Spaces:
Sleeping
Sleeping
import logging | |
import torch | |
import numpy as np | |
from PIL import Image # For image processing context | |
# import smolagents # Removed unused import | |
logger = logging.getLogger(__name__) | |
class ContextualIntelligenceAgent: | |
def __init__(self): | |
logger.info("Initializing ContextualIntelligenceAgent.") | |
# This would be a more sophisticated model in a real scenario | |
self.context_rules = { | |
"high_resolution": {"min_width": 1920, "min_height": 1080, "tag": "high_resolution_image"}, | |
"low_resolution": {"max_width": 640, "max_height": 480, "tag": "low_resolution_image"}, | |
"grayscale": {"mode": "L", "tag": "grayscale_image"}, | |
"potentially_natural_scene": {"keywords": ["Real"], "threshold": 0.7, "tag": "potentially_natural_scene"}, | |
"potentially_ai_generated": {"keywords": ["AI", "Fake", "Deepfake"], "threshold": 0.7, "tag": "potentially_ai_generated"}, | |
"outdoor": {"model_tags": ["sunny", "sky", "trees"], "tag": "outdoor"}, | |
"indoor": {"model_tags": ["room", "furniture"], "tag": "indoor"}, | |
"sunny": {"rgb_avg_min": [200, 200, 100], "tag": "sunny"}, | |
"dark": {"rgb_avg_max": [50, 50, 50], "tag": "dark"}, | |
} | |
def infer_context_tags(self, image_metadata: dict, model_predictions: dict) -> list[str]: | |
logger.info("Inferring context tags from image metadata and model predictions.") | |
detected_tags = [] | |
# Analyze image metadata | |
width = image_metadata.get("width", 0) | |
height = image_metadata.get("height", 0) | |
mode = image_metadata.get("mode", "RGB") | |
if width >= self.context_rules["high_resolution"]["min_width"] and \ | |
height >= self.context_rules["high_resolution"]["min_height"]: | |
detected_tags.append(self.context_rules["high_resolution"]["tag"]) | |
logger.debug(f"Detected tag: {self.context_rules['high_resolution']['tag']}") | |
if width <= self.context_rules["low_resolution"]["max_width"] and \ | |
height <= self.context_rules["low_resolution"]["max_height"]: | |
detected_tags.append(self.context_rules["low_resolution"]["tag"]) | |
logger.debug(f"Detected tag: {self.context_rules['low_resolution']['tag']}") | |
if mode == self.context_rules["grayscale"]["mode"]: | |
detected_tags.append(self.context_rules["grayscale"]["tag"]) | |
logger.debug(f"Detected tag: {self.context_rules['grayscale']['tag']}") | |
# Analyze model predictions for general context | |
for model_id, prediction in model_predictions.items(): | |
label = prediction.get("Label") | |
ai_score = prediction.get("AI Score", 0.0) | |
real_score = prediction.get("Real Score", 0.0) | |
if label and "potentially_natural_scene" not in detected_tags: | |
for keyword in self.context_rules["potentially_natural_scene"]["keywords"]: | |
if keyword in label and real_score >= self.context_rules["potentially_natural_scene"]["threshold"]: | |
detected_tags.append(self.context_rules["potentially_natural_scene"]["tag"]) | |
logger.debug(f"Detected tag: {self.context_rules['potentially_natural_scene']['tag']}") | |
break # Only add once | |
if label and "potentially_ai_generated" not in detected_tags: | |
for keyword in self.context_rules["potentially_ai_generated"]["keywords"]: | |
if keyword in label and ai_score >= self.context_rules["potentially_ai_generated"]["threshold"]: | |
detected_tags.append(self.context_rules["potentially_ai_generated"]["tag"]) | |
logger.debug(f"Detected tag: {self.context_rules['potentially_ai_generated']['tag']}") | |
break # Only add once | |
# Simulate simple scene detection based on general consensus if available | |
# This is a very basic simulation; a real system would use a separate scene classification model | |
if "potentially_natural_scene" in detected_tags and "potentially_ai_generated" not in detected_tags: | |
# Simulate outdoor/sunny detection based on presence of a real image tag | |
# In a real scenario, this would involve analyzing image features | |
if real_score > 0.8: # Placeholder for actual image feature analysis | |
detected_tags.append(self.context_rules["outdoor"]["tag"]) | |
detected_tags.append(self.context_rules["sunny"]["tag"]) | |
logger.debug(f"Simulated tags: {self.context_rules['outdoor']['tag']},{self.context_rules['sunny']['tag']}") | |
logger.info(f"Inferred context tags: {detected_tags}") | |
return detected_tags | |
class ForensicAnomalyDetectionAgent: | |
def __init__(self): | |
logger.info("Initializing ForensicAnomalyDetectionAgent.") | |
self.anomaly_thresholds = { | |
"ELA": {"min_anomalies": 3, "max_error_std": 20}, # Example thresholds | |
"gradient": {"min_sharp_edges": 500}, | |
"minmax": {"min_local_deviation": 0.1} | |
} | |
def analyze_forensic_outputs(self, forensic_output_descriptions: list[str]) -> dict: | |
logger.info("Analyzing forensic outputs for anomalies.") | |
anomalies_detected = [] | |
summary_message = "No significant anomalies detected." | |
# Example: Check for ELA anomalies (simplified) | |
ela_anomalies = [desc for desc in forensic_output_descriptions if "ELA analysis" in desc and "enhanced contrast" in desc] | |
if len(ela_anomalies) > self.anomaly_thresholds["ELA"]["min_anomalies"]: | |
anomalies_detected.append("Multiple ELA passes indicate potential inconsistencies.") | |
logger.warning("Detected multiple ELA passes indicating potential inconsistencies.") | |
# Example: Check for gradient anomalies (simplified) | |
gradient_anomalies = [desc for desc in forensic_output_descriptions if "Gradient processing" in desc] | |
if len(gradient_anomalies) > 1 and "Highlights edges and transitions" in gradient_anomalies[0]: | |
# This is a placeholder for actual image analysis, e.g., checking standard deviation of gradients | |
anomalies_detected.append("Gradient analysis shows unusual edge patterns.") | |
logger.warning("Detected unusual edge patterns from gradient analysis.") | |
# Example: Check for MinMax anomalies (simplified) | |
minmax_anomalies = [desc for desc in forensic_output_descriptions if "MinMax processing" in desc] | |
if len(minmax_anomalies) > 1 and "Deviations in local pixel values" in minmax_anomalies[0]: | |
# Placeholder for actual analysis of minmax output, e.g., deviation variance | |
anomalies_detected.append("MinMax processing reveals subtle pixel deviations.") | |
logger.warning("Detected subtle pixel deviations from MinMax processing.") | |
if "Bit Plane extractor" in str(forensic_output_descriptions): | |
anomalies_detected.append("Bit Plane extraction performed.") | |
logger.info("Bit Plane extraction performed.") | |
if anomalies_detected: | |
summary_message = "Potential anomalies detected: " + "; ".join(anomalies_detected) | |
logger.warning(f"Forensic anomaly detection summary: {summary_message}") | |
else: | |
logger.info(f"Forensic anomaly detection summary: {summary_message}") | |
return {"anomalies": anomalies_detected, "summary": summary_message} |