File size: 10,890 Bytes
18d050b
 
 
 
 
 
952386b
18d050b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
952386b
7020ed0
 
18d050b
7020ed0
18d050b
7020ed0
 
 
21ddbba
18d050b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f3306d
18d050b
5f3306d
18d050b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f7273c
 
18d050b
 
3f7273c
b97569f
 
 
 
 
 
 
 
3f7273c
 
 
 
 
18d050b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from .mllm import MindOmniMLLM
from .image_decoder import OmniGen
import torch.nn as nn
from .image_decoder import Phi3DecoderLayer, ImageDecoderPipeline, OmniGenProcessor
import os
import torch
from huggingface_hub import snapshot_download
from safetensors.torch import load_file
from typing import Union
from diffusers.utils import logging
from diffusers.models import AutoencoderKL
from transformers import AutoProcessor
import re
from qwen_vl_utils import process_vision_info

logger = logging.get_logger(__name__)


class MindOmniConnector(nn.Module):
    def __init__(self, pre_config, post_config, layer_num: int = 2):
        super().__init__()
        connector_decoder = nn.ModuleList(
            [Phi3DecoderLayer(post_config, layer_idx) for layer_idx in range(layer_num)]
        )
        self.connector = nn.ModuleList(
            [nn.Linear(pre_config.hidden_size, post_config.hidden_size)]  # qwen2.5vl-7b: 3584
        )
        self.connector.extend(connector_decoder)


class MindOmni:
    def __init__(self, mllm, image_decoder, connector, vae, processor, mllm_processor, device: Union[str, torch.device] = None):
        self.mllm = mllm
        self.image_decoder = image_decoder
        self.connector = connector
        self.vae = vae
        self.processor = processor
        self.mllm_processor = mllm_processor

        self.vae.to(torch.float32)
        self.device = device
        if device is None:
            if torch.cuda.is_available():
                self.device = torch.device("cuda")
            elif torch.backends.mps.is_available():
                self.device = torch.device("mps")
            else:
                logger.info("Don't detect any available GPUs, using CPU instead, this may take long time to generate image!!!")
                self.device = torch.device("cpu")

    @classmethod
    def from_pretrained(cls, model_path):
        model_path = snapshot_download(repo_id=model_path)
        mllm = MindOmniMLLM.from_pretrained(os.path.join(model_path, 'mllm'))
        image_decoder = OmniGen.from_pretrained(os.path.join(model_path, 'image_decoder'))
        connector = MindOmniConnector(mllm.config, image_decoder.llm.config, 2).connector
        connector_state = load_file(os.path.join(model_path, 'connector.safetensors'))
        connector.load_state_dict(connector_state)
        vae = AutoencoderKL.from_pretrained(os.path.join(model_path, 'vae'))
        processor = OmniGenProcessor.from_pretrained(os.path.join(model_path, 'image_decoder'))
        mllm_processor = AutoProcessor.from_pretrained(os.path.join(model_path, 'mllm'))
        logger.info("MindOmni has been loaded.")
        return cls(mllm, image_decoder, connector, vae, processor, mllm_processor)

    def to(self, device: Union[str, torch.device] = None, dtype: Union[str, torch.device] = None):
        if device is not None:
            if isinstance(device, str):
                device = torch.device(device)
            self.mllm.to(device)
            self.image_decoder.to(device)
            self.connector.to(device)
            self.vae.to(device)
            self.device = device
        if dtype is not None:
            self.mllm.to(dtype)
            self.image_decoder.to(dtype)
            self.connector.to(dtype)

    def eval(self):
        self.mllm.eval()
        self.image_decoder.eval()
        self.connector.eval()
        self.vae.eval()

    @torch.no_grad()
    def get_mllm_hidden_state(self, user_input, input_images, do_sample, temperature, max_new_tokens, only_understand=False, use_cot=False):
        input_llm_images = input_images
        processor = self.mllm_processor
        model = self.mllm
        if only_understand or not use_cot:
            system_prompt = (
                "You are a helpful assistant."
            )
        else:
            system_prompt = (
                "You are a helpful assistant. When the user requests an image, the assistant "
                "first thinks about the reasoning process in the mind and then provides the user with concise prompt as the answer. "
                "The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., "
                "<think> reasoning process here </think><answer> answer here </answer>."
            )

        messages = [
            {
                "role": "system",
                "content": [
                    {"type": "text", "text": system_prompt},
                ],
            },
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": "Generate an image according to the following instructions\n"},
                    {"type": "text", "text": user_input},
                ],
            }
        ]

