Spaces:
Build error
Build error
// SPDX-License-Identifier: 0BSD | |
/* | |
* LZMA2 decoder | |
* | |
* Authors: Lasse Collin <lasse.collin@tukaani.org> | |
* Igor Pavlov <https://7-zip.org/> | |
*/ | |
/* | |
* Range decoder initialization eats the first five bytes of each LZMA chunk. | |
*/ | |
/* | |
* Minimum number of usable input buffer to safely decode one LZMA symbol. | |
* The worst case is that we decode 22 bits using probabilities and 26 | |
* direct bits. This may decode at maximum of 20 bytes of input. However, | |
* lzma_main() does an extra normalization before returning, thus we | |
* need to put 21 here. | |
*/ | |
/* | |
* Dictionary (history buffer) | |
* | |
* These are always true: | |
* start <= pos <= full <= end | |
* pos <= limit <= end | |
* | |
* In multi-call mode, also these are true: | |
* end == size | |
* size <= size_max | |
* allocated <= size | |
* | |
* Most of these variables are size_t to support single-call mode, | |
* in which the dictionary variables address the actual output | |
* buffer directly. | |
*/ | |
struct dictionary { | |
/* Beginning of the history buffer */ | |
uint8_t *buf; | |
/* Old position in buf (before decoding more data) */ | |
size_t start; | |
/* Position in buf */ | |
size_t pos; | |
/* | |
* How full dictionary is. This is used to detect corrupt input that | |
* would read beyond the beginning of the uncompressed stream. | |
*/ | |
size_t full; | |
/* Write limit; we don't write to buf[limit] or later bytes. */ | |
size_t limit; | |
/* | |
* End of the dictionary buffer. In multi-call mode, this is | |
* the same as the dictionary size. In single-call mode, this | |
* indicates the size of the output buffer. | |
*/ | |
size_t end; | |
/* | |
* Size of the dictionary as specified in Block Header. This is used | |
* together with "full" to detect corrupt input that would make us | |
* read beyond the beginning of the uncompressed stream. | |
*/ | |
uint32_t size; | |
/* | |
* Maximum allowed dictionary size in multi-call mode. | |
* This is ignored in single-call mode. | |
*/ | |
uint32_t size_max; | |
/* | |
* Amount of memory currently allocated for the dictionary. | |
* This is used only with XZ_DYNALLOC. (With XZ_PREALLOC, | |
* size_max is always the same as the allocated size.) | |
*/ | |
uint32_t allocated; | |
/* Operation mode */ | |
enum xz_mode mode; | |
}; | |
/* Range decoder */ | |
struct rc_dec { | |
uint32_t range; | |
uint32_t code; | |
/* | |
* Number of initializing bytes remaining to be read | |
* by rc_read_init(). | |
*/ | |
uint32_t init_bytes_left; | |
/* | |
* Buffer from which we read our input. It can be either | |
* temp.buf or the caller-provided input buffer. | |
*/ | |
const uint8_t *in; | |
size_t in_pos; | |
size_t in_limit; | |
}; | |
/* Probabilities for a length decoder. */ | |
struct lzma_len_dec { | |
/* Probability of match length being at least 10 */ | |
uint16_t choice; | |
/* Probability of match length being at least 18 */ | |
uint16_t choice2; | |
/* Probabilities for match lengths 2-9 */ | |
uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS]; | |
/* Probabilities for match lengths 10-17 */ | |
uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS]; | |
/* Probabilities for match lengths 18-273 */ | |
uint16_t high[LEN_HIGH_SYMBOLS]; | |
}; | |
struct lzma_dec { | |
/* Distances of latest four matches */ | |
uint32_t rep0; | |
uint32_t rep1; | |
uint32_t rep2; | |
uint32_t rep3; | |
/* Types of the most recently seen LZMA symbols */ | |
enum lzma_state state; | |
/* | |
* Length of a match. This is updated so that dict_repeat can | |
* be called again to finish repeating the whole match. | |
*/ | |
uint32_t len; | |
/* | |
* LZMA properties or related bit masks (number of literal | |
* context bits, a mask derived from the number of literal | |
* position bits, and a mask derived from the number | |
* position bits) | |
*/ | |
uint32_t lc; | |
uint32_t literal_pos_mask; /* (1 << lp) - 1 */ | |
uint32_t pos_mask; /* (1 << pb) - 1 */ | |
/* If 1, it's a match. Otherwise it's a single 8-bit literal. */ | |
uint16_t is_match[STATES][POS_STATES_MAX]; | |
/* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */ | |
uint16_t is_rep[STATES]; | |
/* | |
* If 0, distance of a repeated match is rep0. | |
* Otherwise check is_rep1. | |
*/ | |
uint16_t is_rep0[STATES]; | |
/* | |
