import math import warnings from functools import partial import torch from torch import nn from .transformer import Block def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): return _no_grad_trunc_normal_(tensor, mean, std, a, b) def get_num_patches(height=64, width=1001, patch_height=16, patch_width=16): return (height // patch_height) * (width // patch_width) from einops.layers.torch import Rearrange class PatchEmbed_v2(nn.Module): def __init__(self, patch_height=64, patch_width=4, embed_dim=768, input_dim=1): super().__init__() self.patch_height = patch_height self.patch_width = patch_width self.patch_maker = Rearrange('b c (h p1) (w p2) -> b (w h) (p1 p2 c)', p1=patch_height, p2=patch_width) self.patch_embed = nn.Linear(patch_height * patch_width * input_dim, embed_dim) def forward(self, melspec, length=None): height = melspec.shape[2] - melspec.shape[2] % self.patch_height width = melspec.shape[3] - melspec.shape[3] % self.patch_width patch = self.patch_maker(melspec[:, :, :height, :width]) patch_embed = self.patch_embed(patch) if length is not None: patch_length = (torch.div(height, self.patch_height, rounding_mode='trunc')) * torch.div( (length - length % self.patch_width), self.patch_width, rounding_mode='trunc') else: patch_length = None return patch, patch_embed, patch_length class FrameAST(nn.Module): """ Vision Transformer """ def __init__(self, nprompt=0, spec_h=64, spec_w=1001, patch_w=16, patch_h=16, pos_type="cut", in_chans=1, num_classes=0, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0.0, attn_drop_rate=0., drop_path_rate=0.0, norm_layer=nn.LayerNorm, **kwargs): super().__init__() self.num_features = self.embed_dim = embed_dim self.spec_w = spec_w self.spec_h = spec_h self.embed_dim = embed_dim self.patch_w = patch_w self.patch_h = patch_h self.pos_type = pos_type self.patch_embed = PatchEmbed_v2(patch_h, patch_w, embed_dim) self.mask_embed = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) # hack self.nprompt = nprompt if self.nprompt > 0: self.prompt_embed = nn.Parameter(torch.zeros(1, self.nprompt, self.embed_dim)) trunc_normal_(self.prompt_embed, std=.02) num_patches = get_num_patches(spec_h, spec_w, patch_h, patch_w) self.num_patches = num_patches self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth)]) self.norm_frame = norm_layer(embed_dim) trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.mask_embed, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def prepare_tokens(self, x, mask_index, length, mask=True): B, nc, h, w = x.shape mel_patches, x, patch_length = self.patch_embed(x, length) # patch linear embedding B, T, C = x.shape if (mask_index is not None) and mask: mask_index_expand = mask_index.unsqueeze(2).expand(B, T, self.embed_dim).float() x = (1 - mask_index_expand) * x + mask_index_expand * self.mask_embed.expand(B, T, C) # add positional encoding to each token if self.pos_type == "cut": pos = self.pos_embed[:, 1:T + 1, :].expand(B, -1, -1) x = x + pos else: pos = self.interpolate_pos_encoding(x, h, w) x = x + pos[:, 1:] # pos = self.pos_embed[:,1:T+1,:].expand(B,-1,-1) # x = x + pos return self.pos_drop(x), pos, mel_patches, h, w, patch_length def forward(self, x, mask_index=None, mask_input=True, length=None): x, pos, mel_patches, h, w, patch_length = self.prepare_tokens(x, mask_index, length, mask_input) length_mask = torch.arange(mel_patches.shape[1]).to(x.device) < patch_length.unsqueeze(1) length_mask = length_mask.to(x.device) mask_index = mask_index & length_mask if self.nprompt > 0: x = torch.cat([self.prompt_embed.expand(x.shape[0], -1, -1), x], dim=1) for i, blk in enumerate(self.blocks): x = blk(x, patch_length + self.nprompt) frame_repr = self.norm_frame(x) return frame_repr[:, self.nprompt:][mask_index] def interpolate_pos_encoding(self, x, h, w): npatch = x.shape[1] - 1 N = self.pos_embed.shape[1] - 1 if npatch == N and w == self.spec_w and h == self.spec_h: return self.pos_embed class_pos_embed = self.pos_embed[:, 0] patch_pos_embed = self.pos_embed[:, 1:] dim = x.shape[-1] w0 = w // self.patch_embed.patch_width h0 = h // self.patch_embed.patch_height # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0 = w0 + 0.1, h0 + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, self.spec_h // self.patch_h, self.spec_w // self.patch_w, dim).permute(0, 3, 1, 2), scale_factor=(h0 / (self.spec_h // self.patch_h), w0 / (self.spec_w // self.patch_w)), mode='bicubic', ) assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1] patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) def get_last_selfattention(self, x): x, _, _, _, _, _ = self.prepare_tokens(x, mask_index=None, length=None, mask=False) atts = [] for i, blk in enumerate(self.blocks): if i < len(self.blocks) - 1: x, att = blk(x, return_attention=True) atts.append(att) else: x, att = blk(x, return_attention=True) atts.append(att) return atts # return attention of the last block def get_intermediate_layers(self, x, length, n=1, scene=True, other_emb=None): x, _, _, _, _, patch_length = self.prepare_tokens(x, mask_index=None, length=length, mask=False) # we return the output tokens from the `n` last blocks if other_emb is not None: x = torch.cat([other_emb, x], dim=1) output = [] if self.nprompt > 0: x = torch.cat([self.prompt_embed.expand(x.shape[0], -1, -1), x], dim=1) for i, blk in enumerate(self.blocks): x = blk(x, patch_length + self.nprompt) if len(self.blocks) - i <= n: norm_x = self.norm_frame(x) if scene: length_mask = torch.arange(x.shape[1] - self.nprompt).to(x.device) < patch_length.unsqueeze(1) avg = torch.sum(norm_x[:, self.nprompt:] * length_mask.unsqueeze(-1), dim=1) / ( patch_length.unsqueeze(-1) + 1e-6) negative = (~length_mask) * -1e10 # max = torch.max(norm_x[:,self.nprompt:]+negative.unsqueeze(-1),1).values output.append(avg) if self.nprompt > 0: output.append(torch.mean(norm_x[:, :self.nprompt], dim=1)) else: output.append(norm_x[:, self.nprompt:]) return torch.cat(output, dim=-1) def get_cls_avg(output_i, cur_len, use_cls): length_mask = torch.arange(output_i[0].shape[1]).to(output_i[0].device) < cur_len.unsqueeze(1) cls = [torch.zeros_like(x[:, 0]) for x in output_i] avg = [torch.sum(x * length_mask.unsqueeze(-1), dim=1) / (cur_len.unsqueeze(1) + 1e-6) for x in output_i] return cls, avg def FrameASTModel(patch_h=64, patch_w=4, atst_dropout=0.1, **kwargs): return FrameAST( patch_h=patch_h, patch_w=patch_w, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop_path_rate=atst_dropout, drop_rate=atst_dropout, **kwargs)