import pandas as pd import langchain import os import pandas as pd from langchain_experimental.agents import create_pandas_dataframe_agent from langchain.llms import OpenAI import gradio as gr from langchain import PromptTemplate os.environ.get('OPENAI_API_KEY') df_holdings = pd.read_csv("holdings.csv") df_trades = pd.read_csv("trades.csv") agent = create_pandas_dataframe_agent(OpenAI(temperature=0.0), [df_holdings,df_trades], verbose=False,agent_executor_kwargs={"handle_parsing_errors": True}) openai = OpenAI(temperature=0.0,model="gpt-3.5-turbo-16k",top_p=1,top_k=0,reduce_k_below_max_tokens=True) template = """Answer the question based on the context. If the question is not related to dataframe or not meaningful or a single alphabet then strictly generate Final Answer as "Sorry can not find the answer".Question: {query}""" prompt_template = PromptTemplate( input_variables=["query"], template=template ) def chatbot(message,history): output = agent(prompt_template.format(query=message))['output'] print(output) return output gr.ChatInterface(chatbot).launch()