* If 0, distance of a repeated match is rep1. | |
* Otherwise check is_rep2. | |
*/ | |
uint16_t is_rep1[STATES]; | |
/* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */ | |
uint16_t is_rep2[STATES]; | |
/* | |
* If 1, the repeated match has length of one byte. Otherwise | |
* the length is decoded from rep_len_decoder. | |
*/ | |
uint16_t is_rep0_long[STATES][POS_STATES_MAX]; | |
/* | |
* Probability tree for the highest two bits of the match | |
* distance. There is a separate probability tree for match | |
* lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273]. | |
*/ | |
uint16_t dist_slot[DIST_STATES][DIST_SLOTS]; | |
/* | |
* Probility trees for additional bits for match distance | |
* when the distance is in the range [4, 127]. | |
*/ | |
uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END]; | |
/* | |
* Probability tree for the lowest four bits of a match | |
* distance that is equal to or greater than 128. | |
*/ | |
uint16_t dist_align[ALIGN_SIZE]; | |
/* Length of a normal match */ | |
struct lzma_len_dec match_len_dec; | |
/* Length of a repeated match */ | |
struct lzma_len_dec rep_len_dec; | |
/* Probabilities of literals */ | |
uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE]; | |
}; | |
struct lzma2_dec { | |
/* Position in xz_dec_lzma2_run(). */ | |
enum lzma2_seq { | |
SEQ_CONTROL, | |
SEQ_UNCOMPRESSED_1, | |
SEQ_UNCOMPRESSED_2, | |
SEQ_COMPRESSED_0, | |
SEQ_COMPRESSED_1, | |
SEQ_PROPERTIES, | |
SEQ_LZMA_PREPARE, | |
SEQ_LZMA_RUN, | |
SEQ_COPY | |
} sequence; | |
/* Next position after decoding the compressed size of the chunk. */ | |
enum lzma2_seq next_sequence; | |
/* Uncompressed size of LZMA chunk (2 MiB at maximum) */ | |
uint32_t uncompressed; | |
/* | |
* Compressed size of LZMA chunk or compressed/uncompressed | |
* size of uncompressed chunk (64 KiB at maximum) | |
*/ | |
uint32_t compressed; | |
/* | |
* True if dictionary reset is needed. This is false before | |
* the first chunk (LZMA or uncompressed). | |
*/ | |
bool need_dict_reset; | |
/* | |
* True if new LZMA properties are needed. This is false | |
* before the first LZMA chunk. | |
*/ | |
bool need_props; | |
bool pedantic_microlzma; | |
}; | |
struct xz_dec_lzma2 { | |
/* | |
* The order below is important on x86 to reduce code size and | |
* it shouldn't hurt on other platforms. Everything up to and | |
* including lzma.pos_mask are in the first 128 bytes on x86-32, | |
* which allows using smaller instructions to access those | |
* variables. On x86-64, fewer variables fit into the first 128 | |
* bytes, but this is still the best order without sacrificing | |
* the readability by splitting the structures. | |
*/ | |
struct rc_dec rc; | |
struct dictionary dict; | |
struct lzma2_dec lzma2; | |
struct lzma_dec lzma; | |
/* | |
* Temporary buffer which holds small number of input bytes between | |
* decoder calls. See lzma2_lzma() for details. | |
*/ | |
struct { | |
uint32_t size; | |
uint8_t buf[3 * LZMA_IN_REQUIRED]; | |
} temp; | |
}; | |
/************** | |
* Dictionary * | |
**************/ | |
/* | |
* Reset the dictionary state. When in single-call mode, set up the beginning | |
* of the dictionary to point to the actual output buffer. | |
*/ | |
static void dict_reset(struct dictionary *dict, struct xz_buf *b) | |
{ | |
if (DEC_IS_SINGLE(dict->mode)) { | |
dict->buf = b->out + b->out_pos; | |
dict->end = b->out_size - b->out_pos; | |
} | |
dict->start = 0; | |
dict->pos = 0; | |
dict->limit = 0; | |
dict->full = 0; | |
} | |
/* Set dictionary write limit */ | |
static void dict_limit(struct dictionary *dict, size_t out_max) | |
{ | |
if (dict->end - dict->pos <= out_max) | |
dict->limit = dict->end; | |
else | |
dict->limit = dict->pos + out_max; | |
} | |
/* Return true if at least one byte can be written into the dictionary. */ | |
static inline bool dict_has_space(const struct dictionary *dict) | |
{ | |
return dict->pos < dict->limit; | |
} | |
/* | |
* Get a byte from the dictionary at the given distance. The distance is | |
* assumed to valid, or as a special case, zero when the dictionary is | |
* still empty. This special case is needed for single-call decoding to | |
* avoid writing a '\0' to the end of the destination buffer. | |
*/ | |
static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist) | |
{ | |
size_t offset = dict->pos - dist - 1; | |
if (dist >= dict->pos) | |
