File size: 48,218 Bytes
9b0d6c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
"""
Most of this code comes from the timm  library.
We tried to disentangle from the timm library version.

Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py

"""
import collections
import logging
import math
import os
import warnings
from collections import OrderedDict
from functools import partial
from itertools import repeat
import torch
import torch.nn as nn
import torch.nn.functional as F

from models.frame_passt.vit_helpers import (DropPath, trunc_normal_,
                                            build_model_with_cfg, adapt_input_conv)

_logger = logging.getLogger()


# From PyTorch internals
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
            return tuple(x)
        return tuple(repeat(x, n))

    return parse


to_2tuple = _ntuple(2)

IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5)
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5)


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    # patch models (weights from official Google JAX impl)
    'vit_tiny_patch16_224': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
    'vit_tiny_patch16_384': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
        input_size=(3, 384, 384), crop_pct=1.0),
    'vit_small_patch32_224': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
    'vit_small_patch32_384': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
        input_size=(3, 384, 384), crop_pct=1.0),
    'vit_small_patch16_224': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
    'vit_small_patch16_384': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
        input_size=(3, 384, 384), crop_pct=1.0),
    'vit_base_patch32_224': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz'),
    'vit_base_patch32_384': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
        input_size=(3, 384, 384), crop_pct=1.0),
    'vit_base_patch16_224': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz'),
    'vit_base_patch16_384': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz',
        input_size=(3, 384, 384), crop_pct=1.0),
    'vit_large_patch32_224': _cfg(
        url='',  # no official model weights for this combo, only for in21k
    ),
    'vit_large_patch32_384': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth',
        input_size=(3, 384, 384), crop_pct=1.0),
    'vit_large_patch16_224': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz'),
    'vit_large_patch16_384': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/'
            'L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz',
        input_size=(3, 384, 384), crop_pct=1.0),

    # patch models, imagenet21k (weights from official Google JAX impl)
    'vit_tiny_patch16_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz',
        num_classes=21843),
    'vit_small_patch32_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
        num_classes=21843),
    'vit_small_patch16_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
        num_classes=21843),
    'vit_base_patch32_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0.npz',
        num_classes=21843),
    'vit_base_patch16_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
        num_classes=21843),
    'vit_large_patch32_224_in21k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth',
        num_classes=21843),
    'vit_large_patch16_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1.npz',
        num_classes=21843),
    'vit_huge_patch14_224_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz',
        hf_hub='timm/vit_huge_patch14_224_in21k',
        num_classes=21843),

    # SAM trained models (https://arxiv.org/abs/2106.01548)
    'vit_base_patch32_sam_224': _cfg(
        url='https://storage.googleapis.com/vit_models/sam/ViT-B_32.npz'),
    'vit_base_patch16_sam_224': _cfg(
        url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz'),

    # deit models (FB weights)
    'deit_tiny_patch16_224': _cfg(
        url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
    'deit_small_patch16_224': _cfg(
        url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
    'deit_base_patch16_224': _cfg(
        url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
    'deit_base_patch16_384': _cfg(
        url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 384, 384), crop_pct=1.0),
    'deit_tiny_distilled_patch16_224': _cfg(
        url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')),
    'deit_small_distilled_patch16_224': _cfg(
        url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')),
    'deit_base_distilled_patch16_224': _cfg(
        url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')),
    'deit_base_distilled_patch16_384': _cfg(
        url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 384, 384), crop_pct=1.0,
        classifier=('head', 'head_dist')),

