File size: 8,494 Bytes
8e098e4
69506c8
89f6f64
ec203e8
 
 
2015526
f9f08c9
 
 
 
 
01cbf56
114f5e2
 
 
 
a13ba48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01cbf56
a13ba48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e098e4
f9f08c9
 
 
 
 
 
 
 
 
 
561236d
 
f9f08c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13ba48
f9f08c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5fa84f
 
 
 
 
f9f08c9
 
d5fa84f
 
 
 
f9f08c9
114f5e2
 
4d23ca2
 
114f5e2
4d23ca2
a13ba48
7526f95
a13ba48
 
4d23ca2
 
 
 
 
f9f08c9
 
 
 
a13ba48
4d23ca2
f57506f
 
 
 
f9f08c9
f0d8b59
11902fd
f9f08c9
 
 
 
417af67
 
 
a13ba48
d5fa84f
 
 
 
f9f08c9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import streamlit as st
import time
from selenium import webdriver
from selenium.webdriver.firefox.options import Options
from selenium.webdriver.firefox.service import Service
from webdriver_manager.firefox import GeckoDriverManager
from datetime import datetime
from bs4 import BeautifulSoup
import pandas as pd
import sqlite3
import matplotlib.pyplot as plt
import requests
import networkx as nx
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

def make_graph():
    G = nx.DiGraph()
    G = nx.Graph()
    G.add_edges_from([('Nimfadora T','Tad T'),
                      ('Andromeda B','Nimfadora T'),
                      ('Andromeda B','Tad T'),
                      ('Andromeda B','Kingus B'),
                      ('Druela R','Kingus B'),
                      ('Andromeda B','Druela R'),
                      ('Narcisa B','Druela R'),
                      ('Narcisa B', 'Kingus B'),
                      ('Lucius M','Narcisa B'),
                      ('Draco M', 'Lucius M'),
                      ('Draco M', 'Narcisa B'),
                      ('Draco M','Astoria G'),
                      ('Scorpius M','Astoria G'),
                      ('Scorpius M', 'Draco M'),
                      ('Rimus L','Nimfadora T'),
                      ('Ted L', 'Rimus L'), 
                      ('Ted L','Nimfadora T')])
    # Отображение графа
    fig, ax = plt.subplots()
    pos = nx.spring_layout(G)
    nx.draw_networkx(G, pos, with_labels=True, node_color='lightblue', node_size=500, edge_color='gray', width=2, alpha=0.7, ax=ax)
    st.pyplot(fig)

def linear_regression():
    df = pd.read_csv('imdb_top_1000.csv')
    df['Runtime'] = df['Runtime'].astype(str)
    df['IMDB_Rating'] = df['IMDB_Rating'].astype(str)
    df['Runtime'] = df['Runtime'].str.replace(r'\D', '')
    df['IMDB_Rating'] = df['IMDB_Rating'].str.replace(r'\D', '').astype(float)
    X = df['Runtime'].values.reshape(-1, 1)
    y = df['IMDB_Rating'].values
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    regressor = LinearRegression()
    regressor.fit(X_train, y_train)
    y_pred = regressor.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    return mse
    print('Mean Squared Error:', mse)

def createDriver(url):
    firefoxOptions = Options()
    firefoxOptions.add_argument("--headless")
    service = Service(GeckoDriverManager().install())
    driver = webdriver.Firefox(
        options=firefoxOptions,
        service=service,
    )
    driver.get(url)
    time.sleep(2)
    main_page = driver.page_source
    soup = BeautifulSoup(main_page, 'html.parser')
    return soup
    
def scrape_weather_data(soup):   
    data = soup.find(class_="chronicle-table").find('tbody').find_all('tr')
    data_value = data[244].find_all('nobr')
    data_month = data[0].find_all('td')
    temp  = []
    temp_month = []
    for i in data_value:
        temp.append(float(i.text))
    for j in range(0, len(data_month)):
        temp_month.append(data_month[j].text)
    temp_month.pop() 
    temp.pop()
    return temp_month, temp

def get_weather_data(station, start_date, end_date):
    if station == "Barnaul":
        station = "Asia/Barnaul"
    elif station == "Moscow":
        station = "Europe/Moscow"
    else:
        station = "Europe/Berlin"
    url = "https://meteostat.p.rapidapi.com/stations/hourly"
    querystring = {"station":"10637","start":start_date,"end":end_date,"tz":station}
    headers = {
        "X-RapidAPI-Key": "9c8eb62f1fmsh82eba345d265b05p1541b2jsna3309cd23406",
    	"X-RapidAPI-Host": "meteostat.p.rapidapi.com"
    }
    response = requests.get(url, headers=headers, params=querystring)
    data = response.json()
    data_mas = []
    for j in data['data']:
        data_date = j['time']
        windy_date = str(j['dwpt'])+" km/h"
        osadki = str(j['prcp']) + " mm"
        temperature =str(j['temp']) + " °C"
        data_mas.append([data_date, temperature, windy_date, osadki])
    return data_mas

