File size: 9,297 Bytes
5a1f586
d232006
5a1f586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d232006
 
 
 
5a1f586
d232006
 
 
5a1f586
 
d232006
 
8aebc64
5a1f586
 
 
 
 
 
 
 
d232006
5a1f586
 
d232006
 
 
5a1f586
 
cc2ade2
 
 
 
5a1f586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d232006
5a1f586
 
d232006
 
8aebc64
 
5a1f586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d232006
 
 
 
5a1f586
 
 
 
 
 
 
 
d232006
5a1f586
 
d232006
 
 
5a1f586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78c974
 
5a1f586
 
 
 
b78c974
5a1f586
 
 
 
 
 
 
b78c974
5a1f586
 
 
 
b78c974
5a1f586
 
 
 
 
 
b78c974
5a1f586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78c974
 
5a1f586
 
 
 
b78c974
5a1f586
 
 
 
 
 
 
b78c974
5a1f586
 
 
b78c974
 
5a1f586
 
 
b78c974
5a1f586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os
from typing import Dict, Optional

import numpy as np
import torch
from diffusers import ControlNetModel, StableDiffusionXLControlNetInpaintPipeline
from huggingface_hub import hf_hub_download, list_repo_files
from PIL import Image, ImageChops, ImageEnhance
from rembg import new_session, remove
from transformers import DPTForDepthEstimation, DPTImageProcessor

from ip_adapter_instantstyle import IPAdapterXL
from ip_adapter_instantstyle.utils import register_cross_attention_hook
from parametric_control_mlp import control_mlp

file_dir = os.path.dirname(os.path.abspath(__file__))
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "models/image_encoder"
ip_ckpt = "sdxl_models/ip-adapter_sdxl_vit-h.bin"
controlnet_path = "diffusers/controlnet-depth-sdxl-1.0"

# Cache for rembg sessions
_session_cache = None
CONTROL_MLPS = ["metallic", "roughness", "transparency", "glow"]


def get_session():
    global _session_cache
    if _session_cache is None:
        _session_cache = new_session()
    return _session_cache


def get_device():
    return "cuda" if torch.cuda.is_available() else "cpu"


def setup_control_mlps(
    features: int = 1024,
    device: Optional[str] = None,
    dtype: torch.dtype = torch.float16,
) -> Dict[str, torch.nn.Module]:
    ret = {}
    if device is None:
        device = get_device()
    print(f"Setting up control MLPs on {device}")
    for mlp in CONTROL_MLPS:
        ret[mlp] = setup_control_mlp(mlp, features, device, dtype)
    return ret


def setup_control_mlp(
    material_parameter: str,
    features: int = 1024,
    device: Optional[str] = None,
    dtype: torch.dtype = torch.float16,
):
    if device is None:
        device = get_device()

    net = control_mlp(features)
    net.load_state_dict(
        torch.load(
            os.path.join(file_dir, f"model_weights/{material_parameter}.pt"),
            map_location=device
        )
    )
    net.to(device, dtype=dtype)
    net.eval()
    return net


def download_ip_adapter():
    repo_id = "h94/IP-Adapter"
    target_folders = ["models/", "sdxl_models/"]
    local_dir = file_dir

    # Check if folders exist and contain files
    folders_exist = all(
        os.path.exists(os.path.join(local_dir, folder)) for folder in target_folders
    )

    if folders_exist:
        # Check if any of the target folders are empty
        folders_empty = any(
            len(os.listdir(os.path.join(local_dir, folder))) == 0
            for folder in target_folders
        )
        if not folders_empty:
            print("IP-Adapter files already downloaded. Skipping download.")
            return

    # List all files in the repo
    all_files = list_repo_files(repo_id)

    # Filter for files in the desired folders
    filtered_files = [
        f for f in all_files if any(f.startswith(folder) for folder in target_folders)
    ]

    # Download each file
    for file_path in filtered_files:
        local_path = hf_hub_download(
            repo_id=repo_id,
            filename=file_path,
            local_dir=local_dir,
            local_dir_use_symlinks=False,
        )
        print(f"Downloaded: {file_path} to {local_path}")


def setup_pipeline(
    device: Optional[str] = None,
    dtype: torch.dtype = torch.float16,
):
    if device is None:
        device = get_device()
        
    print(f"Setting up pipeline on {device}")
    download_ip_adapter()

    cur_block = ("up", 0, 1)

    controlnet = ControlNetModel.from_pretrained(
        controlnet_path, variant="fp16", use_safetensors=True, torch_dtype=dtype
    ).to(device)

    pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(
        base_model_path,
        controlnet=controlnet,
        use_safetensors=True,
        torch_dtype=dtype,
        add_watermarker=False,
    ).to(device)

    pipe.unet = register_cross_attention_hook(pipe.unet)

    block_name = (
        cur_block[0]
        + "_blocks."
        + str(cur_block[1])
        + ".attentions."
        + str(cur_block[2])
    )

    print("Testing block {}".format(block_name))

    return IPAdapterXL(
        pipe,
        os.path.join(file_dir, image_encoder_path),
        os.path.join(file_dir, ip_ckpt),
        device,
        target_blocks=[block_name],
    )


def get_dpt_model(device: Optional[str] = None, dtype: torch.dtype = torch.float16):
    if device is None:
        device = get_device()

    image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
    model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas")
    model.to(device, dtype=dtype)
    model.eval()
    return model, image_processor


def run_dpt_depth(
    image: Image.Image, model, processor, device: Optional[str] = None
) -> Image.Image:
    """Run DPT depth estimation on an image."""
    if device is None:
        device = get_device()

