import pandas as pd import langchain import os import pandas as pd from langchain.agents import create_pandas_dataframe_agent from langchain.llms import OpenAI import gradio as gr from langchain import PromptTemplate os.environ['REQUESTS_CA_BUNDLE'] = 'caadmin.netskope.com.crt' os.environ['OPENAI_API_KEY']="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" df_holdings = pd.read_csv("holdings.csv") df_trades = pd.read_csv("trades.csv") agent = create_pandas_dataframe_agent(OpenAI(temperature=0.0), [df_holdings,df_trades], verbose=True,agent_executor_kwargs={"handle_parsing_errors": True}) openai = OpenAI(temperature=0.0,model="gpt-3.5-turbo",max_tokens=1000,top_p=1,top_k=0) template = """Answer the question based on the context. Dont make your own questions. If the question is not related to dataframe strictly generate Final Answer as "Sorry can not find the answer".Question: {query}""" prompt_template = PromptTemplate( input_variables=["query"], template=template ) def chatbot(message,history): output = agent(prompt_template.format(query=message))['output'] print(output) return output gr.ChatInterface(chatbot).launch()