def process_data(data):
    df = pd.DataFrame(data)
    df = df.rename(columns={ 0 : 'date_time', 1: 'temperature', 2: 'wind_speed', 3: 'humidity'})
    # Преобразование типов данных и очистка данных
    df["temperature"] = df["temperature"].str.extract(r"(\d+)").astype(float)
    df["humidity"] = df["humidity"].str.extract(r"(\d+)").astype(float)
    df["wind_speed"] = df["wind_speed"].str.extract(r"(\d+)").astype(float)
    df = df.drop_duplicates()
    df = df.fillna(0)
    return df

def analyze_data(df):
    # Вычисление статистических метрик
    mean_temperature = round(df["temperature"].mean(), 2)
    median_temperature =round(df["temperature"].median(),2)
    std_temperature = round(df["temperature"].std(),2)
    results = {
        "mean_temperature": mean_temperature,
        "median_temperature": median_temperature,
        "std_temperature": std_temperature
    }
    return results

def visualize_data_api(df):
    fig, ax = plt.subplots()
    ax.plot(df['date_time'], df['temperature'])
    plt.xticks(rotation=90)
    ax.set_xlabel('Date')
    ax.set_ylabel('Temperature')
    ax.set_title('Temperature Over Time')
    fig.set_size_inches(20, 15)
    st.pyplot(fig)

def visualize_data_parsing(mas_month, math_temp):
    fig, ax = plt.subplots()
    ax.plot(mas_month, math_temp)
    plt.xticks(rotation=90)
    ax.set_xlabel('Month')
    ax.set_ylabel('Temperature')
    ax.set_title('Temperature per year 2022 in Moscow')
    fig.set_size_inches(10, 6)
    st.pyplot(fig)

def save_to_database(dateNow,timeNow, station, start_date, end_date):
    conn = sqlite3.connect('statistic.db')
    sql = conn.cursor()
    sql.execute("""INSERT INTO statistic VALUES (?, ?, ?, ?,?)""", (dateNow,timeNow, station, start_date, end_date))
    conn.commit()
    conn.close()

def view_dataBase():
    conn = sqlite3.connect('statistic.db')
    df = pd.read_sql_query("SELECT * from statistic", conn)
    return df

# Демонстрация проекта с помощью Streamlit
def streamlit_demo():
    st.title("A few useful things!")
    st.title("Black family tree graph from harry potter:")
    make_graph()
    st.title('Rating depends on the length of the film:')
    mse_error = linear_regression()
    st.write(f'Mean Squared Error: {mse_error}')
    st.title("Weather Analysis")
    temperature_moscow2022_button = st.button("Show temperature in Moscow for 2022") #кнопка для парсинга температуры в москве за 2022 год
    if temperature_moscow2022_button:
        url = "http://www.pogodaiklimat.ru/history/27612.htm"  
        soup = createDriver(url)
        scraped_month, scraped_temp  = scrape_weather_data(soup)   
        visualize_data_parsing(scraped_month, scraped_temp)
    # Добавить элементы управления для выбора города, временного диапазона и отображения результатов
    city = st.selectbox("Select City", ["Moscow", "Berlin", "Barnaul"])
    start_date = st.date_input("Select Start Date")
    end_date = st.date_input("Select End Date")
    temperature_period_button = st.button("Submit") #кнопка для получения данных о погоде через api
    if temperature_period_button:
        now = datetime.now()
        timeNow = now.strftime("%H:%M:%S")
        dateNow = now.date()
        save_to_database(dateNow,timeNow, city, start_date, end_date)
        # Получение данных о погоде для выбранного города и временного диапазона
        weather_data = get_weather_data(city, start_date, end_date)
        processed_data = process_data(weather_data)
        # Анализ данных
        analyzed_data = analyze_data(processed_data)
        # Визуализация данных
        visualize_data_api(processed_data)
        st.title("Data analysis")
        for key, value in analyzed_data.items():
            st.write(key, value)
    statistic_button = st.button("View visit statistics") #кнопка для просмотра статистика нажатий кнопки "Submit"
    if statistic_button:
        df = view_dataBase()
        st.write(df)

def main():
    streamlit_demo()

if __name__ == '__main__':
    main()