Spaces:
Sleeping
Sleeping
File size: 16,027 Bytes
9b0d6c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
"""
Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
Credit to @leo19941227 for remove timm dependencies here : https://github.com/s3prl/passt_hear21/blob/48a0dc1b824641ca59884ced53f5b86053fed141/hear21passt/models/helpers/vit_helpers.py
"""
import math
import logging
import warnings
from copy import deepcopy
import torch
from torch import nn
from timm.models._hub import download_cached_file
# Global variables for rarely used pretrained checkpoint download progress and hash check.
# Use set_pretrained_download_progress / set_pretrained_check_hash functions to toggle.
_DOWNLOAD_PROGRESS = True
_CHECK_HASH = False
_logger = logging.getLogger(__name__)
def adapt_input_conv(in_chans, conv_weight, input_conv_name="(name not given)"):
conv_type = conv_weight.dtype
conv_weight = (
conv_weight.float()
) # Some weights are in torch.half, ensure it's float for sum on CPU
O, I, J, K = conv_weight.shape
if in_chans == 1:
print(f"adapt_input_conv: Converted from {I} to 1 channel")
if I > 3:
assert conv_weight.shape[1] % 3 == 0
# For models with space2depth stems
conv_weight = conv_weight.reshape(O, I // 3, 3, J, K)
conv_weight = conv_weight.sum(dim=2, keepdim=False)
else:
conv_weight = conv_weight.sum(dim=1, keepdim=True)
elif in_chans != 3:
if I != 3:
# loading a model pretrained on AudioSet for the downstream-task
if I == in_chans:
print(f"adapt_input_conv: Loading pretrained weights for {input_conv_name}, "
f"Assuming same input-conv and proj-conv configuration (1:1).")
pass
else:
print(f"adapt_input_conv: Converted input conv {input_conv_name} weights from 3 to {in_chans} channel(s)")
# NOTE this strategy should be better than random init, but there could be other combinations of
# the original RGB input layer weights that'd work better for specific cases.
repeat = int(math.ceil(in_chans / 3))
conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :]
conv_weight *= 3 / float(in_chans)
conv_weight = conv_weight.to(conv_type)
return conv_weight
def load_pretrained(
model,
default_cfg=None,
num_classes=1000,
in_chans=3,
filter_fn=None,
strict=True,
progress=False,
):
"""Load pretrained checkpoint
Args:
model (nn.Module) : PyTorch model module
default_cfg (Optional[Dict]): default configuration for pretrained weights / target dataset
num_classes (int): num_classes for model
in_chans (int): in_chans for model
filter_fn (Optional[Callable]): state_dict filter fn for load (takes state_dict, model as args)
strict (bool): strict load of checkpoint
progress (bool): enable progress bar for weight download
"""
default_cfg = default_cfg or getattr(model, "default_cfg", None) or {}
pretrained_url = default_cfg.get("url", None)
if not pretrained_url:
_logger.warning(
"No pretrained weights exist for this model. Using random initialization."
)
return
_logger.info(f"Loading pretrained weights from url ({pretrained_url})")
pretrained_loc = download_cached_file(
pretrained_url,
check_hash=_CHECK_HASH,
progress=_DOWNLOAD_PROGRESS,
)
state_dict = torch.load(pretrained_loc, map_location="cpu")
if filter_fn is not None:
# for backwards compat with filter fn that take one arg, try one first, the two
try:
state_dict = filter_fn(state_dict)
except TypeError:
state_dict = filter_fn(state_dict, model)
input_convs = default_cfg.get("first_conv", None)
if input_convs is not None and in_chans != 3:
if isinstance(input_convs, str):
input_convs = (input_convs,)
for input_conv_name in input_convs:
weight_name = input_conv_name + ".weight"
try:
state_dict[weight_name] = adapt_input_conv(
in_chans, state_dict[weight_name], input_conv_name
)
# _logger.info(
# f"Converted input conv {input_conv_name} pretrained weights from 3 to {in_chans} channel(s)"
# )
except (NotImplementedError, KeyError) as e:
if weight_name in state_dict:
del state_dict[weight_name]
strict = False
_logger.warning(
f"Unable to convert pretrained {input_conv_name} weights, using random init for this layer."
)
classifiers = default_cfg.get("classifier", None)
label_offset = default_cfg.get("label_offset", 0)
if classifiers is not None:
if isinstance(classifiers, str):
classifiers = (classifiers,)
if num_classes != default_cfg["num_classes"]:
for classifier_name in classifiers:
# completely discard fully connected if model num_classes doesn't match pretrained weights
del state_dict[classifier_name + ".weight"]
del state_dict[classifier_name + ".bias"]
strict = False
elif label_offset > 0:
for classifier_name in classifiers:
# special case for pretrained weights with an extra background class in pretrained weights
classifier_weight = state_dict[classifier_name + ".weight"]
state_dict[classifier_name + ".weight"] = classifier_weight[
label_offset:
]
classifier_bias = state_dict[classifier_name + ".bias"]
state_dict[classifier_name + ".bias"] = classifier_bias[label_offset:]
model.load_state_dict(state_dict, strict=strict)
def overlay_external_default_cfg(default_cfg, kwargs):
"""Overlay 'external_default_cfg' in kwargs on top of default_cfg arg."""
