File size: 1,396 Bytes
7c3cc0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import cv2
import numpy as np
from keras.models import load_model

# Load the model
model = load_model('keras_model.h5')

# CAMERA can be 0 or 1 based on default camera of your computer.
camera = cv2.VideoCapture(0)

# Grab the labels from the labels.txt file. This will be used later.
labels = open('labels.txt', 'r').readlines()

while True:
    # Grab the webcameras image.
    ret, image = camera.read()
    # Resize the raw image into (224-height,224-width) pixels.
    image = cv2.resize(image, (224, 224), interpolation=cv2.INTER_AREA)
    # Show the image in a window
    cv2.imshow('Webcam Image', image)
    # Make the image a numpy array and reshape it to the models input shape.
    image = np.asarray(image, dtype=np.float32).reshape(1, 224, 224, 3)
    # Normalize the image array
    image = (image / 127.5) - 1
    # Have the model predict what the current image is. Model.predict
    # returns an array of percentages. Example:[0.2,0.8] meaning its 20% sure
    # it is the first label and 80% sure its the second label.
    probabilities = model.predict(image)
    # Print what the highest value probabilitie label
    print(labels[np.argmax(probabilities)])
    # Listen to the keyboard for presses.
    keyboard_input = cv2.waitKey(1)
    # 27 is the ASCII for the esc key on your keyboard.
    if keyboard_input == 27:
        break

camera.release()
cv2.destroyAllWindows()