sohamc10's picture
gradio app
9b0d6c2
"""Masked Modeling Duo (M2D) Portable Runtime.
All you need is:
pip install timm, einops, nnAudio
"""
import logging
from functools import partial
from pathlib import Path
import nnAudio.features
import numpy as np
import timm
import torch
from einops import rearrange
from timm.models.layers import trunc_normal_
class Config:
weight_file = ''
feature_d = 768 * 5
norm_type = all
pooling_type = 'mean'
model = ''
input_size = [80, 208]
patch_size = [16, 16]
sr = '16k'
flat_features = False
def expand_size(sz):
if isinstance(sz, int):
return [sz, sz]
return sz
class PatchEmbed(torch.nn.Module):
""" 2D Image to Patch Embedding -- borrowed from https://pypi.org/project/timm/0.4.12/"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True):
super().__init__()
img_size = expand_size(img_size)
patch_size = expand_size(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = flatten
self.proj = torch.nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = norm_layer(embed_dim) if norm_layer else torch.nn.Identity()
def forward(self, x):
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
x = self.norm(x)
return x
class LocalViT(timm.models.vision_transformer.VisionTransformer):
""" Vision Transformer for M2D Audio"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
# Workaround for PatchEmbed to avoid unintended assertion failure. ex) AssertionError: Input image width (102) doesn't match model (608).
self.patch_embed = PatchEmbed(self.patch_embed.img_size, self.patch_embed.patch_size,
self.patch_embed.proj.in_channels, self.patch_embed.proj.out_channels)
self.norm_stats = torch.nn.Parameter(torch.tensor([-7.1, 4.2]), requires_grad=False)
# We do not use the default head
del self.head
def patch_size(self):
return np.array(self.patch_embed.patch_size)
def grid_size(self):
# Workaround for compatibility issue (timm 0.4.5 fails with: return self.patch_embed.grid_size)
img_size = np.array(self.patch_embed.img_size)
patch_size = self.patch_size()
grid_size = img_size // patch_size
return grid_size
def forward_encoder(self, x):
x = self.patch_embed(x)
# add pos embed w/o cls token
pos_embed = self.pos_embed[:, 1:, :]
if x.shape[1] < pos_embed.shape[1]: # shorten pos_embed for a short input
dims = pos_embed.shape[-1]
fbins = self.grid_size()[0]
frames = x.shape[1] // fbins
pos_embed = pos_embed.reshape(1, fbins, -1, dims)[:, :, :frames, :].reshape(1, fbins * frames, dims)
x = x + pos_embed
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x
def parse_sizes_by_name(name):
# Parse parameters. "m2d_vit_base-80x1001p16x16p16k" -> input size: 80x1001, patch size: 16x16, sr: 16k
model_cls = name.split('-')[0]
params = name.split('-')[1]
params = params.split('p')[:3]
input_str, patch_str, sr = params[0], params[1], params[2] if len(params) > 2 else '16k'
input_size = [int(a) for a in input_str.split('x')]
patch_size = [int(a) for a in patch_str.split('x')]
return input_size, patch_size, sr, model_cls
def drop_non_model_weights(model, checkpoint, filename):
model_keys = [n for n, p in model.named_parameters()]
new_ckpt, dropped = {}, []
for k in checkpoint:
if k not in model_keys:
dropped.append(k)
continue
new_ckpt[k] = checkpoint[k]
n_org = len(checkpoint.keys())
n_cur = len(new_ckpt.keys())
print(
f' using {n_cur} parameters, while dropped {n_org - n_cur} out of {n_org} parameters from {Path(filename).parent / Path(filename).name}'
if n_org > n_cur else f' using {n_cur} parameters from {Path(filename).parent / Path(filename).name}')
print(' (dropped:', dropped[:5], ')' if len(dropped) < 5 else '...)')