external_default_cfg = kwargs.pop("external_default_cfg", None)
if external_default_cfg:
default_cfg.pop("url", None) # url should come from external cfg
default_cfg.pop("hf_hub", None) # hf hub id should come from external cfg
default_cfg.update(external_default_cfg)
def filter_kwargs(kwargs, names):
if not kwargs or not names:
return
for n in names:
kwargs.pop(n, None)
def set_default_kwargs(kwargs, names, default_cfg):
for n in names:
# for legacy reasons, model __init__args uses img_size + in_chans as separate args while
# default_cfg has one input_size=(C, H ,W) entry
if n == "img_size":
input_size = default_cfg.get("input_size", None)
if input_size is not None:
assert len(input_size) == 3
kwargs.setdefault(n, input_size[-2:])
elif n == "in_chans":
input_size = default_cfg.get("input_size", None)
if input_size is not None:
assert len(input_size) == 3
kwargs.setdefault(n, input_size[0])
else:
default_val = default_cfg.get(n, None)
if default_val is not None:
kwargs.setdefault(n, default_cfg[n])
def update_default_cfg_and_kwargs(default_cfg, kwargs, kwargs_filter):
"""Update the default_cfg and kwargs before passing to model
FIXME this sequence of overlay default_cfg, set default kwargs, filter kwargs
could/should be replaced by an improved configuration mechanism
Args:
default_cfg: input default_cfg (updated in-place)
kwargs: keyword args passed to model build fn (updated in-place)
kwargs_filter: keyword arg keys that must be removed before model __init__
"""
# Overlay default cfg values from `external_default_cfg` if it exists in kwargs
overlay_external_default_cfg(default_cfg, kwargs)
# Set model __init__ args that can be determined by default_cfg (if not already passed as kwargs)
default_kwarg_names = ("num_classes", "global_pool", "in_chans")
if default_cfg.get("fixed_input_size", False):
# if fixed_input_size exists and is True, model takes an img_size arg that fixes its input size
default_kwarg_names += ("img_size",)
set_default_kwargs(kwargs, names=default_kwarg_names, default_cfg=default_cfg)
# Filter keyword args for task specific model variants (some 'features only' models, etc.)
filter_kwargs(kwargs, names=kwargs_filter)
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
from torch.nn.init import _calculate_fan_in_and_fan_out
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
if mode == "fan_in":
denom = fan_in
elif mode == "fan_out":
denom = fan_out
elif mode == "fan_avg":
denom = (fan_in + fan_out) / 2
variance = scale / denom
if distribution == "truncated_normal":
# constant is stddev of standard normal truncated to (-2, 2)
trunc_normal_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
elif distribution == "normal":
tensor.normal_(std=math.sqrt(variance))
elif distribution == "uniform":
bound = math.sqrt(3 * variance)
tensor.uniform_(-bound, bound)
else:
raise ValueError(f"invalid distribution {distribution}")
def lecun_normal_(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
def build_model_with_cfg(
model_cls,
variant: str,
pretrained: bool,
default_cfg: dict,
model_cfg=None,
feature_cfg=None,
pretrained_strict: bool = True,
pretrained_filter_fn=None,
pretrained_custom_load=False,
kwargs_filter=None,
**kwargs,
):
"""Build model with specified default_cfg and optional model_cfg
This helper fn aids in the construction of a model including:
* handling default_cfg and associated pretained weight loading
* passing through optional model_cfg for models with config based arch spec
* features_only model adaptation
* pruning config / model adaptation
Args:
model_cls (nn.Module): model class
variant (str): model variant name
pretrained (bool): load pretrained weights
default_cfg (dict): model's default pretrained/task config
model_cfg (Optional[Dict]): model's architecture config
feature_cfg (Optional[Dict]: feature extraction adapter config
pretrained_strict (bool): load pretrained weights strictly
pretrained_filter_fn (Optional[Callable]): filter callable for pretrained weights
pretrained_custom_load (bool): use custom load fn, to load numpy or other non PyTorch weights
kwargs_filter (Optional[Tuple]): kwargs to filter before passing to model
**kwargs: model args passed through to model __init__
"""
pruned = kwargs.pop("pruned", False)
features = False
feature_cfg = feature_cfg or {}
default_cfg = deepcopy(default_cfg) if default_cfg else {}
update_default_cfg_and_kwargs(default_cfg, kwargs, kwargs_filter)
default_cfg.setdefault("architecture", variant)
# Setup for feature extraction wrapper done at end of this fn
if kwargs.pop("features_only", False):
features = True
feature_cfg.setdefault("out_indices", (0, 1, 2, 3, 4))
if "out_indices" in kwargs:
feature_cfg["out_indices"] = kwargs.pop("out_indices")
# Build the model
model = (
model_cls(**kwargs) if model_cfg is None else model_cls(cfg=model_cfg, **kwargs)
)
model.default_cfg = default_cfg
# For classification models, check class attr, then kwargs, then default to 1k, otherwise 0 for feats
num_classes_pretrained = (
0
if features
else getattr(model, "num_classes", kwargs.get("num_classes", 1000))
)
if pretrained:
assert not pretrained_custom_load, "URL should not contain npz for PASST models"
load_pretrained(
model,
num_classes=num_classes_pretrained,
in_chans=kwargs.get("in_chans", 3),
filter_fn=pretrained_filter_fn,
strict=pretrained_strict,
)
return model |