File size: 16,027 Bytes
9b0d6c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
"""
Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
Credit to @leo19941227  for remove timm dependencies here : https://github.com/s3prl/passt_hear21/blob/48a0dc1b824641ca59884ced53f5b86053fed141/hear21passt/models/helpers/vit_helpers.py

"""
import math
import logging
import warnings
from copy import deepcopy

import torch
from torch import nn

from timm.models._hub import download_cached_file


# Global variables for rarely used pretrained checkpoint download progress and hash check.
# Use set_pretrained_download_progress / set_pretrained_check_hash functions to toggle.
_DOWNLOAD_PROGRESS = True
_CHECK_HASH = False


_logger = logging.getLogger(__name__)


def adapt_input_conv(in_chans, conv_weight, input_conv_name="(name not given)"):
    conv_type = conv_weight.dtype
    conv_weight = (
        conv_weight.float()
    )  # Some weights are in torch.half, ensure it's float for sum on CPU
    O, I, J, K = conv_weight.shape
    if in_chans == 1:
        print(f"adapt_input_conv: Converted from {I} to 1 channel")
        if I > 3:
            assert conv_weight.shape[1] % 3 == 0
            # For models with space2depth stems
            conv_weight = conv_weight.reshape(O, I // 3, 3, J, K)
            conv_weight = conv_weight.sum(dim=2, keepdim=False)
        else:
            conv_weight = conv_weight.sum(dim=1, keepdim=True)
    elif in_chans != 3:
        if I != 3:
            # loading a model pretrained on AudioSet for the downstream-task
            if I == in_chans:
                print(f"adapt_input_conv: Loading pretrained weights for {input_conv_name}, "
                      f"Assuming same input-conv and proj-conv configuration (1:1).")
                pass
        else:
            print(f"adapt_input_conv: Converted input conv {input_conv_name} weights from 3 to {in_chans} channel(s)")
            # NOTE this strategy should be better than random init, but there could be other combinations of
            # the original RGB input layer weights that'd work better for specific cases.
            repeat = int(math.ceil(in_chans / 3))
            conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :]
            conv_weight *= 3 / float(in_chans)
    conv_weight = conv_weight.to(conv_type)
    return conv_weight


def load_pretrained(
    model,
    default_cfg=None,
    num_classes=1000,
    in_chans=3,
    filter_fn=None,
    strict=True,
    progress=False,
):
    """Load pretrained checkpoint

    Args:
        model (nn.Module) : PyTorch model module
        default_cfg (Optional[Dict]): default configuration for pretrained weights / target dataset
        num_classes (int): num_classes for model
        in_chans (int): in_chans for model
        filter_fn (Optional[Callable]): state_dict filter fn for load (takes state_dict, model as args)
        strict (bool): strict load of checkpoint
        progress (bool): enable progress bar for weight download

    """
    default_cfg = default_cfg or getattr(model, "default_cfg", None) or {}
    pretrained_url = default_cfg.get("url", None)

    if not pretrained_url:
        _logger.warning(
            "No pretrained weights exist for this model. Using random initialization."
        )
        return

    _logger.info(f"Loading pretrained weights from url ({pretrained_url})")
    pretrained_loc = download_cached_file(
            pretrained_url,
            check_hash=_CHECK_HASH,
            progress=_DOWNLOAD_PROGRESS,
        )

    state_dict = torch.load(pretrained_loc, map_location="cpu")

    if filter_fn is not None:
        # for backwards compat with filter fn that take one arg, try one first, the two
        try:
            state_dict = filter_fn(state_dict)
        except TypeError:
            state_dict = filter_fn(state_dict, model)

    input_convs = default_cfg.get("first_conv", None)
    if input_convs is not None and in_chans != 3:
        if isinstance(input_convs, str):
            input_convs = (input_convs,)
        for input_conv_name in input_convs:
            weight_name = input_conv_name + ".weight"
            try:
                state_dict[weight_name] = adapt_input_conv(
                    in_chans, state_dict[weight_name], input_conv_name
                )
                # _logger.info(
                #     f"Converted input conv {input_conv_name} pretrained weights from 3 to {in_chans} channel(s)"
                # )
            except (NotImplementedError, KeyError) as e:
                if weight_name in state_dict:
                    del state_dict[weight_name]
                strict = False
                _logger.warning(
                    f"Unable to convert pretrained {input_conv_name} weights, using random init for this layer."
                )

    classifiers = default_cfg.get("classifier", None)
    label_offset = default_cfg.get("label_offset", 0)
    if classifiers is not None:
        if isinstance(classifiers, str):
            classifiers = (classifiers,)
        if num_classes != default_cfg["num_classes"]:
            for classifier_name in classifiers:
                # completely discard fully connected if model num_classes doesn't match pretrained weights
                del state_dict[classifier_name + ".weight"]
                del state_dict[classifier_name + ".bias"]
            strict = False
        elif label_offset > 0:
            for classifier_name in classifiers:
                # special case for pretrained weights with an extra background class in pretrained weights
                classifier_weight = state_dict[classifier_name + ".weight"]
                state_dict[classifier_name + ".weight"] = classifier_weight[
                    label_offset:
                ]
                classifier_bias = state_dict[classifier_name + ".bias"]
                state_dict[classifier_name + ".bias"] = classifier_bias[label_offset:]

    model.load_state_dict(state_dict, strict=strict)


def overlay_external_default_cfg(default_cfg, kwargs):
    """Overlay 'external_default_cfg' in kwargs on top of default_cfg arg."""
    external_default_cfg = kwargs.pop("external_default_cfg", None)
    if external_default_cfg:
        default_cfg.pop("url", None)  # url should come from external cfg
        default_cfg.pop("hf_hub", None)  # hf hub id should come from external cfg
        default_cfg.update(external_default_cfg)