return new_ckpt
def load_evar_head_parameters(checkpoint, head_norm, head):
# Load the weights of the task head trained in the EVAR fine-tuning.
if 'module.head.norm.running_mean' in checkpoint:
head_norm.load_state_dict({to_k: checkpoint[k] for to_k, k in {
'running_mean': 'module.head.norm.running_mean', 'running_var': 'module.head.norm.running_var'}.items()})
head.load_state_dict({to_k: checkpoint[k] for to_k, k in {
'weight': 'module.head.mlp.mlp.0.weight', 'bias': 'module.head.mlp.mlp.0.bias'}.items()})
else:
print(' Not an EVAR checkpoint for loading head weights.')
def reformat_ckpt_keys(checkpoint):
# In case: checkpoint['model']
checkpoint = checkpoint['model'] if 'model' in checkpoint else checkpoint
# The checkpoints saved in a EVAR fine-tuning has a prefix of "module.ar.runtime.backbone", the following removes it.
new_ckpt = {}
for k in checkpoint:
new_k = k.replace('module.ar.runtime.backbone.', '') # replace
new_ckpt[new_k] = checkpoint[k]
return new_ckpt
def make_it_CLAP(model, checkpoint):
# Add projectors if needed
if 'audio_proj.0.weight' in checkpoint.keys():
proj_hidden_dim = embed_dim = checkpoint['audio_proj.0.weight'].shape[1]
model.audio_proj = torch.nn.Sequential(
torch.nn.Linear(embed_dim, proj_hidden_dim),
torch.nn.ReLU(),
torch.nn.Linear(proj_hidden_dim, embed_dim),
)
if 'text_proj.weight' in checkpoint.keys():
dim = checkpoint['text_proj.weight'].shape
model.text_proj = torch.nn.Linear(dim[1], dim[0])
else:
model.text_proj = torch.nn.Identity()
def get_backbone(args, weight_file):
name = Path(weight_file).parent.name if weight_file is not None \
else "m2d_clap_vit_base-80x1001p16x16-240128_AS-FT_enconly"
args.input_size, args.patch_size, args.sr, args.beats = parse_sizes_by_name(name)
# Create a ViT.
model = LocalViT(
in_chans=1, img_size=args.input_size, patch_size=args.patch_size, embed_dim=768, depth=12, num_heads=12,
mlp_ratio=4, norm_layer=partial(torch.nn.LayerNorm, eps=1e-6))
if weight_file is None:
args.mean, args.std = -7.1, 4.2
model.eval()
return model, None
# Load checkpoint.
checkpoint = torch.load(weight_file, map_location='cpu')
checkpoint = reformat_ckpt_keys(checkpoint)
# Set normalization statistics for backward compatibility. The [-7.1, 4.2] is for 2022 models.
if 'norm_stats' not in checkpoint:
checkpoint['norm_stats'] = torch.tensor([-7.1, 4.2])
print(' using default norm_stats:', checkpoint['norm_stats'])
# Modify the model if it should be a M2D-CLAP.
make_it_CLAP(model, checkpoint)
# Load weights.
dropped = drop_non_model_weights(model, checkpoint, weight_file)
msg = model.load_state_dict(dropped)
print(msg);
logging.info(msg)
# Make normalization statistics for the model easy to use in the downstream task.
args.mean, args.std = model.state_dict()['norm_stats'].to('cpu').numpy()
model.eval()
return model, checkpoint
def get_to_melspec(cfg):
if cfg.sr == '16k':
cfg.sample_rate, cfg.n_fft, cfg.window_size, cfg.hop_size = 16000, 400, 400, 160
cfg.n_mels, cfg.f_min, cfg.f_max = 80, 50, 8000
elif cfg.sr == '32k':
cfg.sample_rate, cfg.n_fft, cfg.window_size, cfg.hop_size = 32000, 800, 800, 320
cfg.n_mels, cfg.f_min, cfg.f_max = 80, 50, 16000
else:
assert False, f'Unknown input size: {cfg.input_size}'
to_spec = nnAudio.features.MelSpectrogram(
sr=cfg.sample_rate,
n_fft=cfg.n_fft,
win_length=cfg.window_size,
hop_length=cfg.hop_size,
n_mels=cfg.n_mels,
fmin=cfg.f_min,
fmax=cfg.f_max,
center=True,
power=2,
verbose=False,
)
logging.info(f'Runtime MelSpectrogram({cfg.sample_rate}, {cfg.n_fft}, {cfg.window_size}, {cfg.hop_size}, '
+ f'{cfg.n_mels}, {cfg.f_min}, {cfg.f_max}):')
logging.info(to_spec)
return to_spec
def get_timestamps(cfg, batch_audio, x): # Returns timestamps in milliseconds.