    # ViT ImageNet-21K-P pretraining by MILL
    'vit_base_patch16_224_miil_in21k': _cfg(
        url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/vit_base_patch16_224_in21k_miil.pth',
        mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', num_classes=11221,
    ),
    'vit_base_patch16_224_miil': _cfg(
        url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm'
            '/vit_base_patch16_224_1k_miil_84_4.pth',
        mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear',
    ),
    # PaSST
    'passt_s_swa_p16_128_ap476': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.1-audioset/passt-s-f128-p16-s10-ap.476-swa.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'passt_s_kd_p16_128_ap486': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v.0.0.9/passt-s-kd-ap.486.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'passt_l_kd_p16_128_ap47': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v.0.0.10/passt-l-kd-ap.47.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'passt_s_swa_p16_128_ap4761': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s10-ap.4761-swa.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'passt_s_p16_128_ap472': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s10-ap.472.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'passt_s_p16_s16_128_ap468': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s16-ap.468.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'passt_s_swa_p16_s16_128_ap473': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s16-ap.473-swa.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'passt_s_swa_p16_s14_128_ap471': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s14-ap.471-swa.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'passt_s_p16_s14_128_ap469': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s14-ap.469.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'passt_s_swa_p16_s12_128_ap473': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s12-ap.473-swa.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'passt_s_p16_s12_128_ap470': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.2-audioset/passt-s-f128-p16-s12-ap.470.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 998), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'passt_s_swa_f128_stfthop100_p16_s10_ap473': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.3-audioset/passt-s-f128-stfthop100-p16-s10-ap.473-swa.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 3200), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'passt_s_swa_f128_stfthop160_p16_s10_ap473': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.3-audioset/passt-s-f128-stfthop160-p16-s10-ap.473-swa.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 2000), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'passt-s-f128-20sec-p16-s10-ap474-swa': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.5/passt-s-f128-20sec-p16-s10-ap.474-swa.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 2000), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'passt-s-f128-30sec-p16-s10-ap473-swa': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.5/passt-s-f128-30sec-p16-s10-ap.473-swa.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 3000), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=527),
    'openmic2008_passt_u_f128_p16_s10_ap85_swa': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.4-openmic/openmic2008.passt-u-f128-p16-s10-ap.85-swa.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 3200), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=20),
    'openmic2008_passt_u_f128_p16_s10_ap85  ': _cfg(
        url='https://github.com/kkoutini/PaSST/releases/download/v0.0.4-openmic/openmic2008.passt-u-f128-p16-s10-ap.85.pt',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(1, 128, 2000), crop_pct=1.0,
        classifier=('head.1', 'head_dist'), num_classes=20),
}


class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """

    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


first_RUN = True

PLUS1_TRICK = False


class PatchEmbed(nn.Module):
    """ 2D Image to Patch Embedding
    """

    def __init__(self, img_size=224, in_chans=1, frame_nr=1, stride=1, overlap=1, embed_dim=768, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        frame_nr = frame_nr
        stride = stride
        self.img_size = img_size
        self.frame_nr = frame_nr
        self.stride = stride
        self.seq_len = int(img_size[1]) // frame_nr
        self.num_patches = self.seq_len // stride
        self.embed_dim = embed_dim
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=(int(img_size[0]), stride + overlap),
                              stride=stride, padding=(0, 1))  # 128 x 2 kernel
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, F, T = x.shape
        if not (F == self.img_size[0] and abs(T - self.img_size[1]) <= 1):  # allows for a difference of 1
            warnings.warn(f"Input image size ({F}*{T}) doesn't match model ({self.img_size[0]}*{self.img_size[1]}).")
        x = self.proj(x)[:, :, :, 1:]  # B embed_dim 1 T    (F=1)
        x = self.norm(x)
        if first_RUN: print("self.norm(x)", x.size())
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = attn_drop
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        x = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.attn_drop,
                                           is_causal=False, scale=self.scale)

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class PaSST(nn.Module):
    """

    Based on the implementation of Vision Transformer in timm library.
     Take a look at the get_model function, adapting the weights of pretrained imagenet models.

    """

    def __init__(self, img_size=(128, 998),
                 in_chans=1, num_classes=527, embed_dim=768, depth=12,
                 num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None,
                 act_layer=None, weight_init='',
                 frame_patchout=300, frame_nr=1, pos_embed_length=1000):
        """
        Args:
            img_size (int, tuple): input image size
            in_chans (int): number of input channels
            num_classes (int): number of classes for classification head
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
            distilled (bool): model includes a distillation token and head as in DeiT models
            drop_rate (float): dropout rate
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate
            embed_layer (nn.Module): patch embedding layer
            norm_layer: (nn.Module): normalization layer
            act_layer: (nn.Module): activation layer
            weight_init: (str): weight init scheme
            frame_patchout (int): number of frames to patch out
            frame_nr (int): the second dimension of the proj-convolution kernel
            pos_embed_length (int): length of the positional embedding
        """
        super().__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_tokens = 2 if distilled else 1
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU
        self.act_layer = act_layer()
        self.in_chans = in_chans
        self.frame_patchout = frame_patchout
        self.pos_embed_len = pos_embed_length

