File size: 6,127 Bytes
a9b3658
5dd0a3e
 
bb4506e
a9b3658
 
 
 
 
5dd0a3e
6b39384
e0d04f2
6b39384
5dd0a3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b2575b
5dd0a3e
1b2575b
5dd0a3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9b3658
 
0c3285b
a9b3658
 
 
27cf744
 
a9b3658
 
27cf744
a9b3658
 
 
 
27cf744
a9b3658
27cf744
e0d04f2
27cf744
 
5dd0a3e
 
a9b3658
 
 
 
5dd0a3e
a9b3658
5dd0a3e
 
bb4506e
 
 
a9b3658
 
27cf744
a9b3658
5dd0a3e
 
a9b3658
 
 
5dd0a3e
27cf744
 
 
bb4506e
 
e0d04f2
a9b3658
 
27cf744
e0d04f2
bb4506e
27cf744
 
5dd0a3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb4506e
5dd0a3e
 
 
 
27cf744
5dd0a3e
27cf744
 
 
5dd0a3e
 
 
27cf744
5dd0a3e
 
27cf744
 
 
5dd0a3e
27cf744
 
5dd0a3e
 
 
 
 
27cf744
5dd0a3e
27cf744
 
 
5dd0a3e
 
27cf744
5dd0a3e
 
 
 
 
 
 
27cf744
 
 
5dd0a3e
 
 
 
 
 
 
27cf744
 
5042316
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import cv2
import shutil
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
from flask import Flask, request, jsonify, render_template, send_from_directory
import warnings
warnings.filterwarnings("ignore")

app = Flask(__name__)

# 一時ファイル保存用ディレクトリ
UPLOAD_FOLDER = 'uploads'
RESULT_FOLDER = 'results'
EXAMPLES_FOLDER = 'examples'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULT_FOLDER, exist_ok=True)
os.makedirs(EXAMPLES_FOLDER, exist_ok=True)

# モデル関連のインポートと初期化
def initialize_model():
    # Clean up previous installations
    if os.path.exists("DIS"):
        shutil.rmtree("DIS")
    if os.path.exists("saved_models"):
        shutil.rmtree("saved_models")
    
    # Clone repository and setup model
    os.system("git clone https://github.com/xuebinqin/DIS")
    os.system("mv DIS/IS-Net/* .")
    
    # Import after setup
    from data_loader_cache import normalize, im_reader, im_preprocess 
    from models import ISNetDIS

    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    # Setup model directories
    if not os.path.exists("saved_models"):
        os.mkdir("saved_models")
        os.system("mv isnet.pth saved_models/")
    
    # Set Parameters
    hypar = {
        "model_path": "./saved_models",
        "restore_model": "isnet.pth",
        "interm_sup": False,
        "model_digit": "full",
        "seed": 0,
        "cache_size": [1024, 1024],
        "input_size": [1024, 1024],
        "crop_size": [1024, 1024],
        "model": ISNetDIS()
    }

    # Build Model
    net = build_model(hypar, device)
    return net, hypar, device

class GOSNormalize(object):
    def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
        self.mean = mean
        self.std = std

    def __call__(self, image):
        image = normalize(image, self.mean, self.std)
        return image

transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])

def load_image(im_path, hypar):
    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im, 255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0)

def build_model(hypar, device):
    net = hypar["model"]
    
    if hypar["model_digit"] == "half":
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()

    net.to(device)

    if hypar["restore_model"] != "":
        net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
        net.to(device)
    net.eval()  
    return net

def predict(net, inputs_val, shapes_val, hypar, device):
    net.eval()

    if hypar["model_digit"] == "full":
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)

    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
    ds_val = net(inputs_val_v)[0]
    pred_val = ds_val[0][0,:,:,:]

    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val-mi)/(ma-mi)

    if device == 'cuda': torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/examples/<filename>')
def serve_example(filename):
    # サンプル画像がなければダウンロード
    example_path = os.path.join(EXAMPLES_FOLDER, filename)
    if not os.path.exists(example_path):
        if filename == 'robot.png':
            os.system(f"wget https://raw.githubusercontent.com/xuebinqin/DIS/main/IS-Net/robot.png -O {example_path}")
        elif filename == 'ship.png':
            os.system(f"wget https://raw.githubusercontent.com/xuebinqin/DIS/main/IS-Net/ship.png -O {example_path}")
    
    return send_from_directory(EXAMPLES_FOLDER, filename)

@app.route('/api/process', methods=['POST'])
def process_image():
    if 'image' not in request.files:
        return jsonify({"error": "No image provided"}), 400
    
    file = request.files['image']
    if file.filename == '':
        return jsonify({"error": "No selected file"}), 400
    
    # 毎回モデルを初期化
    net, hypar, device = initialize_model()
    
    # ファイルを保存
    upload_path = os.path.join(UPLOAD_FOLDER, file.filename)
    file.save(upload_path)
    
    try:
        # 画像処理
        image_tensor, orig_size = load_image(upload_path, hypar) 
        mask = predict(net, image_tensor, orig_size, hypar, device)
        
        # 結果を保存
        original_filename = os.path.splitext(file.filename)[0]
        result_rgba_path = os.path.join(RESULT_FOLDER, f"{original_filename}_rgba.png")
        result_mask_path = os.path.join(RESULT_FOLDER, f"{original_filename}_mask.png")
        
        pil_mask = Image.fromarray(mask).convert('L')
        im_rgb = Image.open(upload_path).convert("RGB")
        im_rgba = im_rgb.copy()
        im_rgba.putalpha(pil_mask)
        
        im_rgba.save(result_rgba_path)
        pil_mask.save(result_mask_path)
        
        # 結果のURLを返す
        return jsonify({
            "original": f"/{UPLOAD_FOLDER}/{file.filename}",
            "rgba": f"/{RESULT_FOLDER}/{original_filename}_rgba.png",
            "mask": f"/{RESULT_FOLDER}/{original_filename}_mask.png",
            "filename": file.filename
        })
    except Exception as e:
        return jsonify({"error": str(e)}), 500

@app.route(f'/{UPLOAD_FOLDER}/<filename>')
def serve_upload(filename):
    return send_from_directory(UPLOAD_FOLDER, filename)

@app.route(f'/{RESULT_FOLDER}/<filename>')
def serve_result(filename):
    return send_from_directory(RESULT_FOLDER, filename)

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860, debug=True)