Spaces:
Sleeping
Sleeping
File size: 10,605 Bytes
9b0d6c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import math
import warnings
from functools import partial
import torch
from torch import nn
from .transformer import Block
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def get_num_patches(height=64, width=1001, patch_height=16, patch_width=16):
return (height // patch_height) * (width // patch_width)
from einops.layers.torch import Rearrange
class PatchEmbed_v2(nn.Module):
def __init__(self, patch_height=64, patch_width=4, embed_dim=768, input_dim=1):
super().__init__()
self.patch_height = patch_height
self.patch_width = patch_width
self.patch_maker = Rearrange('b c (h p1) (w p2) -> b (w h) (p1 p2 c)', p1=patch_height, p2=patch_width)
self.patch_embed = nn.Linear(patch_height * patch_width * input_dim, embed_dim)
def forward(self, melspec, length=None):
height = melspec.shape[2] - melspec.shape[2] % self.patch_height
width = melspec.shape[3] - melspec.shape[3] % self.patch_width
patch = self.patch_maker(melspec[:, :, :height, :width])
patch_embed = self.patch_embed(patch)
if length is not None:
patch_length = (torch.div(height, self.patch_height, rounding_mode='trunc')) * torch.div(
(length - length % self.patch_width), self.patch_width, rounding_mode='trunc')
else:
patch_length = None
return patch, patch_embed, patch_length
class FrameAST(nn.Module):
""" Vision Transformer """
def __init__(self, nprompt=0, spec_h=64, spec_w=1001, patch_w=16, patch_h=16, pos_type="cut", in_chans=1,
num_classes=0, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.,
drop_path_rate=0.0, norm_layer=nn.LayerNorm, **kwargs):
super().__init__()
self.num_features = self.embed_dim = embed_dim
self.spec_w = spec_w
self.spec_h = spec_h
self.embed_dim = embed_dim
self.patch_w = patch_w
self.patch_h = patch_h
self.pos_type = pos_type
self.patch_embed = PatchEmbed_v2(patch_h, patch_w, embed_dim)
self.mask_embed = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
# hack
self.nprompt = nprompt
if self.nprompt > 0:
self.prompt_embed = nn.Parameter(torch.zeros(1, self.nprompt, self.embed_dim))
trunc_normal_(self.prompt_embed, std=.02)
num_patches = get_num_patches(spec_h, spec_w, patch_h, patch_w)
self.num_patches = num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)])
self.norm_frame = norm_layer(embed_dim)
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.mask_embed, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def prepare_tokens(self, x, mask_index, length, mask=True):
B, nc, h, w = x.shape
mel_patches, x, patch_length = self.patch_embed(x, length) # patch linear embedding
B, T, C = x.shape
if (mask_index is not None) and mask:
mask_index_expand = mask_index.unsqueeze(2).expand(B, T, self.embed_dim).float()
x = (1 - mask_index_expand) * x + mask_index_expand * self.mask_embed.expand(B, T, C)
# add positional encoding to each token
if self.pos_type == "cut":
pos = self.pos_embed[:, 1:T + 1, :].expand(B, -1, -1)
x = x + pos
else:
pos = self.interpolate_pos_encoding(x, h, w)
x = x + pos[:, 1:]
# pos = self.pos_embed[:,1:T+1,:].expand(B,-1,-1)
# x = x + pos
return self.pos_drop(x), pos, mel_patches, h, w, patch_length
def forward(self, x, mask_index=None, mask_input=True, length=None):
x, pos, mel_patches, h, w, patch_length = self.prepare_tokens(x, mask_index, length, mask_input)
length_mask = torch.arange(mel_patches.shape[1]).to(x.device) < patch_length.unsqueeze(1)
length_mask = length_mask.to(x.device)
mask_index = mask_index & length_mask
if self.nprompt > 0:
x = torch.cat([self.prompt_embed.expand(x.shape[0], -1, -1), x], dim=1)
for i, blk in enumerate(self.blocks):
x = blk(x, patch_length + self.nprompt)
frame_repr = self.norm_frame(x)
return frame_repr[:, self.nprompt:][mask_index]
def interpolate_pos_encoding(self, x, h, w):
npatch = x.shape[1] - 1
N = self.pos_embed.shape[1] - 1
if npatch == N and w == self.spec_w and h == self.spec_h:
return self.pos_embed
class_pos_embed = self.pos_embed[:, 0]
patch_pos_embed = self.pos_embed[:, 1:]
dim = x.shape[-1]
w0 = w // self.patch_embed.patch_width
h0 = h // self.patch_embed.patch_height
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
w0, h0 = w0 + 0.1, h0 + 0.1
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, self.spec_h // self.patch_h, self.spec_w // self.patch_w, dim).permute(0, 3, 1,
2),
scale_factor=(h0 / (self.spec_h // self.patch_h), w0 / (self.spec_w // self.patch_w)),
mode='bicubic',
)
assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def get_last_selfattention(self, x):
x, _, _, _, _, _ = self.prepare_tokens(x, mask_index=None, length=None, mask=False)
atts = []
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x, att = blk(x, return_attention=True)
atts.append(att)
else:
x, att = blk(x, return_attention=True)
atts.append(att)
return atts
# return attention of the last block
def get_intermediate_layers(self, x, length, n=1, scene=True, other_emb=None):
x, _, _, _, _, patch_length = self.prepare_tokens(x, mask_index=None, length=length, mask=False)
# we return the output tokens from the `n` last blocks
if other_emb is not None:
x = torch.cat([other_emb, x], dim=1)
output = []
if self.nprompt > 0:
x = torch.cat([self.prompt_embed.expand(x.shape[0], -1, -1), x], dim=1)
for i, blk in enumerate(self.blocks):
x = blk(x, patch_length + self.nprompt)
if len(self.blocks) - i <= n:
norm_x = self.norm_frame(x)
if scene:
length_mask = torch.arange(x.shape[1] - self.nprompt).to(x.device) < patch_length.unsqueeze(1)
avg = torch.sum(norm_x[:, self.nprompt:] * length_mask.unsqueeze(-1), dim=1) / (
patch_length.unsqueeze(-1) + 1e-6)
negative = (~length_mask) * -1e10
# max = torch.max(norm_x[:,self.nprompt:]+negative.unsqueeze(-1),1).values
output.append(avg)
if self.nprompt > 0:
output.append(torch.mean(norm_x[:, :self.nprompt], dim=1))
else:
output.append(norm_x[:, self.nprompt:])
return torch.cat(output, dim=-1)
def get_cls_avg(output_i, cur_len, use_cls):
length_mask = torch.arange(output_i[0].shape[1]).to(output_i[0].device) < cur_len.unsqueeze(1)
cls = [torch.zeros_like(x[:, 0]) for x in output_i]
avg = [torch.sum(x * length_mask.unsqueeze(-1), dim=1) / (cur_len.unsqueeze(1) + 1e-6) for x in output_i]
return cls, avg
def FrameASTModel(patch_h=64, patch_w=4, atst_dropout=0.1, **kwargs):
return FrameAST(
patch_h=patch_h,
patch_w=patch_w,
embed_dim=768,
depth=12,
num_heads=12,
qkv_bias=False,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
drop_path_rate=atst_dropout,
drop_rate=atst_dropout,
**kwargs)
|