, **kwargs) -> Union[Tuple[Tuple[str, float], ...], float]:
"""
Calls the compute function of the metric, and after validating the output,
returns the metric score
"""
ret = self._compute(*args, **kwargs)
validate_score_return_type(ret)
return ret
def _compute(
self, predictions: Any, targets: Any, **kwargs
) -> Union[Tuple[Tuple[str, float], ...], float]:
"""
Compute the score based on the predictions and targets.
This is a private function and the metric should be used as a functor
by calling the `__call__` method which calls this and also validates
the return type
"""
raise NotImplementedError("Inheriting classes must implement this function")
def __str__(self):
return self.name
class SoundEventScore(ScoreFunction):
"""
Scores for sound event detection tasks using sed_eval
"""
# Score class must be defined in inheriting classes
score_class: sed_eval.sound_event.SoundEventMetrics = None
def __init__(
self,
label_to_idx: Dict[str, int],
scores: Tuple[str],
params: Dict = None,
name: Optional[str] = None,
maximize: bool = True,
):
"""
:param scores: Scores to use, from the list of overall SED eval scores.
The first score in the tuple will be the primary score for this metric
:param params: Parameters to pass to the scoring function,
see inheriting children for details.
"""
if params is None:
params = {}
super().__init__(label_to_idx=label_to_idx, name=name, maximize=maximize)
self.scores = scores
self.params = params
assert self.score_class is not None
def _compute(
self, predictions: Dict, targets: Dict, **kwargs
) -> Tuple[Tuple[str, float], ...]:
# Containers of events for sed_eval
reference_event_list = self.sed_eval_event_container(targets)
estimated_event_list = self.sed_eval_event_container(predictions)
# This will break in Python < 3.6 if the dict order is not
# the insertion order I think. I'm a little worried about this line
scores = self.score_class(
event_label_list=list(self.label_to_idx.keys()), **self.params
)
for filename in predictions:
scores.evaluate(
reference_event_list=reference_event_list.filter(filename=filename),
estimated_event_list=estimated_event_list.filter(filename=filename),
)
# results_overall_metrics return a pretty large nested selection of scores,
# with dicts of scores keyed on the type of scores, like f_measure, error_rate,
# accuracy
nested_overall_scores: Dict[
str, Dict[str, float]
] = scores.results_overall_metrics()
# Open up nested overall scores
overall_scores: Dict[str, float] = dict(
ChainMap(*nested_overall_scores.values())
)
# Return the required scores as tuples. The scores are returned in the
# order they are passed in the `scores` argument
return tuple([(score, overall_scores[score]) for score in self.scores])
@staticmethod
def sed_eval_event_container(
x: Dict[str, List[Dict[str, Any]]]
) -> MetaDataContainer:
# Reformat event list for sed_eval
reference_events = []
for filename, event_list in x.items():
for event in event_list:
reference_events.append(
{
# Convert from ms to seconds for sed_eval
"event_label": str(event["label"]),
"event_onset": event["start"] / 1000.0,
"event_offset": event["end"] / 1000.0,
"file": filename,
}
)
return MetaDataContainer(reference_events)
class EventBasedScore(SoundEventScore):
"""
event-based scores - the ground truth and system output are compared at
event instance level;
See https://tut-arg.github.io/sed_eval/generated/sed_eval.sound_event.EventBasedMetrics.html # noqa: E501
for params.
"""
score_class = sed_eval.sound_event.EventBasedMetrics
class SegmentBasedScore(SoundEventScore):
"""
segment-based scores - the ground truth and system output are compared in a
fixed time grid; sound events are marked as active or inactive in each segment;
See https://tut-arg.github.io/sed_eval/sound_event.html#sed_eval.sound_event.SegmentBasedMetrics # noqa: E501
for params.
"""
score_class = sed_eval.sound_event.SegmentBasedMetrics
def get_events_for_all_files(
predictions: torch.Tensor,
filenames: List[str],
timestamps: torch.Tensor,
idx_to_label: Dict[int, str],
postprocessing_grid: Dict[str, List[float]],
postprocessing: Optional[Tuple[Tuple[str, Any], ...]] = None,
) -> Dict[Tuple[Tuple[str, Any], ...], Dict[str, List[Dict[str, Union[str, float]]]]]:
"""
Produces lists of events from a set of frame based label probabilities.
The input prediction tensor may contain frame predictions from a set of different
files concatenated together. file_timestamps has a list of filenames and
timestamps for each frame in the predictions tensor.
We split the predictions into separate tensors based on the filename and compute
events based on those individually.
If no postprocessing is specified (during training), we try a
variety of ways of postprocessing the predictions into events,
from the postprocessing_grid including median filtering and
minimum event length.
If postprocessing is specified (during test, chosen at the best
validation epoch), we use this postprocessing.
Args:
predictions: a tensor of frame based multi-label predictions.
filenames: a list of filenames where each entry corresponds
to a frame in the predictions tensor.
timestamps: a list of timestamps where each entry corresponds
to a frame in the predictions tensor.
idx_to_label: Index to label mapping.
postprocessing: See above.
