import torch from models.beats.BEATs import BEATsConfig, BEATs from models.transformer_wrapper import BaseModelWrapper class BEATsWrapper(BaseModelWrapper): def __init__(self): super().__init__() cfg = BEATsConfig() self.beats = BEATs(cfg) def mel_forward(self, x): with torch.autocast(device_type="cuda", enabled=False): mel = self.beats.preprocess(x) mel = mel.unsqueeze(1).transpose(2, 3) return mel def forward(self, x): x = x.transpose(2, 3) features = self.beats.extract_features(x, do_preprocess=False)[0] return features def separate_params(self): pt_params = [[], [], [], [], [], [], [], [], [], [], [], []] for k, p in self.named_parameters(): if ".layers.0." in k: pt_params[0].append(p) elif ".layers.1." in k: pt_params[1].append(p) elif ".layers.2." in k: pt_params[2].append(p) elif ".layers.3." in k: pt_params[3].append(p) elif ".layers.4." in k: pt_params[4].append(p) elif ".layers.5." in k: pt_params[5].append(p) elif ".layers.6." in k: pt_params[6].append(p) elif ".layers.7." in k: pt_params[7].append(p) elif ".layers.8." in k: pt_params[8].append(p) elif ".layers.9." in k: pt_params[9].append(p) elif ".layers.10." in k: pt_params[10].append(p) elif ".layers.11." in k: pt_params[11].append(p) elif (".post_extract_proj." in k or ".patch_embedding." in k or '.pos_conv.' in k or 'beats.layer_norm.' in k or "beats.encoder.layer_norm." in k): pt_params[0].append(p) else: raise ValueError(f"Check separate params for BEATs! Unknown key: {k}") return list(reversed(pt_params))