offset += dict->end; | |
return dict->full > 0 ? dict->buf[offset] : 0; | |
} | |
/* | |
* Put one byte into the dictionary. It is assumed that there is space for it. | |
*/ | |
static inline void dict_put(struct dictionary *dict, uint8_t byte) | |
{ | |
dict->buf[dict->pos++] = byte; | |
if (dict->full < dict->pos) | |
dict->full = dict->pos; | |
} | |
/* | |
* Repeat given number of bytes from the given distance. If the distance is | |
* invalid, false is returned. On success, true is returned and *len is | |
* updated to indicate how many bytes were left to be repeated. | |
*/ | |
static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist) | |
{ | |
size_t back; | |
uint32_t left; | |
if (dist >= dict->full || dist >= dict->size) | |
return false; | |
left = min_t(size_t, dict->limit - dict->pos, *len); | |
*len -= left; | |
back = dict->pos - dist - 1; | |
if (dist >= dict->pos) | |
back += dict->end; | |
do { | |
dict->buf[dict->pos++] = dict->buf[back++]; | |
if (back == dict->end) | |
back = 0; | |
} while (--left > 0); | |
if (dict->full < dict->pos) | |
dict->full = dict->pos; | |
return true; | |
} | |
/* Copy uncompressed data as is from input to dictionary and output buffers. */ | |
static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b, | |
uint32_t *left) | |
{ | |
size_t copy_size; | |
while (*left > 0 && b->in_pos < b->in_size | |
&& b->out_pos < b->out_size) { | |
copy_size = min(b->in_size - b->in_pos, | |
b->out_size - b->out_pos); | |
if (copy_size > dict->end - dict->pos) | |
copy_size = dict->end - dict->pos; | |
if (copy_size > *left) | |
copy_size = *left; | |
*left -= copy_size; | |
/* | |
* If doing in-place decompression in single-call mode and the | |
* uncompressed size of the file is larger than the caller | |
* thought (i.e. it is invalid input!), the buffers below may | |
* overlap and cause undefined behavior with memcpy(). | |
* With valid inputs memcpy() would be fine here. | |
*/ | |
memmove(dict->buf + dict->pos, b->in + b->in_pos, copy_size); | |
dict->pos += copy_size; | |
if (dict->full < dict->pos) | |
dict->full = dict->pos; | |
if (DEC_IS_MULTI(dict->mode)) { | |
if (dict->pos == dict->end) | |
dict->pos = 0; | |
/* | |
* Like above but for multi-call mode: use memmove() | |
* to avoid undefined behavior with invalid input. | |
*/ | |
memmove(b->out + b->out_pos, b->in + b->in_pos, | |
copy_size); | |
} | |
dict->start = dict->pos; | |
b->out_pos += copy_size; | |
b->in_pos += copy_size; | |
} | |
} | |
/* | |
* Flush pending data from dictionary to b->out. It is assumed that there is | |
* enough space in b->out. This is guaranteed because caller uses dict_limit() | |
* before decoding data into the dictionary. | |
*/ | |
static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b) | |
{ | |
size_t copy_size = dict->pos - dict->start; | |
if (DEC_IS_MULTI(dict->mode)) { | |
if (dict->pos == dict->end) | |
dict->pos = 0; | |
/* | |
* These buffers cannot overlap even if doing in-place | |
* decompression because in multi-call mode dict->buf | |
* has been allocated by us in this file; it's not | |
* provided by the caller like in single-call mode. | |
* | |
* With MicroLZMA, b->out can be NULL to skip bytes that | |
* the caller doesn't need. This cannot be done with XZ | |
* because it would break BCJ filters. | |
*/ | |
if (!DICT_FLUSH_SUPPORTS_SKIPPING || b->out != NULL) | |
memcpy(b->out + b->out_pos, dict->buf + dict->start, | |
copy_size); | |
} | |
dict->start = dict->pos; | |
b->out_pos += copy_size; | |
return copy_size; | |
} | |
/***************** | |
* Range decoder * | |
*****************/ | |
/* Reset the range decoder. */ | |
static void rc_reset(struct rc_dec *rc) | |
{ | |
rc->range = (uint32_t)-1; | |
rc->code = 0; | |
rc->init_bytes_left = RC_INIT_BYTES; | |
} | |
/* | |
* Read the first five initial bytes into rc->code if they haven't been | |
* read already. (Yes, the first byte gets completely ignored.) | |
*/ | |
static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b) | |
{ | |
while (rc->init_bytes_left > 0) { | |
if (b->in_pos == b->in_size) | |
return false; | |
rc->code = (rc->code << 8) + b->in[b->in_pos++]; | |
--rc->init_bytes_left; | |
} | |
return true; | |
} | |
/* Return true if there may not be enough input for the next decoding loop. */ | |
static inline bool rc_limit_exceeded(const struct rc_dec *rc) | |
{ | |
