File size: 9,376 Bytes
18d050b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
from typing import Dict, List

import torch
from PIL import Image
from torchvision import transforms
from transformers import AutoTokenizer
from huggingface_hub import snapshot_download
import numpy as np


def crop_arr(pil_image, max_image_size):
    while min(*pil_image.size) >= 2 * max_image_size:
        pil_image = pil_image.resize(
            tuple(x // 2 for x in pil_image.size), resample=Image.BOX
        )

    if max(*pil_image.size) > max_image_size:
        scale = max_image_size / max(*pil_image.size)
        pil_image = pil_image.resize(
            tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
        )

    if min(*pil_image.size) < 16:
        scale = 16 / min(*pil_image.size)
        pil_image = pil_image.resize(
            tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
        )

    arr = np.array(pil_image)
    crop_y1 = (arr.shape[0] % 16) // 2
    crop_y2 = arr.shape[0] % 16 - crop_y1

    crop_x1 = (arr.shape[1] % 16) // 2
    crop_x2 = arr.shape[1] % 16 - crop_x1

    arr = arr[crop_y1:arr.shape[0] - crop_y2, crop_x1:arr.shape[1] - crop_x2]
    return Image.fromarray(arr)


class OmniGenProcessor:
    def __init__(self, max_image_size: int = 1024):
        self.max_image_size = max_image_size

        self.image_transform = transforms.Compose([
            transforms.Lambda(lambda pil_image: crop_arr(pil_image, max_image_size)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
        ])

        self.collator = OmniGenCollator()
        self.separate_collator = OmniGenSeparateCollator()

    @classmethod
    def from_pretrained(cls, model_name):
        if not os.path.exists(model_name):
            cache_folder = os.getenv('HF_HUB_CACHE')
            model_name = snapshot_download(repo_id=model_name,
                                           cache_dir=cache_folder,
                                           allow_patterns="*.json")
        text_tokenizer = AutoTokenizer.from_pretrained(model_name)

        return cls(text_tokenizer)

    def process_image(self, image):
        image = Image.open(image).convert('RGB')
        return self.image_transform(image)

    def __call__(self,
                 context_hidden_state: List[torch.tensor],
                 neg_context_hidden_state: List[torch.tensor],
                 height: int = 1024,
                 width: int = 1024,
                 separate_cfg_input: bool = False,
                 ) -> Dict:

        input_data = []
        for i in range(len(context_hidden_state)):
            cur_context_hidden_state = context_hidden_state[i]
            cur_neg_context_hidden_state = neg_context_hidden_state[i]

            input_data.append((cur_context_hidden_state, cur_neg_context_hidden_state, [height, width]))

        if separate_cfg_input:
            return self.separate_collator(input_data)
        return self.collator(input_data)


class OmniGenCollator:
    def __init__(self, pad_token_id=2, llm_pad_token_id=151643, hidden_size=3072):
        self.llm_pad_token_id = llm_pad_token_id
        self.pad_token_id = pad_token_id
        self.hidden_size = hidden_size

    def create_position(self, attention_mask, num_tokens_for_output_images):
        position_ids = []
        text_length = attention_mask.size(-1)
        img_length = max(num_tokens_for_output_images)
        for mask in attention_mask:
            temp_l = torch.sum(mask)
            temp_position = [0] * (text_length - temp_l) + [i for i in range(temp_l + img_length + 1)]  # we add a time embedding into the sequence, so add one more token
            position_ids.append(temp_position)
        return torch.LongTensor(position_ids)

    def create_connector_position(self, llm_2d_attention_mask):
        position_ids = []
        text_length = llm_2d_attention_mask.size(-1)
        for batch_idx, mask in enumerate(llm_2d_attention_mask):
            temp_l = torch.sum(llm_2d_attention_mask[batch_idx])
            temp_position = [0] * (text_length - temp_l) + [i for i in range(temp_l)]  # only condition for mllm like qwen
            position_ids.append(temp_position)
        return torch.LongTensor(position_ids)

    def create_mask(self, attention_mask, num_tokens_for_output_images):
        extended_mask = []
        padding_images = []
        text_length = attention_mask.size(-1)
        img_length = max(num_tokens_for_output_images)
        seq_len = text_length + img_length + 1  # we add a time embedding into the sequence, so add one more token
        inx = 0
        for mask in attention_mask:
            temp_l = torch.sum(mask)
            pad_l = text_length - temp_l

            temp_mask = torch.tril(torch.ones(size=(temp_l + 1, temp_l + 1)))