audio_len = len(batch_audio[0])
sec = audio_len / cfg.sample_rate
x_len = len(x[0])
step = sec / x_len * 1000 # sec -> ms
ts = torch.tensor([step * i for i in range(x_len)]).unsqueeze(0)
ts = ts.repeat(len(batch_audio), 1)
return ts
class PortableM2D(torch.nn.Module):
def __init__(self, weight_file=None, num_classes=None, freeze_embed=False, flat_features=None):
super().__init__()
self.cfg = Config()
self.cfg.weight_file = weight_file
self.cfg.freeze_embed = freeze_embed
self.cfg.flat_features = self.cfg.flat_features if flat_features is None else flat_features
# Create backbone model.
self.backbone, checkpoint = get_backbone(self.cfg, self.cfg.weight_file)
# Finalize feature dimension.
d = self.backbone.pos_embed.shape[-1]
if num_classes is not None and 'module.head.mlp.mlp.0.weight' in checkpoint and \
checkpoint['module.head.mlp.mlp.0.weight'].shape[-1] == d:
self.cfg.flat_features = True
n_stack_feature = 1 if self.cfg.flat_features else (self.cfg.input_size[0] // self.cfg.patch_size[0])
self.cfg.feature_d = d * n_stack_feature # 768 if flat_features else 768*5=3840
# Create head.
if num_classes is not None:
self.head_norm = torch.nn.BatchNorm1d(self.cfg.feature_d, affine=False)
self.head = torch.nn.Linear(self.cfg.feature_d, num_classes)
trunc_normal_(self.head.weight, std=2e-5)
load_evar_head_parameters(checkpoint, self.head_norm, self.head)
# Option: freeze patch embedding ([2211.09359] How to Fine-Tune Vision Models with SGD)
if self.cfg.freeze_embed:
models_mae.set_requires_grad(self.backbone.patch_embed, False)
logging.info(' ** Freeze patch_embed **')
logging.info(self.backbone.patch_embed)
logging.info(f'Model input size: {self.cfg.input_size}')
logging.info(f'Using weights: {self.cfg.weight_file}')
logging.info(f'Feature dimension: {self.cfg.feature_d}')
logging.info(f'Norm stats: {self.cfg.mean}, {self.cfg.std}')
self.to_spec = get_to_melspec(self.cfg)
self.eval()
def to_log_mel_spec(self, batch_audio):
x = self.to_spec(batch_audio)
x = (x + torch.finfo().eps).log()
x = x.unsqueeze(1)
return x
def normalize_batch(self, x):
x = (x - self.cfg.mean) / self.cfg.std
return x
def to_normalized_feature(self, batch_audio):
x = self.to_log_mel_spec(batch_audio)
x = self.normalize_batch(x)
return x
def encode_lms(self, x, average_per_time_frame=False):
patch_fbins = self.backbone.grid_size()[0]
unit_frames = self.cfg.input_size[1]
patch_frames = self.backbone.patch_size()[1]
embed_d = self.backbone.patch_embed.proj.out_channels
n_chunk = (x.shape[-1] + unit_frames - 1) // unit_frames
pad_frames = (patch_frames - (x.shape[-1] % unit_frames % patch_frames)) % patch_frames
if pad_frames > 0:
x = torch.nn.functional.pad(x, (0, pad_frames))
embeddings = []
if self.cfg.flat_features:
# flatten all patch embeddings
for i in range(n_chunk):
emb = self.backbone.forward_encoder(x[..., i * unit_frames:(i + 1) * unit_frames])
emb = emb[..., 1:, :]
if average_per_time_frame:
emb = rearrange(emb, 'b (f t) d -> b t d f', f=patch_fbins, d=embed_d).mean(-1)
embeddings.append(emb)
else:
# stack embeddings along time frame
for i in range(n_chunk):