return rc->in_pos > rc->in_limit; | |
} | |
/* | |
* Return true if it is possible (from point of view of range decoder) that | |
* we have reached the end of the LZMA chunk. | |
*/ | |
static inline bool rc_is_finished(const struct rc_dec *rc) | |
{ | |
return rc->code == 0; | |
} | |
/* Read the next input byte if needed. */ | |
static __always_inline void rc_normalize(struct rc_dec *rc) | |
{ | |
if (rc->range < RC_TOP_VALUE) { | |
rc->range <<= RC_SHIFT_BITS; | |
rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++]; | |
} | |
} | |
/* | |
* Decode one bit. In some versions, this function has been split in three | |
* functions so that the compiler is supposed to be able to more easily avoid | |
* an extra branch. In this particular version of the LZMA decoder, this | |
* doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3 | |
* on x86). Using a non-split version results in nicer looking code too. | |
* | |
* NOTE: This must return an int. Do not make it return a bool or the speed | |
* of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care, | |
* and it generates 10-20 % faster code than GCC 3.x from this file anyway.) | |
*/ | |
static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob) | |
{ | |
uint32_t bound; | |
int bit; | |
rc_normalize(rc); | |
bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob; | |
if (rc->code < bound) { | |
rc->range = bound; | |
*prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS; | |
bit = 0; | |
} else { | |
rc->range -= bound; | |
rc->code -= bound; | |
*prob -= *prob >> RC_MOVE_BITS; | |
bit = 1; | |
} | |
return bit; | |
} | |
/* Decode a bittree starting from the most significant bit. */ | |
static __always_inline uint32_t rc_bittree(struct rc_dec *rc, | |
uint16_t *probs, uint32_t limit) | |
{ | |
uint32_t symbol = 1; | |
do { | |
if (rc_bit(rc, &probs[symbol])) | |
symbol = (symbol << 1) + 1; | |
else | |
symbol <<= 1; | |
} while (symbol < limit); | |
return symbol; | |
} | |
/* Decode a bittree starting from the least significant bit. */ | |
static __always_inline void rc_bittree_reverse(struct rc_dec *rc, | |
uint16_t *probs, | |
uint32_t *dest, uint32_t limit) | |
{ | |
uint32_t symbol = 1; | |
uint32_t i = 0; | |
do { | |
if (rc_bit(rc, &probs[symbol])) { | |
symbol = (symbol << 1) + 1; | |
*dest += 1 << i; | |
} else { | |
symbol <<= 1; | |
} | |
} while (++i < limit); | |
} | |
/* Decode direct bits (fixed fifty-fifty probability) */ | |
static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit) | |
{ | |
uint32_t mask; | |
do { | |
rc_normalize(rc); | |
rc->range >>= 1; | |
rc->code -= rc->range; | |
mask = (uint32_t)0 - (rc->code >> 31); | |
rc->code += rc->range & mask; | |
*dest = (*dest << 1) + (mask + 1); | |
} while (--limit > 0); | |
} | |
/******** | |
* LZMA * | |
********/ | |
/* Get pointer to literal coder probability array. */ | |
static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s) | |
{ | |
uint32_t prev_byte = dict_get(&s->dict, 0); | |
uint32_t low = prev_byte >> (8 - s->lzma.lc); | |
uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc; | |
return s->lzma.literal[low + high]; | |
} | |
/* Decode a literal (one 8-bit byte) */ | |
static void lzma_literal(struct xz_dec_lzma2 *s) | |
{ | |
uint16_t *probs; | |
uint32_t symbol; | |
uint32_t match_byte; | |
uint32_t match_bit; | |
uint32_t offset; | |
uint32_t i; | |
probs = lzma_literal_probs(s); | |
if (lzma_state_is_literal(s->lzma.state)) { | |
symbol = rc_bittree(&s->rc, probs, 0x100); | |
} else { | |
symbol = 1; | |
match_byte = dict_get(&s->dict, s->lzma.rep0) << 1; | |
offset = 0x100; | |
do { | |
match_bit = match_byte & offset; | |
match_byte <<= 1; | |
i = offset + match_bit + symbol; | |
if (rc_bit(&s->rc, &probs[i])) { | |
symbol = (symbol << 1) + 1; | |
offset &= match_bit; | |
} else { | |
symbol <<= 1; | |
offset &= ~match_bit; | |
} | |
} while (symbol < 0x100); | |
} | |
dict_put(&s->dict, (uint8_t)symbol); | |
lzma_state_literal(&s->lzma.state); | |
} | |
/* Decode the length of the match into s->lzma.len. */ | |
static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l, | |
uint32_t pos_state) | |
{ | |
uint16_t *probs; | |
uint32_t limit; | |
if (!rc_bit(&s->rc, &l->choice)) { | |
probs = l->low[pos_state]; | |
limit = LEN_LOW_SYMBOLS; | |
s->lzma.len = MATCH_LEN_MIN; | |
} else { | |
if (!rc_bit(&s->rc, &l->choice2)) { | |
