import torch import torch.nn as nn class control_mlp(nn.Module): def __init__(self, embedding_size): super(control_mlp, self).__init__() self.fc1 = nn.Linear(embedding_size, 1024) self.fc2 = nn.Linear(1024, 2048) self.relu = nn.ReLU() self.edit_strength_fc1 = nn.Linear(1, 128) self.edit_strength_fc2 = nn.Linear(128, 2) def forward(self, x, edit_strength): x = self.relu(self.fc1(x)) x = self.fc2(x) edit_strength = self.relu(self.edit_strength_fc1(edit_strength.unsqueeze(1))) edit_strength = self.edit_strength_fc2(edit_strength) edit_strength1, edit_strength2 = edit_strength[:, 0], edit_strength[:, 1] # print(edit_strength1.shape) # exit() output = ( edit_strength1.unsqueeze(1) * x[:, :1024] + edit_strength2.unsqueeze(1) * x[:, 1024:] ) return output