Spaces:
Running
Running
File size: 6,127 Bytes
a9b3658 5dd0a3e bb4506e a9b3658 5dd0a3e 6b39384 e0d04f2 6b39384 5dd0a3e 1b2575b 5dd0a3e 1b2575b 5dd0a3e a9b3658 0c3285b a9b3658 27cf744 a9b3658 27cf744 a9b3658 27cf744 a9b3658 27cf744 e0d04f2 27cf744 5dd0a3e a9b3658 5dd0a3e a9b3658 5dd0a3e bb4506e a9b3658 27cf744 a9b3658 5dd0a3e a9b3658 5dd0a3e 27cf744 bb4506e e0d04f2 a9b3658 27cf744 e0d04f2 bb4506e 27cf744 5dd0a3e bb4506e 5dd0a3e 27cf744 5dd0a3e 27cf744 5dd0a3e 27cf744 5dd0a3e 27cf744 5dd0a3e 27cf744 5dd0a3e 27cf744 5dd0a3e 27cf744 5dd0a3e 27cf744 5dd0a3e 27cf744 5dd0a3e 27cf744 5042316 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import cv2
import shutil
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
from flask import Flask, request, jsonify, render_template, send_from_directory
import warnings
warnings.filterwarnings("ignore")
app = Flask(__name__)
# 一時ファイル保存用ディレクトリ
UPLOAD_FOLDER = 'uploads'
RESULT_FOLDER = 'results'
EXAMPLES_FOLDER = 'examples'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULT_FOLDER, exist_ok=True)
os.makedirs(EXAMPLES_FOLDER, exist_ok=True)
# モデル関連のインポートと初期化
def initialize_model():
# Clean up previous installations
if os.path.exists("DIS"):
shutil.rmtree("DIS")
if os.path.exists("saved_models"):
shutil.rmtree("saved_models")
# Clone repository and setup model
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")
# Import after setup
from data_loader_cache import normalize, im_reader, im_preprocess
from models import ISNetDIS
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Setup model directories
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
os.system("mv isnet.pth saved_models/")
# Set Parameters
hypar = {
"model_path": "./saved_models",
"restore_model": "isnet.pth",
"interm_sup": False,
"model_digit": "full",
"seed": 0,
"cache_size": [1024, 1024],
"input_size": [1024, 1024],
"crop_size": [1024, 1024],
"model": ISNetDIS()
}
# Build Model
net = build_model(hypar, device)
return net, hypar, device
class GOSNormalize(object):
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self, image):
image = normalize(image, self.mean, self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar, device):
net = hypar["model"]
if hypar["model_digit"] == "half":
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if hypar["restore_model"] != "":
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if hypar["model_digit"] == "full":
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0,:,:,:]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val-mi)/(ma-mi)
if device == 'cuda': torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/examples/<filename>')
def serve_example(filename):
# サンプル画像がなければダウンロード
example_path = os.path.join(EXAMPLES_FOLDER, filename)
if not os.path.exists(example_path):
if filename == 'robot.png':
os.system(f"wget https://raw.githubusercontent.com/xuebinqin/DIS/main/IS-Net/robot.png -O {example_path}")
elif filename == 'ship.png':
os.system(f"wget https://raw.githubusercontent.com/xuebinqin/DIS/main/IS-Net/ship.png -O {example_path}")
return send_from_directory(EXAMPLES_FOLDER, filename)
@app.route('/api/process', methods=['POST'])
def process_image():
if 'image' not in request.files:
return jsonify({"error": "No image provided"}), 400
file = request.files['image']
if file.filename == '':
return jsonify({"error": "No selected file"}), 400
# 毎回モデルを初期化
net, hypar, device = initialize_model()
# ファイルを保存
upload_path = os.path.join(UPLOAD_FOLDER, file.filename)
file.save(upload_path)
try:
# 画像処理
image_tensor, orig_size = load_image(upload_path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
# 結果を保存
original_filename = os.path.splitext(file.filename)[0]
result_rgba_path = os.path.join(RESULT_FOLDER, f"{original_filename}_rgba.png")
result_mask_path = os.path.join(RESULT_FOLDER, f"{original_filename}_mask.png")
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(upload_path).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
im_rgba.save(result_rgba_path)
pil_mask.save(result_mask_path)
# 結果のURLを返す
return jsonify({
"original": f"/{UPLOAD_FOLDER}/{file.filename}",
"rgba": f"/{RESULT_FOLDER}/{original_filename}_rgba.png",
"mask": f"/{RESULT_FOLDER}/{original_filename}_mask.png",
"filename": file.filename
})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route(f'/{UPLOAD_FOLDER}/<filename>')
def serve_upload(filename):
return send_from_directory(UPLOAD_FOLDER, filename)
@app.route(f'/{RESULT_FOLDER}/<filename>')
def serve_result(filename):
return send_from_directory(RESULT_FOLDER, filename)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=True) |