from huggingface_hub import hf_hub_url, hf_hub_download import gradio as gr import numpy as np import requests import torch from torchvision import transforms from torch.autograd import Variable from PIL import Image import warnings warnings.filterwarnings('ignore') # モデルのダウンロード path_to_model = hf_hub_download( repo_id="opetrova/face-frontalization", filename="generator_v0.pt" ) # network.py をカレントディレクトリにダウンロード network_url = hf_hub_url(repo_id="opetrova/face-frontalization", filename="network.py") r = requests.get(network_url, allow_redirects=True) open('network.py', 'wb').write(r.content) # PyTorch 2.6 以降は weights_only=False を指定しないとエラーになる saved_model = torch.load(path_to_model, map_location=torch.device("cpu"), weights_only=False) def frontalize(image): # 画像を [1, 3, 128, 128] tensor に変換 preprocess = transforms.Compose(( transforms.ToPILImage(), transforms.Resize(size=(128, 128)), transforms.ToTensor(), )) input_tensor = torch.unsqueeze(preprocess(image), 0) # 推論 generated_image = saved_model(Variable(input_tensor.type(torch.FloatTensor))) generated_image = generated_image.detach().squeeze().permute(1, 2, 0).numpy() generated_image = (generated_image + 1.0) / 2.0 # [-1,1] → [0,1] return generated_image # Gradio インターフェース iface = gr.Interface( fn=frontalize, inputs=gr.Image(type="numpy"), outputs="image", title="Face Frontalization", description=( 'PyTorch implementation of a supervised GAN ' '(see blog post)' ), examples=["amos.png", "clarissa.png"], ) iface.launch()