probs = l->mid[pos_state]; | |
limit = LEN_MID_SYMBOLS; | |
s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; | |
} else { | |
probs = l->high; | |
limit = LEN_HIGH_SYMBOLS; | |
s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS | |
+ LEN_MID_SYMBOLS; | |
} | |
} | |
s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit; | |
} | |
/* Decode a match. The distance will be stored in s->lzma.rep0. */ | |
static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state) | |
{ | |
uint16_t *probs; | |
uint32_t dist_slot; | |
uint32_t limit; | |
lzma_state_match(&s->lzma.state); | |
s->lzma.rep3 = s->lzma.rep2; | |
s->lzma.rep2 = s->lzma.rep1; | |
s->lzma.rep1 = s->lzma.rep0; | |
lzma_len(s, &s->lzma.match_len_dec, pos_state); | |
probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)]; | |
dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS; | |
if (dist_slot < DIST_MODEL_START) { | |
s->lzma.rep0 = dist_slot; | |
} else { | |
limit = (dist_slot >> 1) - 1; | |
s->lzma.rep0 = 2 + (dist_slot & 1); | |
if (dist_slot < DIST_MODEL_END) { | |
s->lzma.rep0 <<= limit; | |
probs = s->lzma.dist_special + s->lzma.rep0 | |
- dist_slot - 1; | |
rc_bittree_reverse(&s->rc, probs, | |
&s->lzma.rep0, limit); | |
} else { | |
rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS); | |
s->lzma.rep0 <<= ALIGN_BITS; | |
rc_bittree_reverse(&s->rc, s->lzma.dist_align, | |
&s->lzma.rep0, ALIGN_BITS); | |
} | |
} | |
} | |
/* | |
* Decode a repeated match. The distance is one of the four most recently | |
* seen matches. The distance will be stored in s->lzma.rep0. | |
*/ | |
static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state) | |
{ | |
uint32_t tmp; | |
if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) { | |
if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[ | |
s->lzma.state][pos_state])) { | |
lzma_state_short_rep(&s->lzma.state); | |
s->lzma.len = 1; | |
return; | |
} | |
} else { | |
if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) { | |
tmp = s->lzma.rep1; | |
} else { | |
if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) { | |
tmp = s->lzma.rep2; | |
} else { | |
tmp = s->lzma.rep3; | |
s->lzma.rep3 = s->lzma.rep2; | |
} | |
s->lzma.rep2 = s->lzma.rep1; | |
} | |
s->lzma.rep1 = s->lzma.rep0; | |
s->lzma.rep0 = tmp; | |
} | |
lzma_state_long_rep(&s->lzma.state); | |
lzma_len(s, &s->lzma.rep_len_dec, pos_state); | |
} | |
/* LZMA decoder core */ | |
static bool lzma_main(struct xz_dec_lzma2 *s) | |
{ | |
uint32_t pos_state; | |
/* | |
* If the dictionary was reached during the previous call, try to | |
* finish the possibly pending repeat in the dictionary. | |
*/ | |
if (dict_has_space(&s->dict) && s->lzma.len > 0) | |
dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0); | |
/* | |
* Decode more LZMA symbols. One iteration may consume up to | |
* LZMA_IN_REQUIRED - 1 bytes. | |
*/ | |
while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) { | |
pos_state = s->dict.pos & s->lzma.pos_mask; | |
if (!rc_bit(&s->rc, &s->lzma.is_match[ | |
s->lzma.state][pos_state])) { | |
lzma_literal(s); | |
} else { | |
if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state])) | |
lzma_rep_match(s, pos_state); | |
else | |
lzma_match(s, pos_state); | |
if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0)) | |
return false; | |
} | |
} | |
/* | |
* Having the range decoder always normalized when we are outside | |
* this function makes it easier to correctly handle end of the chunk. | |
*/ | |
rc_normalize(&s->rc); | |
return true; | |
} | |
/* | |
* Reset the LZMA decoder and range decoder state. Dictionary is not reset | |
* here, because LZMA state may be reset without resetting the dictionary. | |
*/ | |
static void lzma_reset(struct xz_dec_lzma2 *s) | |
{ | |
uint16_t *probs; | |
size_t i; | |
s->lzma.state = STATE_LIT_LIT; | |
s->lzma.rep0 = 0; | |
s->lzma.rep1 = 0; | |
s->lzma.rep2 = 0; | |
s->lzma.rep3 = 0; | |
s->lzma.len = 0; | |
/* | |
* All probabilities are initialized to the same value. This hack | |
* makes the code smaller by avoiding a separate loop for each | |
* probability array. | |
* | |
* This could be optimized so that only that part of literal | |
* probabilities that are actually required. In the common case | |
* we would write 12 KiB less. | |
*/ | |
probs = s->lzma.is_match[0]; | |
for (i = 0; i < PROBS_TOTAL; ++i) | |
probs[i] = RC_BIT_MODEL_TOTAL / 2; | |