Returns:
A dictionary from filtering params to the following values:
A dictionary of lists of events keyed on the filename slug.
The event list is of dicts of the following format:
{"label": str, "start": float ms, "end": float ms}
"""
# This probably could be more efficient if we make the assumption that
# timestamps are in sorted order. But this makes sure of it.
assert predictions.shape[0] == len(filenames)
assert predictions.shape[0] == len(timestamps)
event_files: Dict[str, Dict[float, torch.Tensor]] = {}
for i, (filename, timestamp) in enumerate(zip(filenames, timestamps)):
slug = Path(filename).name
# Key on the slug to be consistent with the ground truth
if slug not in event_files:
event_files[slug] = {}
# Save the predictions for the file keyed on the timestamp
event_files[slug][float(timestamp)] = predictions[i]
# Create events for all the different files. Store all the events as a dictionary
# with the same format as the ground truth from the luigi pipeline.
# Ex) { slug -> [{"label" : "woof", "start": 0.0, "end": 2.32}, ...], ...}
event_dict: Dict[
Tuple[Tuple[str, Any], ...], Dict[str, List[Dict[str, Union[float, str]]]]
] = {}
if postprocessing:
postprocess = postprocessing
event_dict[postprocess] = {}
for slug, timestamp_predictions in event_files.items():
event_dict[postprocess][slug] = create_events_from_prediction(
timestamp_predictions, idx_to_label, **dict(postprocess)
)
else:
postprocessing_confs = list(ParameterGrid(postprocessing_grid))
for postprocess_dict in tqdm(postprocessing_confs):
postprocess = tuple(postprocess_dict.items())
event_dict[postprocess] = {}
for slug, timestamp_predictions in event_files.items():
event_dict[postprocess][slug] = create_events_from_prediction(
timestamp_predictions, idx_to_label, **postprocess_dict
)
return event_dict
def create_events_from_prediction(
prediction_dict: Dict[float, torch.Tensor],
idx_to_label: Dict[int, str],
threshold: float = 0.5,
median_filter_ms: float = 150,
min_duration: float = 60.0,
) -> List[Dict[str, Union[float, str]]]:
"""
Takes a set of prediction tensors keyed on timestamps and generates events.
(This is for one particular audio scene.)
We convert the prediction tensor to a binary label based on the threshold value. Any
events occurring at adjacent timestamps are considered to be part of the same event.
This loops through and creates events for each label class.
We optionally apply median filtering to predictions.
We disregard events that are less than the min_duration milliseconds.
Args:
prediction_dict: A dictionary of predictions keyed on timestamp
{timestamp -> prediction}. The prediction is a tensor of label
probabilities.
idx_to_label: Index to label mapping.
threshold: Threshold for determining whether to apply a label
min_duration: the minimum duration in milliseconds for an
event to be included.
Returns:
A list of dicts withs keys "label", "start", and "end"
"""
# Make sure the timestamps are in the correct order
timestamps = np.array(sorted(prediction_dict.keys()))
# Create a sorted numpy matrix of frame level predictions for this file. We convert
# to a numpy array here before applying a median filter.
predictions = np.stack(
[prediction_dict[t].detach().cpu().numpy() for t in timestamps]
)
# Optionally apply a median filter here to smooth out events.
ts_diff = np.mean(np.diff(timestamps))
if median_filter_ms:
filter_width = int(round(median_filter_ms / ts_diff))
if filter_width:
predictions = median_filter(predictions, size=(filter_width, 1))
# Convert probabilities to binary vectors based on threshold
predictions = (predictions > threshold).astype(np.int8)
events = []
for label in range(predictions.shape[1]):
for group in more_itertools.consecutive_groups(
np.where(predictions[:, label])[0]
):
grouptuple = tuple(group)
assert (
tuple(sorted(grouptuple)) == grouptuple
), f"{sorted(grouptuple)} != {grouptuple}"
startidx, endidx = (grouptuple[0], grouptuple[-1])
start = timestamps[startidx]
end = timestamps[endidx]
# Add event if greater than the minimum duration threshold
if end - start >= min_duration:
events.append(
{"label": idx_to_label[label], "start": start, "end": end}
)
# This is just for pretty output, not really necessary
events.sort(key=lambda k: k["start"])
return events
def combine_target_events(split_names: List[str], task_path):
"""
This combines the target events from the list of splits and
returns the combined target events. This is useful when combining
multiple folds of data to create the training or validation
dataloader. For example, in k-fold, the training data-loader
might be made from the first 4/5 folds, and calling this function
with [fold00, fold01, fold02, fold03] will return the
aggregated target events across all the folds
"""
combined_target_events: Dict = {}
for split_name in split_names:
target_events = json.load(
task_path.joinpath(f"{split_name}.json").open()
)
common_keys = set(combined_target_events.keys()).intersection(
target_events.keys()
)
assert len(common_keys) == 0, (
"Target events from one split should not override "
"target events from another. This is very unlikely as the "
"target_event is keyed on the files which are distinct for "
"each split"
)
combined_target_events.update(target_events)
return combined_target_events
|