        # these three convolution are different compared to the vanilla passt
        self.conv_in_1 = nn.Conv2d(1, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        self.conv_in_2 = nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        self.conv_in_3 = nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))  # 64 instead of 4
        img_size = (img_size[0], pos_embed_length)  # 128, 250

        self.patch_embed = embed_layer(
            img_size=img_size, in_chans=in_chans, frame_nr=frame_nr, stride=frame_nr, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
        # PaSST
        # refer to https://arxiv.org/abs/2110.05069 Section 2
        self.new_pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim))  # for C and D tokens
        self.freq_new_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 1, 1))  # | f
        self.time_new_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 1, self.pos_embed_len))  # __ t
        ####
        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.Sequential(*[
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate,
                attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer)
            for i in range(depth)])
        self.norm = norm_layer(embed_dim)

        # Representation layer
        if representation_size and not distilled:
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(OrderedDict([
                ('fc', nn.Linear(embed_dim, representation_size)),
                ('act', nn.Tanh())
            ]))
        else:
            self.pre_logits = nn.Identity()

        self.init_weights(weight_init)

    def init_weights(self, mode=''):
        assert mode in ('jax', 'jax_nlhb', 'nlhb', ''), f"mode: {mode}"
        head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
        trunc_normal_(self.new_pos_embed, std=.02)
        trunc_normal_(self.freq_new_pos_embed, std=.02)
        trunc_normal_(self.time_new_pos_embed, std=.02)
        if self.dist_token is not None:
            trunc_normal_(self.dist_token, std=.02)
        if mode.startswith('jax'):
            # leave cls token as zeros to match jax impl
            raise RuntimeError("Not supported yet")
        else:
            trunc_normal_(self.cls_token, std=.02)
            self.apply(_init_vit_weights)

    def _init_weights(self, m):
        # this fn left here for compat with downstream users
        _init_vit_weights(m)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'new_pos_embed', 'freq_new_pos_embed', 'time_new_pos_embed', 'cls_token', 'dist_token'}

    def forward_features(self, x):
        global first_RUN  # not jit friendly? use trace instead

        # some 2D convolutions
        f_dim = x.size(2)  # 128
        x = self.act_layer(self.conv_in_1(x))
        x = self.act_layer(self.conv_in_2(x))
        x = self.act_layer(self.conv_in_3(x))
        if first_RUN: print("after convs", x.size())
        x = x.reshape(x.shape[0], (x.shape[1] * x.shape[2]) // f_dim, f_dim, x.shape[3])
        if first_RUN: print("after reshape", x.size())

        x = self.patch_embed(x)  # [b, e, f, t]
        B_dim, E_dim, F_dim, T_dim = x.shape  # slow
        if first_RUN: print(" patch_embed : ", x.shape)
        # Adding Time/Freq information
        if first_RUN: print(" self.time_new_pos_embed.shape", self.time_new_pos_embed.shape)
        time_new_pos_embed = self.time_new_pos_embed
        if x.shape[-1] < time_new_pos_embed.shape[-1]:
            if self.training:
                toffset = torch.randint(1 + time_new_pos_embed.shape[-1] - x.shape[-1], (1,)).item()
                if first_RUN: print(f" CUT with randomoffset={toffset} time_new_pos_embed.shape",
                                    time_new_pos_embed.shape)
                time_new_pos_embed = time_new_pos_embed[:, :, :, toffset:toffset + x.shape[-1]]
            else:
                time_new_pos_embed = time_new_pos_embed[:, :, :, :x.shape[-1]]
            if first_RUN: print(" CUT time_new_pos_embed.shape", time_new_pos_embed.shape)
        else:
            # warnings.warn(
            #    f"the patches shape:{x.shape} are larger than the expected time encodings {time_new_pos_embed.shape}, x will be cut")
            x = x[:, :, :, :time_new_pos_embed.shape[-1]]
        x = x + time_new_pos_embed
        if first_RUN: print(" self.freq_new_pos_embed.shape", self.freq_new_pos_embed.shape)
        x = x + self.freq_new_pos_embed