emb = self.backbone.forward_encoder(x[..., i * unit_frames:(i + 1) * unit_frames])
emb = emb[..., 1:, :]
emb = rearrange(emb, 'b (f t) d -> b t (f d)', f=patch_fbins, d=embed_d)
embeddings.append(emb)
# concatenate embedding chunks in the time axis
x = torch.cat(embeddings, axis=-2)
return x
def encode(self, batch_audio, average_per_time_frame=False):
x = self.to_normalized_feature(batch_audio)
return self.encode_lms(x, average_per_time_frame=average_per_time_frame)
def forward(self, batch_audio, average_per_time_frame=False):
x = self.encode(batch_audio, average_per_time_frame=average_per_time_frame)
if hasattr(self, 'head'):
x = x.mean(1) # B, D
x = self.head_norm(x.unsqueeze(-1)).squeeze(-1)
x = self.head(x)
return x
def forward_mel(self, batch_mel, average_per_time_frame=False):
x = self.encode_lms(batch_mel, average_per_time_frame=average_per_time_frame)
if hasattr(self, 'head'):
x = x.mean(1) # B, D
x = self.head_norm(x.unsqueeze(-1)).squeeze(-1)
x = self.head(x)
return x
def get_scene_embeddings(self, batch_audio):
x = self.encode(batch_audio)
x = torch.mean(x, dim=1)
return x
def get_timestamp_embeddings(self, batch_audio):
x = self.encode(batch_audio, average_per_time_frame=True)
ts = get_timestamps(self.cfg, batch_audio, x)
return x, ts
def forward_frames(self, batch_audio):
x, ts = self.get_timestamp_embeddings(batch_audio)
if hasattr(self, 'head'):
x = self.head_norm(x.transpose(-1, -2)).transpose(-2, -1)
x = self.head(x)
return x, ts
def encode_clap_audio(self, batch_audio):
audio_embeddings = self.forward(batch_audio)
audio_embeddings = audio_embeddings.mean(dim=-2)
audio_embeddings = self.backbone.audio_proj(audio_embeddings)
return audio_embeddings
def encode_clap_text(self, batch_text, truncate=False):
if not hasattr(self, 'text_encoder'):
self.text_encoder = GTETextEncoder()
text_embeddings = self.text_encoder(batch_text, truncate=truncate)
text_embeddings = self.backbone.text_proj(text_embeddings)
text_embeddings = text_embeddings.detach().cpu().to(torch.float)
return text_embeddings
# For the CLAP models
class GTETextEncoder:
def __init__(self, clip_weight="thenlper/gte-base"):
from transformers import AutoTokenizer, AutoModel
import os
os.environ["TOKENIZERS_PARALLELISM"] = "true" # To suppress warnings.
self.tokenizer = AutoTokenizer.from_pretrained(clip_weight)
self.model = AutoModel.from_pretrained(clip_weight)
def __call__(self, texts, truncate=True, max_length=512):
def average_pool(last_hidden_states, attention_mask):
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
with torch.no_grad():
device = next(self.model.parameters()).device
batch_dict = self.tokenizer(texts, max_length=max_length, padding=True, truncation=truncate,
return_tensors='pt')
batch_dict['input_ids'] = batch_dict['input_ids'].to(device)
batch_dict['token_type_ids'] = batch_dict['token_type_ids'].to(device)
batch_dict['attention_mask'] = batch_dict['attention_mask'].to(device)
outputs = self.model.to(device)(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
return embeddings