    # Prepare image
    inputs = processor(images=image, return_tensors="pt").to(device, dtype=model.dtype)

    # Get depth prediction
    with torch.no_grad():
        depth_map = model(**inputs).predicted_depth

    # Now normalize to 0-1 range
    depth_map = (depth_map - depth_map.min()) / (
        depth_map.max() - depth_map.min() + 1e-7
    )
    depth_map = depth_map.clip(0, 1) * 255

    # Convert to PIL Image
    depth_map = depth_map.squeeze().cpu().numpy().astype(np.uint8)
    return Image.fromarray(depth_map).resize((1024, 1024))


def prepare_mask(image: Image.Image) -> Image.Image:
    """Prepare mask from image using rembg."""
    rm_bg = remove(image, session=get_session())
    target_mask = (
        rm_bg.convert("RGB")
        .point(lambda x: 0 if x < 1 else 255)
        .convert("L")
        .convert("RGB")
    )
    return target_mask.resize((1024, 1024))


def prepare_init_image(image: Image.Image, mask: Image.Image) -> Image.Image:
    """Prepare initial image for inpainting."""

    # Create grayscale version
    gray_image = image.convert("L").convert("RGB")
    gray_image = ImageEnhance.Brightness(gray_image).enhance(1.0)

    # Create mask inversions
    invert_mask = ImageChops.invert(mask)

    # Combine images
    grayscale_img = ImageChops.darker(gray_image, mask)
    img_black_mask = ImageChops.darker(image, invert_mask)
    init_img = ImageChops.lighter(img_black_mask, grayscale_img)

    return init_img.resize((1024, 1024))


def run_parametric_control(
    ip_model,
    target_image: Image.Image,
    edit_mlps: dict[torch.nn.Module, float],
    texture_image: Image.Image = None,
    num_inference_steps: int = 30,
    seed: int = 42,
    depth_map: Optional[Image.Image] = None,
    mask: Optional[Image.Image] = None,
) -> Image.Image:
    """Run parametric control with metallic and roughness adjustments."""
    # Get depth map
    if depth_map is None:
        print("No depth map provided, running DPT depth estimation")
        model, processor = get_dpt_model()
        depth_map = run_dpt_depth(target_image, model, processor)
    else:
        depth_map = depth_map.resize((1024, 1024))

    # Prepare mask and init image
    if mask is None:
        print("No mask provided, preparing mask")
        mask = prepare_mask(target_image)
    else:
        mask = mask.resize((1024, 1024))

    print("Preparing initial image")
    if texture_image is None:
        texture_image = target_image

    init_img = prepare_init_image(target_image, mask)

    # Generate edit
    print("Generating parametric edit")
    images = ip_model.generate_parametric_edits(
        texture_image,
        image=init_img,
        control_image=depth_map,
        mask_image=mask,
        controlnet_conditioning_scale=1.0,
        num_samples=1,
        num_inference_steps=num_inference_steps,
        seed=seed,
        edit_mlps=edit_mlps,
        strength=1.0,
    )

    return images[0]


def run_blend(
    ip_model,
    target_image: Image.Image,
    texture_image1: Image.Image,
    texture_image2: Image.Image,
    edit_strength: float = 0.0,
    num_inference_steps: int = 20,
    seed: int = 1,
    depth_map: Optional[Image.Image] = None,
    mask: Optional[Image.Image] = None,
) -> Image.Image:
    """Run blending between two texture images."""
    # Get depth map
    if depth_map is None:
        print("No depth map provided, running DPT depth estimation")
        model, processor = get_dpt_model()
        depth_map = run_dpt_depth(target_image, model, processor)
    else:
        depth_map = depth_map.resize((1024, 1024))

    # Prepare mask and init image
    if mask is None:
        print("No mask provided, preparing mask")
        mask = prepare_mask(target_image)
    else:
        mask = mask.resize((1024, 1024))

    print("Preparing initial image")
    init_img = prepare_init_image(target_image, mask)

    # Generate edit
    print("Generating edit")
    images = ip_model.generate_edit(
        start_image=texture_image1,
        pil_image=texture_image1,
        pil_image2=texture_image2,
        image=init_img,
        control_image=depth_map,
        mask_image=mask,
        controlnet_conditioning_scale=1.0,
        num_samples=1,
        num_inference_steps=num_inference_steps,
        seed=seed,
        edit_strength=edit_strength,
        clip_strength=1.0,
        strength=1.0,
    )

    return images[0]