        # Structured Patchout https://arxiv.org/abs/2110.05069 Section 2.2
        if self.training and self.frame_patchout:
            if first_RUN: print(f"X Before frame Patchout of {self.frame_patchout} ", x.size())
            # ([1, 768, 1, 82])
            random_indices = torch.randperm(T_dim)[:T_dim - self.frame_patchout].sort().values
            x = x[:, :, :, random_indices]
            if first_RUN: print("X after frame Patchout", x.size())

        x = x.flatten(2).transpose(1, 2)

        # Add the C/D tokens
        if first_RUN: print(" self.new_pos_embed.shape", self.new_pos_embed.shape)
        cls_tokens = self.cls_token.expand(B_dim, -1, -1) + self.new_pos_embed[:, :1, :]
        if first_RUN: print(" self.cls_tokens.shape", cls_tokens.shape)
        if self.dist_token is None:
            x = torch.cat((cls_tokens, x), dim=1)
        else:
            dist_token = self.dist_token.expand(B_dim, -1, -1) + self.new_pos_embed[:, 1:, :]
            if first_RUN: print(" self.dist_token.shape", dist_token.shape)
            x = torch.cat((cls_tokens, dist_token, x), dim=1)

        if first_RUN: print(" final sequence x", x.shape)
        x = self.pos_drop(x)
        x = self.blocks(x)
        if first_RUN: print(f" after {len(self.blocks)} atten blocks x", x.shape)
        x = self.norm(x)
        return x

    def forward(self, x):
        global first_RUN
        if first_RUN: print("x", x.size())
        x = self.forward_features(x)
        c, x = x[:, :2].mean(1), x[:, 2:]
        if first_RUN: print("x after forward_features", x.size())
        first_RUN = False
        return x

    def load_model(self, path, wandb_id):
        ckpt_path = os.path.join(path, wandb_id + ".ckpt")

        pretrained_weights = torch.load(ckpt_path, map_location="cpu")["state_dict"]
        pretrained_weights = {k[10:]: v for k, v in pretrained_weights.items() if k[:10] == "net.model."}
        self.load_state_dict(pretrained_weights)

        print("Loaded model successfully. Wandb_id:", wandb_id)


def _init_vit_weights(module: nn.Module, name: str = '', head_bias: float = 0., jax_impl: bool = False):
    """ ViT weight initialization
    * When called without n, head_bias, jax_impl args it will behave exactly the same
      as my original init for compatibility with prev hparam / downstream use cases (ie DeiT).
    * When called w/ valid n (module name) and jax_impl=True, will (hopefully) match JAX impl
    """
    if isinstance(module, nn.Linear):
        if name.startswith('head'):
            nn.init.zeros_(module.weight)
            nn.init.constant_(module.bias, head_bias)
        elif name.startswith('pre_logits'):
            lecun_normal_(module.weight)
            nn.init.zeros_(module.bias)
        else:
            if jax_impl:
                nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    if 'mlp' in name:
                        nn.init.normal_(module.bias, std=1e-6)
                    else:
                        nn.init.zeros_(module.bias)
            else:
                trunc_normal_(module.weight, std=.02)
                if module.bias is not None:
                    nn.init.zeros_(module.bias)
    elif jax_impl and isinstance(module, nn.Conv2d):
        # NOTE conv was left to pytorch default in my original init
        lecun_normal_(module.weight)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, (nn.LayerNorm, nn.GroupNorm, nn.BatchNorm2d)):
        nn.init.zeros_(module.bias)
        nn.init.ones_(module.weight)