def filter_kwargs(kwargs, names):
    if not kwargs or not names:
        return
    for n in names:
        kwargs.pop(n, None)


def set_default_kwargs(kwargs, names, default_cfg):
    for n in names:
        # for legacy reasons, model __init__args uses img_size + in_chans as separate args while
        # default_cfg has one input_size=(C, H ,W) entry
        if n == "img_size":
            input_size = default_cfg.get("input_size", None)
            if input_size is not None:
                assert len(input_size) == 3
                kwargs.setdefault(n, input_size[-2:])
        elif n == "in_chans":
            input_size = default_cfg.get("input_size", None)
            if input_size is not None:
                assert len(input_size) == 3
                kwargs.setdefault(n, input_size[0])
        else:
            default_val = default_cfg.get(n, None)
            if default_val is not None:
                kwargs.setdefault(n, default_cfg[n])


def update_default_cfg_and_kwargs(default_cfg, kwargs, kwargs_filter):
    """Update the default_cfg and kwargs before passing to model

    FIXME this sequence of overlay default_cfg, set default kwargs, filter kwargs
    could/should be replaced by an improved configuration mechanism

    Args:
        default_cfg: input default_cfg (updated in-place)
        kwargs: keyword args passed to model build fn (updated in-place)
        kwargs_filter: keyword arg keys that must be removed before model __init__
    """
    # Overlay default cfg values from `external_default_cfg` if it exists in kwargs
    overlay_external_default_cfg(default_cfg, kwargs)
    # Set model __init__ args that can be determined by default_cfg (if not already passed as kwargs)
    default_kwarg_names = ("num_classes", "global_pool", "in_chans")
    if default_cfg.get("fixed_input_size", False):
        # if fixed_input_size exists and is True, model takes an img_size arg that fixes its input size
        default_kwarg_names += ("img_size",)
    set_default_kwargs(kwargs, names=default_kwarg_names, default_cfg=default_cfg)
    # Filter keyword args for task specific model variants (some 'features only' models, etc.)
    filter_kwargs(kwargs, names=kwargs_filter)


def drop_path(x, drop_prob: float = 0.0, training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.

    """
    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (
        x.ndim - 1
    )  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


from torch.nn.init import _calculate_fan_in_and_fan_out


def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn(
            "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
            "The distribution of values may be incorrect.",
            stacklevel=2,
        )

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.0))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)


def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
    fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
    if mode == "fan_in":
        denom = fan_in
    elif mode == "fan_out":
        denom = fan_out
    elif mode == "fan_avg":
        denom = (fan_in + fan_out) / 2

    variance = scale / denom

    if distribution == "truncated_normal":
        # constant is stddev of standard normal truncated to (-2, 2)
        trunc_normal_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
    elif distribution == "normal":
        tensor.normal_(std=math.sqrt(variance))
    elif distribution == "uniform":
        bound = math.sqrt(3 * variance)
        tensor.uniform_(-bound, bound)
    else:
        raise ValueError(f"invalid distribution {distribution}")


def lecun_normal_(tensor):
    variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")


def build_model_with_cfg(
    model_cls,
    variant: str,
    pretrained: bool,
    default_cfg: dict,
    model_cfg=None,
    feature_cfg=None,
    pretrained_strict: bool = True,
    pretrained_filter_fn=None,
    pretrained_custom_load=False,
    kwargs_filter=None,
    **kwargs,
):
    """Build model with specified default_cfg and optional model_cfg

    This helper fn aids in the construction of a model including:
      * handling default_cfg and associated pretained weight loading
      * passing through optional model_cfg for models with config based arch spec
      * features_only model adaptation
      * pruning config / model adaptation

    Args:
        model_cls (nn.Module): model class
        variant (str): model variant name
        pretrained (bool): load pretrained weights
        default_cfg (dict): model's default pretrained/task config
        model_cfg (Optional[Dict]): model's architecture config
        feature_cfg (Optional[Dict]: feature extraction adapter config
        pretrained_strict (bool): load pretrained weights strictly
        pretrained_filter_fn (Optional[Callable]): filter callable for pretrained weights
        pretrained_custom_load (bool): use custom load fn, to load numpy or other non PyTorch weights
        kwargs_filter (Optional[Tuple]): kwargs to filter before passing to model
        **kwargs: model args passed through to model __init__
    """
    pruned = kwargs.pop("pruned", False)
    features = False
    feature_cfg = feature_cfg or {}
    default_cfg = deepcopy(default_cfg) if default_cfg else {}
    update_default_cfg_and_kwargs(default_cfg, kwargs, kwargs_filter)
    default_cfg.setdefault("architecture", variant)

    # Setup for feature extraction wrapper done at end of this fn
    if kwargs.pop("features_only", False):
        features = True
        feature_cfg.setdefault("out_indices", (0, 1, 2, 3, 4))
        if "out_indices" in kwargs:
            feature_cfg["out_indices"] = kwargs.pop("out_indices")

    # Build the model
    model = (
        model_cls(**kwargs) if model_cfg is None else model_cls(cfg=model_cfg, **kwargs)
    )
    model.default_cfg = default_cfg

    # For classification models, check class attr, then kwargs, then default to 1k, otherwise 0 for feats
    num_classes_pretrained = (
        0
        if features
        else getattr(model, "num_classes", kwargs.get("num_classes", 1000))
    )
    if pretrained:
        assert not pretrained_custom_load, "URL should not contain npz for PASST models"
        load_pretrained(
            model,
            num_classes=num_classes_pretrained,
            in_chans=kwargs.get("in_chans", 3),
            filter_fn=pretrained_filter_fn,
            strict=pretrained_strict,
        )
    return model