            image_mask = torch.zeros(size=(temp_l + 1, img_length))
            temp_mask = torch.cat([temp_mask, image_mask], dim=-1)

            image_mask = torch.ones(size=(img_length, temp_l + img_length + 1))
            temp_mask = torch.cat([temp_mask, image_mask], dim=0)

            if pad_l > 0:
                pad_mask = torch.zeros(size=(temp_l + 1 + img_length, pad_l))
                temp_mask = torch.cat([pad_mask, temp_mask], dim=-1)

                pad_mask = torch.ones(size=(pad_l, seq_len))
                temp_mask = torch.cat([pad_mask, temp_mask], dim=0)

            true_img_length = num_tokens_for_output_images[inx]
            pad_img_length = img_length - true_img_length
            if pad_img_length > 0:
                temp_mask[:, -pad_img_length:] = 0
                temp_padding_imgs = torch.zeros(size=(1, pad_img_length, self.hidden_size))
            else:
                temp_padding_imgs = None

            extended_mask.append(temp_mask.unsqueeze(0))
            padding_images.append(temp_padding_imgs)
            inx += 1
        return torch.cat(extended_mask, dim=0), padding_images

    def adjust_attention_for_input_images(self, attention_mask, image_sizes):
        for b_inx in image_sizes.keys():
            for start_inx, end_inx in image_sizes[b_inx]:
                attention_mask[b_inx][start_inx:end_inx, start_inx:end_inx] = 1

        return attention_mask

    def pad_input(self, context_hidden_state):
        # pad_token_id = self.llm_pad_token_id  # 151642 <|endoftext|> in qwen2.5vl
        max_l = max([x.shape[1] for x in context_hidden_state])
        attention_mask = []

        for i in range(len(context_hidden_state)):
            temp_hidden = context_hidden_state[i]
            temp_l = temp_hidden.shape[1]
            pad_l = max_l - temp_l
            if pad_l == 0:
                attention_mask.append([1] * max_l)
            else:
                attention_mask.append([0] * pad_l + [1] * temp_l)

        return torch.LongTensor(attention_mask)

    def process_mllm_input(self, context_hidden_state, target_img_size):
        num_tokens_for_output_images = []
        for img_size in target_img_size:
            num_tokens_for_output_images.append(img_size[0] * img_size[1] // 16 // 16)

        llm_2d_attention_mask = self.pad_input(context_hidden_state)
        connector_position_ids = self.create_connector_position(llm_2d_attention_mask)
        llm_position_ids = self.create_position(llm_2d_attention_mask, num_tokens_for_output_images)
        llm_attention_mask, _ = self.create_mask(llm_2d_attention_mask, num_tokens_for_output_images)

        return llm_2d_attention_mask, connector_position_ids, llm_attention_mask, llm_position_ids


class OmniGenSeparateCollator(OmniGenCollator):
    def __call__(self, features):
        context_hidden_state = [f[0] for f in features]
        neg_context_hidden_state = [f[1] for f in features]
        target_img_size = [f[2] for f in features]

        all_context_hidden_state, all_connector_attention_mask, all_connector_position_ids, all_llm_attention_mask, all_llm_position_ids = [], [], [], [], []
        connector_attention_mask, connector_position_ids, llm_attention_mask, llm_position_ids = self.process_mllm_input(context_hidden_state, target_img_size)

        all_context_hidden_state.append(context_hidden_state[0])
        all_connector_attention_mask.append(connector_attention_mask)
        all_connector_position_ids.append(connector_position_ids)
        all_llm_attention_mask.append(llm_attention_mask)
        all_llm_position_ids.append(llm_position_ids)

        if neg_context_hidden_state[0] is not None:
            connector_attention_mask, connector_position_ids, llm_attention_mask, llm_position_ids = self.process_mllm_input(neg_context_hidden_state, target_img_size)
            all_context_hidden_state.append(neg_context_hidden_state[0])
            all_connector_attention_mask.append(connector_attention_mask)
            all_connector_position_ids.append(connector_position_ids)
            all_llm_attention_mask.append(llm_attention_mask)
            all_llm_position_ids.append(llm_position_ids)

        data = {
            "context_hidden_state": all_context_hidden_state,
            "connector_attention_mask": all_connector_attention_mask,
            "connector_position_ids": all_connector_position_ids,
            "llm_attention_mask": all_llm_attention_mask,
            "llm_position_ids": all_llm_position_ids,
        }
        return data