def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=(), mode='bicubic'):
    # Rescale the grid of position embeddings when loading from state_dict. Adapted from
    # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
    _logger.info('Resized position embedding: %s to %s with %s cls/dis tokens', posemb.shape, posemb_new.shape,
                 num_tokens)
    ntok_new = posemb_new.shape[1]
    if num_tokens:
        posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:]
        ntok_new -= num_tokens
    else:
        posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
    gs_old = int(math.sqrt(len(posemb_grid)))
    if not len(gs_new):  # backwards compatibility
        gs_new = [int(math.sqrt(ntok_new))] * 2
    assert len(gs_new) >= 2
    _logger.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new)
    posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
    posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode=mode, align_corners=False)
    posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
    posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
    return posemb


def adapt_image_pos_embed_to_passt(posemb, num_tokens=1, posemb_len=1000, mode='bicubic'):
    # Rescale the grid of position embeddings when loading from state_dict. Adapted from
    # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
    if num_tokens:
        posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:]
    else:
        posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
    gs_old = int(math.sqrt(len(posemb_grid)))
    posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
    posemb_grid = F.interpolate(posemb_grid, size=(1, posemb_len), mode=mode, align_corners=False)

    freq_new_pos_embed = posemb_grid.mean(dim=3, keepdim=True)
    time_new_pos_embed = posemb_grid.mean(dim=2, keepdim=True)
    _logger.info('New Position cls/dstl embedding %s', posemb_tok.shape)
    _logger.info('New FREQ Position embedding %s', freq_new_pos_embed.shape)
    _logger.info('New TIME Position embedding %s', time_new_pos_embed.shape)
    return posemb_tok, freq_new_pos_embed, time_new_pos_embed


def checkpoint_filter_fn(state_dict, model):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    if 'model' in state_dict:
        # For deit models
        state_dict = state_dict['model']
    state_dict = {k: v for k, v in state_dict.items()}
    if "time_new_pos_embed" not in state_dict:
        # we are working with ImageNet model
        _logger.info("Adapting pos embedding from ImageNet pretrained model to PaSST.")
        v = state_dict.pop("pos_embed")
        new_pos_embed, freq_new_pos_embed, time_new_pos_embed = adapt_image_pos_embed_to_passt(
            v, getattr(model, 'num_tokens', 1), model.pos_embed_len)
        state_dict["new_pos_embed"] = new_pos_embed
        state_dict["freq_new_pos_embed"] = freq_new_pos_embed
        state_dict["time_new_pos_embed"] = time_new_pos_embed

    for k, v in state_dict.items():
        if 'patch_embed.proj.weight' in k:
            embed_dim, C, H, W = v.shape
            v = adapt_input_conv(model.in_chans, v, input_conv_name=k)
            k1, k2 = model.patch_embed.proj.kernel_size  # 128, 2

            # clever reshape
            assert H * W == k1 * k2, "Error in the kernel size of the patch embedding"

            v = v.reshape(embed_dim, model.in_chans, k1, k2)  # [embed_dim, 1, k1, k2]

        out_dict[k] = v
    return out_dict


def _create_vision_transformer(variant, pretrained=False, default_cfg=None, **kwargs):
    default_cfg = default_cfg or default_cfgs[variant]
    if kwargs.get('features_only', None):
        raise RuntimeError('features_only not implemented for Vision Transformer models.')

    # NOTE this extra code to support handling of repr size for in21k pretrained models
    default_num_classes = default_cfg['num_classes']
    num_classes = kwargs.get('num_classes', default_num_classes)
    repr_size = kwargs.pop('representation_size', None)
    if repr_size is not None and num_classes != default_num_classes:
        # Remove representation layer if fine-tuning. This may not always be the desired action,
        # but I feel better than doing nothing by default for fine-tuning. Perhaps a better interface?
        _logger.warning("Removing representation layer for fine-tuning.")
        repr_size = None

    model = build_model_with_cfg(
        PaSST, variant, pretrained,
        default_cfg=default_cfg,
        representation_size=repr_size,
        pretrained_filter_fn=checkpoint_filter_fn,
        pretrained_custom_load='npz' in default_cfg['url'],
        **kwargs)
    return model