rc_reset(&s->rc); | |
} | |
/* | |
* Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks | |
* from the decoded lp and pb values. On success, the LZMA decoder state is | |
* reset and true is returned. | |
*/ | |
static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props) | |
{ | |
if (props > (4 * 5 + 4) * 9 + 8) | |
return false; | |
s->lzma.pos_mask = 0; | |
while (props >= 9 * 5) { | |
props -= 9 * 5; | |
++s->lzma.pos_mask; | |
} | |
s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1; | |
s->lzma.literal_pos_mask = 0; | |
while (props >= 9) { | |
props -= 9; | |
++s->lzma.literal_pos_mask; | |
} | |
s->lzma.lc = props; | |
if (s->lzma.lc + s->lzma.literal_pos_mask > 4) | |
return false; | |
s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1; | |
lzma_reset(s); | |
return true; | |
} | |
/********* | |
* LZMA2 * | |
*********/ | |
/* | |
* The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't | |
* been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This | |
* wrapper function takes care of making the LZMA decoder's assumption safe. | |
* | |
* As long as there is plenty of input left to be decoded in the current LZMA | |
* chunk, we decode directly from the caller-supplied input buffer until | |
* there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into | |
* s->temp.buf, which (hopefully) gets filled on the next call to this | |
* function. We decode a few bytes from the temporary buffer so that we can | |
* continue decoding from the caller-supplied input buffer again. | |
*/ | |
static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b) | |
{ | |
size_t in_avail; | |
uint32_t tmp; | |
in_avail = b->in_size - b->in_pos; | |
if (s->temp.size > 0 || s->lzma2.compressed == 0) { | |
tmp = 2 * LZMA_IN_REQUIRED - s->temp.size; | |
if (tmp > s->lzma2.compressed - s->temp.size) | |
tmp = s->lzma2.compressed - s->temp.size; | |
if (tmp > in_avail) | |
tmp = in_avail; | |
memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp); | |
if (s->temp.size + tmp == s->lzma2.compressed) { | |
memzero(s->temp.buf + s->temp.size + tmp, | |
sizeof(s->temp.buf) | |
- s->temp.size - tmp); | |
s->rc.in_limit = s->temp.size + tmp; | |
} else if (s->temp.size + tmp < LZMA_IN_REQUIRED) { | |
s->temp.size += tmp; | |
b->in_pos += tmp; | |
return true; | |
} else { | |
s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED; | |
} | |
s->rc.in = s->temp.buf; | |
s->rc.in_pos = 0; | |
if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp) | |
return false; | |
s->lzma2.compressed -= s->rc.in_pos; | |
if (s->rc.in_pos < s->temp.size) { | |
s->temp.size -= s->rc.in_pos; | |
memmove(s->temp.buf, s->temp.buf + s->rc.in_pos, | |
s->temp.size); | |
return true; | |
} | |
b->in_pos += s->rc.in_pos - s->temp.size; | |
s->temp.size = 0; | |
} | |
in_avail = b->in_size - b->in_pos; | |
if (in_avail >= LZMA_IN_REQUIRED) { | |
s->rc.in = b->in; | |
s->rc.in_pos = b->in_pos; | |
if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED) | |
s->rc.in_limit = b->in_pos + s->lzma2.compressed; | |
else | |
s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED; | |
if (!lzma_main(s)) | |
return false; | |
in_avail = s->rc.in_pos - b->in_pos; | |
if (in_avail > s->lzma2.compressed) | |
return false; | |
s->lzma2.compressed -= in_avail; | |
b->in_pos = s->rc.in_pos; | |
} | |
in_avail = b->in_size - b->in_pos; | |
if (in_avail < LZMA_IN_REQUIRED) { | |
if (in_avail > s->lzma2.compressed) | |
in_avail = s->lzma2.compressed; | |
memcpy(s->temp.buf, b->in + b->in_pos, in_avail); | |
s->temp.size = in_avail; | |
b->in_pos += in_avail; | |
} | |
return true; | |
} | |
/* | |
* Take care of the LZMA2 control layer, and forward the job of actual LZMA | |
* decoding or copying of uncompressed chunks to other functions. | |
*/ | |
XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s, | |
struct xz_buf *b) | |
{ | |
uint32_t tmp; | |
while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) { | |
switch (s->lzma2.sequence) { | |
case SEQ_CONTROL: | |
/* | |
* LZMA2 control byte | |
* | |
* Exact values: | |
* 0x00 End marker | |
* 0x01 Dictionary reset followed by | |
* an uncompressed chunk | |
* 0x02 Uncompressed chunk (no dictionary reset) | |
* | |
* Highest three bits (s->control & 0xE0): | |
* 0xE0 Dictionary reset, new properties and state | |
* reset, followed by LZMA compressed chunk | |