        if input_llm_images is not None:
            if only_understand:
                assert len(input_llm_images) == 1, "only support single image when multimodal understanding"
                messages[1]['content'][0] = {"type": "image", "image": input_llm_images[0]}
            else:
                user_input = f'<img><|image_1|></img> {user_input}'
                messages[1]['content'][1] = {"type": "text", "text": user_input}
                image_tags = re.findall(r'<\|image_\d+\|>', messages[1]['content'][1]['text'])
                image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
                pattern = r"<img><\|image_\d+\|></img>"
                prompt_chunks = [chunk for chunk in re.split(pattern, messages[1]['content'][1]['text'])]
                assert len(prompt_chunks) == len(input_llm_images) + 1
                new_content = []
                for idx, per_prompt in enumerate(prompt_chunks):
                    if idx != len(prompt_chunks) - 1:
                        item_text = {"type": "text", "text": per_prompt}
                        # resized_height, resized_width = input_images_shape[image_ids[idx] - 1]
                        image_path = input_llm_images[image_ids[idx] - 1]
                        # item_vit = {"type": "image", "image": image_path, "resized_height": resized_height, "resized_width": resized_width}
                        item_vit = {"type": "image", "image": image_path}
                        item_tag = {"type": "text", "text": f"<img>{image_tags[idx]}</img>"}
                        new_content.append(item_text)
                        new_content.append(item_vit)
                        new_content.append(item_tag)
                    else:
                        item_text = {"type": "text", "text": per_prompt}
                        new_content.append(item_text)
                messages[1]['content'] = messages[1]['content'][:1] + new_content

        text = processor.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = processor(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors='pt',
        )
        inputs = inputs.to(self.device)

        if use_cot:
            # Inference: Generation of the output
            temperature = temperature if do_sample else None
            generated_dict = model.generate(**inputs, do_sample=do_sample, temperature=temperature, max_new_tokens=max_new_tokens, output_hidden_states=True, return_dict_in_generate=True)
            generated_ids_trimmed = [
                out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_dict.sequences)
            ]
            output_hidden_state = [hidden_state[-1] for hidden_state in generated_dict.hidden_states]
            context_hidden_state = torch.cat(output_hidden_state, dim=1)

            output_text = processor.batch_decode(
                generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
            )

            prompt_ = output_text[0]

            assistant_content = [
                {
                    "role": "assistant",
                    "content": [
                        {"type": "text", "text": prompt_},
                    ],
                }
            ]

            messages += assistant_content
        else:
            prompt_ = user_input
            context_hidden_state = model(**inputs, output_hidden_states=True).hidden_states[-1]
        return messages, prompt_, context_hidden_state

    def generate_image(self, height, width, guidance_scale, inference_steps, separate_cfg_infer, offload_model, seed, max_input_image_size,
                       text, NEGATIVE_PROMPT, input_llm_images, do_sample, temperature, max_new_tokens, only_understand, use_cot=False,
                       cascade_thinking=False):
        gen_pipe = ImageDecoderPipeline(self.vae, self.image_decoder, self.connector, self.processor)
        message, prompt_, context_hidden_state = self.get_mllm_hidden_state(text, input_llm_images, do_sample, temperature, max_new_tokens, only_understand, use_cot=use_cot)
        if cascade_thinking and use_cot:
            answer_text = re.search(r'<answer>(.*)', prompt_, re.S)
            think_text = re.search(r'<think>(.*?)</think>', prompt_, re.S)
            if answer_text:
                text = answer_text.group(1).strip()
            elif think_text:
                text = think_text.group(1).strip()
            else:
                text = prompt_.strip()
            if len(text) > 0:
                message, cascade_prompt_, context_hidden_state = self.get_mllm_hidden_state(
                    text, input_llm_images, do_sample, temperature, max_new_tokens, only_understand, use_cot=use_cot)
                prompt_ = f'{prompt_}\n\ncascade_thinking:{cascade_prompt_}'

        neg_message, neg_prompt_, neg_context_hidden_state = self.get_mllm_hidden_state(NEGATIVE_PROMPT, None, do_sample, temperature, max_new_tokens, only_understand, use_cot=False)
        print(message)
        output = gen_pipe(
            context_hidden_state=context_hidden_state,
            neg_context_hidden_state=neg_context_hidden_state,
            height=height,
            width=width,
            guidance_scale=guidance_scale,
            num_inference_steps=inference_steps,
            separate_cfg_infer=separate_cfg_infer,
            use_kv_cache=True,
            offload_kv_cache=True,
            offload_model=offload_model,
            seed=seed,
            max_input_image_size=max_input_image_size,
        )
        return output, prompt_

    def generate_text(self, text, input_llm_images, do_sample, temperature, max_new_tokens, only_understand):
        _, answer, _ = self.get_mllm_hidden_state(text, input_llm_images, do_sample, temperature, max_new_tokens, only_understand=True, use_cot=True)
        return answer