def vit_huge_patch14_224_in21k(pretrained=False, **kwargs):
    """ ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: this model has a representation layer but the 21k classifier head is zero'd out in original weights
    """
    model_kwargs = dict(
        patch_size=14, embed_dim=1280, depth=32, num_heads=16, representation_size=1280, **kwargs)
    model = _create_vision_transformer('vit_huge_patch14_224_in21k', pretrained=pretrained, **model_kwargs)
    return model


def deit_base_distilled_patch16_384(pretrained=False, **kwargs):
    """ DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
    ImageNet-1k weights from https://github.com/facebookresearch/deit.
    """

    model_kwargs = dict(embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer(
        'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **model_kwargs)
    return model


def passt_s_swa_p16_128_ap476(pretrained=False, **kwargs):
    """ PaSST pre-trained on AudioSet
    """
    print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 10 structured patchout mAP=476 SWA \n\n")
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    if model_kwargs.get("stride") != (10, 10):
        warnings.warn(
            f"This model was pre-trained with strides {(10, 10)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.")
    model = _create_vision_transformer(
        'passt_s_swa_p16_128_ap476', pretrained=pretrained, distilled=True, **model_kwargs)
    return model


def passt_s_kd_p16_128_ap486(pretrained=False, **kwargs):
    """ PaSST pre-trained on AudioSet
    """
    print("\n\n Loading PaSST pre-trained on AudioSet (with KD) Patch 16 stride 10 structured patchout mAP=486 \n\n")
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    if model_kwargs.get("stride") != (10, 10):
        warnings.warn(
            f"This model was pre-trained with strides {(10, 10)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.")
    model = _create_vision_transformer(
        'passt_s_kd_p16_128_ap486', pretrained=pretrained, distilled=True, **model_kwargs)
    return model


def passt_l_kd_p16_128_ap47(pretrained=False, **kwargs):
    """ PaSST pre-trained on AudioSet
    """
    print(
        "\n\n Loading PaSST-L (light, reduced depth=7) pre-trained on AudioSet (with KD) Patch 16 stride 10 structured patchout mAP=4708 \n\n")
    model_kwargs = dict(patch_size=16, embed_dim=768,
                        depth=7, num_heads=12, **kwargs)
    if model_kwargs.get("stride") != (10, 10):
        warnings.warn(
            f"This model was pre-trained with strides {(10, 10)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.")
    model = _create_vision_transformer(
        'passt_l_kd_p16_128_ap47', pretrained=pretrained, distilled=True, **model_kwargs)
    return model


def passt_s_swa_p16_128_ap4761(pretrained=False, **kwargs):
    """ PaSST pre-trained on AudioSet
    """
    print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 10 structured patchout mAP=4763 SWA \n\n")
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    if model_kwargs.get("stride") != (10, 10):
        warnings.warn(
            f"This model was pre-trained with strides {(10, 10)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.")
    model = _create_vision_transformer(
        'passt_s_swa_p16_128_ap4761', pretrained=pretrained, distilled=True, **model_kwargs)
    return model


def passt_s_p16_128_ap472(pretrained=False, **kwargs):
    """ PaSST pre-trained on AudioSet
    """
    print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 10 structured patchout mAP=472 \n\n")
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    if model_kwargs.get("stride") != (10, 10):
        warnings.warn(
            f"This model was pre-trained with strides {(10, 10)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.")
    model = _create_vision_transformer(
        'passt_s_p16_128_ap472', pretrained=pretrained, distilled=True, **model_kwargs)
    return model


def passt_s_p16_s12_128_ap470(pretrained=False, **kwargs):
    """ PaSST pre-trained on AudioSet
    """
    print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 12 structured patchout mAP=472 \n\n")
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    if model_kwargs.get("stride") != (12, 12):
        warnings.warn(
            f"This model was pre-trained with strides {(12, 12)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.")
    model = _create_vision_transformer(
        'passt_s_p16_s12_128_ap470', pretrained=pretrained, distilled=True, **model_kwargs)
    return model