* 0xC0 New properties and state reset, followed | |
* by LZMA compressed chunk (no dictionary | |
* reset) | |
* 0xA0 State reset using old properties, | |
* followed by LZMA compressed chunk (no | |
* dictionary reset) | |
* 0x80 LZMA chunk (no dictionary or state reset) | |
* | |
* For LZMA compressed chunks, the lowest five bits | |
* (s->control & 1F) are the highest bits of the | |
* uncompressed size (bits 16-20). | |
* | |
* A new LZMA2 stream must begin with a dictionary | |
* reset. The first LZMA chunk must set new | |
* properties and reset the LZMA state. | |
* | |
* Values that don't match anything described above | |
* are invalid and we return XZ_DATA_ERROR. | |
*/ | |
tmp = b->in[b->in_pos++]; | |
if (tmp == 0x00) | |
return XZ_STREAM_END; | |
if (tmp >= 0xE0 || tmp == 0x01) { | |
s->lzma2.need_props = true; | |
s->lzma2.need_dict_reset = false; | |
dict_reset(&s->dict, b); | |
} else if (s->lzma2.need_dict_reset) { | |
return XZ_DATA_ERROR; | |
} | |
if (tmp >= 0x80) { | |
s->lzma2.uncompressed = (tmp & 0x1F) << 16; | |
s->lzma2.sequence = SEQ_UNCOMPRESSED_1; | |
if (tmp >= 0xC0) { | |
/* | |
* When there are new properties, | |
* state reset is done at | |
* SEQ_PROPERTIES. | |
*/ | |
s->lzma2.need_props = false; | |
s->lzma2.next_sequence | |
= SEQ_PROPERTIES; | |
} else if (s->lzma2.need_props) { | |
return XZ_DATA_ERROR; | |
} else { | |
s->lzma2.next_sequence | |
= SEQ_LZMA_PREPARE; | |
if (tmp >= 0xA0) | |
lzma_reset(s); | |
} | |
} else { | |
if (tmp > 0x02) | |
return XZ_DATA_ERROR; | |
s->lzma2.sequence = SEQ_COMPRESSED_0; | |
s->lzma2.next_sequence = SEQ_COPY; | |
} | |
break; | |
case SEQ_UNCOMPRESSED_1: | |
s->lzma2.uncompressed | |
+= (uint32_t)b->in[b->in_pos++] << 8; | |
s->lzma2.sequence = SEQ_UNCOMPRESSED_2; | |
break; | |
case SEQ_UNCOMPRESSED_2: | |
s->lzma2.uncompressed | |
+= (uint32_t)b->in[b->in_pos++] + 1; | |
s->lzma2.sequence = SEQ_COMPRESSED_0; | |
break; | |
case SEQ_COMPRESSED_0: | |
s->lzma2.compressed | |
= (uint32_t)b->in[b->in_pos++] << 8; | |
s->lzma2.sequence = SEQ_COMPRESSED_1; | |
break; | |
case SEQ_COMPRESSED_1: | |
s->lzma2.compressed | |
+= (uint32_t)b->in[b->in_pos++] + 1; | |
s->lzma2.sequence = s->lzma2.next_sequence; | |
break; | |
case SEQ_PROPERTIES: | |
if (!lzma_props(s, b->in[b->in_pos++])) | |
return XZ_DATA_ERROR; | |
s->lzma2.sequence = SEQ_LZMA_PREPARE; | |
fallthrough; | |
case SEQ_LZMA_PREPARE: | |
if (s->lzma2.compressed < RC_INIT_BYTES) | |
return XZ_DATA_ERROR; | |
if (!rc_read_init(&s->rc, b)) | |
return XZ_OK; | |
s->lzma2.compressed -= RC_INIT_BYTES; | |
s->lzma2.sequence = SEQ_LZMA_RUN; | |
fallthrough; | |
case SEQ_LZMA_RUN: | |
/* | |
* Set dictionary limit to indicate how much we want | |
* to be encoded at maximum. Decode new data into the | |
* dictionary. Flush the new data from dictionary to | |
* b->out. Check if we finished decoding this chunk. | |
* In case the dictionary got full but we didn't fill | |
* the output buffer yet, we may run this loop | |
* multiple times without changing s->lzma2.sequence. | |
*/ | |
dict_limit(&s->dict, min_t(size_t, | |
b->out_size - b->out_pos, | |
s->lzma2.uncompressed)); | |
if (!lzma2_lzma(s, b)) | |
return XZ_DATA_ERROR; | |
s->lzma2.uncompressed -= dict_flush(&s->dict, b); | |
if (s->lzma2.uncompressed == 0) { | |
if (s->lzma2.compressed > 0 || s->lzma.len > 0 | |
|| !rc_is_finished(&s->rc)) | |
return XZ_DATA_ERROR; | |
rc_reset(&s->rc); | |
s->lzma2.sequence = SEQ_CONTROL; | |
} else if (b->out_pos == b->out_size | |
|| (b->in_pos == b->in_size | |
&& s->temp.size | |
< s->lzma2.compressed)) { | |
return XZ_OK; | |
} | |
break; | |
case SEQ_COPY: | |
dict_uncompressed(&s->dict, b, &s->lzma2.compressed); | |
if (s->lzma2.compressed > 0) | |
return XZ_OK; | |
s->lzma2.sequence = SEQ_CONTROL; | |
break; | |
} | |
} | |
return XZ_OK; | |
} | |
XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode, | |
uint32_t dict_max) | |
{ | |
struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL); | |
if (s == NULL) | |
return NULL; | |
s->dict.mode = mode; | |
s->dict.size_max = dict_max; | |
if (DEC_IS_PREALLOC(mode)) { | |
s->dict.buf = vmalloc(dict_max); | |
if (s->dict.buf == NULL) { | |
kfree(s); | |
return NULL; | |
} | |
} else if (DEC_IS_DYNALLOC(mode)) { | |
s->dict.buf = NULL; | |
s->dict.allocated = 0; | |
} | |
return s; | |
} | |
XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props) | |
{ | |
/* This limits dictionary size to 3 GiB to keep parsing simpler. */ | |
if (props > 39) | |
return XZ_OPTIONS_ERROR; | |
s->dict.size = 2 + (props & 1); | |
s->dict.size <<= (props >> 1) + 11; | |
if (DEC_IS_MULTI(s->dict.mode)) { | |
if (s->dict.size > s->dict.size_max) | |
return XZ_MEMLIMIT_ERROR; | |
s->dict.end = s->dict.size; | |
if (DEC_IS_DYNALLOC(s->dict.mode)) { | |
if (s->dict.allocated < s->dict.size) { | |
s->dict.allocated = s->dict.size; | |
vfree(s->dict.buf); | |
s->dict.buf = vmalloc(s->dict.size); | |
if (s->dict.buf == NULL) { | |
s->dict.allocated = 0; | |
return XZ_MEM_ERROR; | |
} | |
} | |
} | |
} | |
s->lzma2.sequence = SEQ_CONTROL; | |
s->lzma2.need_dict_reset = true; | |
s->temp.size = 0; | |
return XZ_OK; | |
} | |
XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s) | |
{ | |
if (DEC_IS_MULTI(s->dict.mode)) | |
vfree(s->dict.buf); | |
kfree(s); | |
} | |
/* This is a wrapper struct to have a nice struct name in the public API. */ | |
struct xz_dec_microlzma { | |
struct xz_dec_lzma2 s; | |
}; | |
enum xz_ret xz_dec_microlzma_run(struct xz_dec_microlzma *s_ptr, | |
struct xz_buf *b) | |
{ | |
struct xz_dec_lzma2 *s = &s_ptr->s; | |
/* | |
* sequence is SEQ_PROPERTIES before the first input byte, | |
* SEQ_LZMA_PREPARE until a total of five bytes have been read, | |
* and SEQ_LZMA_RUN for the rest of the input stream. | |
*/ | |
if (s->lzma2.sequence != SEQ_LZMA_RUN) { | |
if (s->lzma2.sequence == SEQ_PROPERTIES) { | |
/* One byte is needed for the props. */ | |
if (b->in_pos >= b->in_size) | |
return XZ_OK; | |
/* | |
* Don't increment b->in_pos here. The same byte is | |
* also passed to rc_read_init() which will ignore it. | |
*/ | |
if (!lzma_props(s, ~b->in[b->in_pos])) | |
return XZ_DATA_ERROR; | |
s->lzma2.sequence = SEQ_LZMA_PREPARE; | |
} | |
/* | |
* xz_dec_microlzma_reset() doesn't validate the compressed | |
* size so we do it here. We have to limit the maximum size | |
* to avoid integer overflows in lzma2_lzma(). 3 GiB is a nice | |
* round number and much more than users of this code should | |
* ever need. | |
*/ | |
if (s->lzma2.compressed < RC_INIT_BYTES | |
|| s->lzma2.compressed > (3U << 30)) | |
return XZ_DATA_ERROR; | |
if (!rc_read_init(&s->rc, b)) | |
return XZ_OK; | |
s->lzma2.compressed -= RC_INIT_BYTES; | |
s->lzma2.sequence = SEQ_LZMA_RUN; | |
dict_reset(&s->dict, b); | |
} | |
/* This is to allow increasing b->out_size between calls. */ | |
if (DEC_IS_SINGLE(s->dict.mode)) | |
s->dict.end = b->out_size - b->out_pos; | |
while (true) { | |
dict_limit(&s->dict, min_t(size_t, b->out_size - b->out_pos, | |
s->lzma2.uncompressed)); | |
if (!lzma2_lzma(s, b)) | |
return XZ_DATA_ERROR; | |
s->lzma2.uncompressed -= dict_flush(&s->dict, b); | |
if (s->lzma2.uncompressed == 0) { | |
if (s->lzma2.pedantic_microlzma) { | |
if (s->lzma2.compressed > 0 || s->lzma.len > 0 | |
|| !rc_is_finished(&s->rc)) | |
return XZ_DATA_ERROR; | |
} | |
return XZ_STREAM_END; | |
} | |
if (b->out_pos == b->out_size) | |
return XZ_OK; | |
if (b->in_pos == b->in_size | |
&& s->temp.size < s->lzma2.compressed) | |
return XZ_OK; | |
} | |
} | |
struct xz_dec_microlzma *xz_dec_microlzma_alloc(enum xz_mode mode, | |
uint32_t dict_size) | |
{ | |
struct xz_dec_microlzma *s; | |
/* Restrict dict_size to the same range as in the LZMA2 code. */ | |
if (dict_size < 4096 || dict_size > (3U << 30)) | |
return NULL; | |
s = kmalloc(sizeof(*s), GFP_KERNEL); | |
if (s == NULL) | |
return NULL; | |
s->s.dict.mode = mode; | |
s->s.dict.size = dict_size; | |
if (DEC_IS_MULTI(mode)) { | |
s->s.dict.end = dict_size; | |
s->s.dict.buf = vmalloc(dict_size); | |
if (s->s.dict.buf == NULL) { | |
kfree(s); | |
return NULL; | |
} | |
} | |
return s; | |
} | |
void xz_dec_microlzma_reset(struct xz_dec_microlzma *s, uint32_t comp_size, | |
uint32_t uncomp_size, int uncomp_size_is_exact) | |
{ | |
/* | |
* comp_size is validated in xz_dec_microlzma_run(). | |
* uncomp_size can safely be anything. | |
*/ | |
s->s.lzma2.compressed = comp_size; | |
s->s.lzma2.uncompressed = uncomp_size; | |
s->s.lzma2.pedantic_microlzma = uncomp_size_is_exact; | |
s->s.lzma2.sequence = SEQ_PROPERTIES; | |
s->s.temp.size = 0; | |
} | |
void xz_dec_microlzma_end(struct xz_dec_microlzma *s) | |
{ | |
if (DEC_IS_MULTI(s->s.dict.mode)) | |
vfree(s->s.dict.buf); | |
kfree(s); | |
} | |