def passt_s_f128_20sec_p16_s10_ap474_swa(pretrained=False, **kwargs):
    print("\n\n Loading PASST TRAINED ON AUDISET with 20 Second time encodings, with STFT hop of 160 \n\n")
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer(
        'passt-s-f128-20sec-p16-s10-ap474-swa', pretrained=pretrained, distilled=True, **model_kwargs)
    return model


def passt_s_f128_30sec_p16_s10_ap473_swa(pretrained=False, **kwargs):
    print("\n\n Loading PASST TRAINED ON AUDISET with 30 Second time encodings, with STFT hop of 160 \n\n")
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer(
        'passt-s-f128-30sec-p16-s10-ap473-swa', pretrained=pretrained, distilled=True, **model_kwargs)
    return model


def passt_s_swa_p16_s12_128_ap473(pretrained=False, **kwargs):
    """ PaSST pre-trained on AudioSet
    """
    print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 12 structured patchout mAP=472 \n\n")
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    if model_kwargs.get("stride") != (12, 12):
        warnings.warn(
            f"This model was pre-trained with strides {(12, 12)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.")
    model = _create_vision_transformer(
        'passt_s_swa_p16_s12_128_ap473', pretrained=pretrained, distilled=True, **model_kwargs)
    return model


def passt_s_p16_s14_128_ap469(pretrained=False, **kwargs):
    """ PaSST pre-trained on AudioSet
    """
    print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 14 structured patchout mAP=472 \n\n")
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    if model_kwargs.get("stride") != (14, 14):
        warnings.warn(
            f"This model was pre-trained with strides {(14, 14)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.")
    model = _create_vision_transformer(
        'passt_s_p16_s14_128_ap469', pretrained=pretrained, distilled=True, **model_kwargs)
    return model


def passt_s_swa_p16_s14_128_ap471(pretrained=False, **kwargs):
    """ PaSST pre-trained on AudioSet
    """
    print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 14 structured patchout mAP=472 \n\n")
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    if model_kwargs.get("stride") != (14, 14):
        warnings.warn(
            f"This model was pre-trained with strides {(14, 14)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.")
    model = _create_vision_transformer(
        'passt_s_swa_p16_s14_128_ap471', pretrained=pretrained, distilled=True, **model_kwargs)
    return model


def passt_s_swa_p16_s16_128_ap473(pretrained=False, **kwargs):
    """ PaSST pre-trained on AudioSet
    """
    print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 16 structured patchout mAP=472 \n\n")
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    if model_kwargs.get("stride") != (16, 16):
        warnings.warn(
            f"This model was pre-trained with strides {(16, 16)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.")
    model = _create_vision_transformer(
        'passt_s_swa_p16_s16_128_ap473', pretrained=pretrained, distilled=True, **model_kwargs)
    return model


def passt_s_p16_s16_128_ap468(pretrained=False, **kwargs):
    """ PaSST pre-trained on AudioSet
    """
    print("\n\n Loading PaSST pre-trained on AudioSet Patch 16 stride 16 structured patchout mAP=472 \n\n")
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    if model_kwargs.get("stride") != (16, 16):
        warnings.warn(
            f"This model was pre-trained with strides {(16, 16)}, but now you set (fstride,tstride) to {model_kwargs.get('stride')}.")
    model = _create_vision_transformer(
        'passt_s_p16_s16_128_ap468', pretrained=pretrained, distilled=True, **model_kwargs)
    return model


def fix_embedding_layer(model, embed="default"):
    if embed == "default":
        return model
    if embed == "overlap":
        model.patch_embed = PatchEmbedAdaptiveMean(replace=model.patch_embed)
    if embed == "am_keepconv":
        model.patch_embed = PatchEmbedAdaptiveMeanKeepConv(replace=model.patch_embed)
    return model


def lighten_model(model, cut_depth=0):
    if cut_depth == 0:
        return model
    if cut_depth:
        if cut_depth < 0:
            print(f"\n Reducing model depth by removing every  {-cut_depth} layer \n\n")
        else:
            print(f"\n Reducing model depth by {cut_depth} \n\n")
            if len(model.blocks) < cut_depth + 2:
                raise ValueError(f"Cut depth a VIT with {len(model.blocks)} "
                                 f"layers should be between 1 and {len(model.blocks) - 2}")
        print(f"\n Before Cutting it was  {len(model.blocks)} \n\n")

        old_blocks = list(model.blocks.children())
        if cut_depth < 0:
            print(f"cut_depth={cut_depth}")
            old_blocks = [old_blocks[0]] + old_blocks[1:-1:-cut_depth] + [old_blocks[-1]]
        else:
            old_blocks = [old_blocks[0]] + old_blocks[cut_depth + 1:]
        model.blocks = nn.Sequential(*old_blocks)
        print(f"\n Atfer Cutting it is  {len(model.blocks)} \n\n")
    return model


def get_model(arch="passt_s_kd_p16_128_ap486", pretrained=True, n_classes=527, in_channels=1,
              input_fdim=128, input_tdim=998, frame_patchout=300, pos_embed_length=1000
              ):
    """
    :param arch: Base ViT or Deit architecture
    :param pretrained: use pretrained model on imagenet
    :param n_classes: number of classes
    :param in_channels: number of input channels: 1 for mono
    :param input_fdim: the expected input frequency bins.
    :param input_tdim: the expected input time bins.
    :param frame_patchout: the number of frames to be removed from the input
    @param wandb_id: tries to load model with corresponding wandb_id from 'pretrained_path'
    :return:

    """
    model_func = None
    input_size = (input_fdim, input_tdim)
    if arch == "passt_deit_bd_p16_384":  # base deit
        model_func = deit_base_distilled_patch16_384
    elif arch == "passt_s_kd_p16_128_ap486":  # pretrained
        model_func = passt_s_kd_p16_128_ap486
    elif arch == "passt_l_kd_p16_128_ap47":  # pretrained passt-L
        model_func = passt_l_kd_p16_128_ap47
    elif arch == "passt_s_swa_p16_128_ap476":  # pretrained
        model_func = passt_s_swa_p16_128_ap476
    elif arch == "passt_s_swa_p16_128_ap4761":
        model_func = passt_s_swa_p16_128_ap4761
    elif arch == "passt_s_p16_128_ap472":
        model_func = passt_s_p16_128_ap472
    elif arch == "passt_s_p16_s16_128_ap468":
        model_func = passt_s_p16_s16_128_ap468
    elif arch == "passt_s_swa_p16_s16_128_ap473":
        model_func = passt_s_swa_p16_s16_128_ap473
    elif arch == "passt_s_swa_p16_s14_128_ap471":
        model_func = passt_s_swa_p16_s14_128_ap471
    elif arch == "passt_s_p16_s14_128_ap469":
        model_func = passt_s_p16_s14_128_ap469
    elif arch == "passt_s_swa_p16_s12_128_ap473":
        model_func = passt_s_swa_p16_s12_128_ap473
    elif arch == "passt_s_p16_s12_128_ap470":
        model_func = passt_s_p16_s12_128_ap470
    elif arch == "passt_s_f128_20sec_p16_s10_ap474":
        model_func = passt_s_f128_20sec_p16_s10_ap474_swa
    elif arch == "passt_s_f128_30sec_p16_s10_ap473":
        model_func = passt_s_f128_30sec_p16_s10_ap473_swa

    if model_func is None:
        raise RuntimeError(f"Unknown model {arch}")
    model = model_func(pretrained=pretrained, num_classes=n_classes, in_chans=in_channels,
                       img_size=input_size, frame_patchout=frame_patchout, pos_embed_length=pos_embed_length)
    model = fix_embedding_layer(model)
    model = lighten_model(model)
    return model


class EnsembelerModel(nn.Module):
    def __init__(self, models):
        super(EnsembelerModel, self).__init__()
        self.models = nn.ModuleList(models)

    def forward(self, x):
        # ModuleList can act as an iterable, or be indexed using ints
        all_out = None
        for i, m in enumerate(self.models):
            out, _ = m(x)
            if all_out is None:
                all_out = out
            else:
                all_out = out + all_out
        all_out = all_out / len(self.models)
        return all_out, all_out