parakeet-tdt-0.6b-v2 / app copy.py
sungo-ganpare's picture
音声ファイルの処理を改善し、Gradioインターフェースを更新。音声のアップロードと文字起こし結果をJSON形式で返却する機能を追加。依存関係にrequestsとffmpeg-pythonを追加し、READMEの絵文字を修正。
6a535bc
from nemo.collections.asr.models import ASRModel
import torch
import gradio as gr
import spaces
import gc
import shutil
from pathlib import Path
from pydub import AudioSegment
import numpy as np
import os
import gradio.themes as gr_themes
import csv
import json
from typing import List, Tuple
device = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_NAME="nvidia/parakeet-tdt-0.6b-v2"
model = ASRModel.from_pretrained(model_name=MODEL_NAME)
model.eval()
def start_session(request: gr.Request):
session_hash = request.session_hash
session_dir = Path(f'/tmp/{session_hash}')
session_dir.mkdir(parents=True, exist_ok=True)
print(f"Session with hash {session_hash} started.")
return session_dir.as_posix()
def end_session(request: gr.Request):
session_hash = request.session_hash
session_dir = Path(f'/tmp/{session_hash}')
if session_dir.exists():
shutil.rmtree(session_dir)
print(f"Session with hash {session_hash} ended.")
def get_audio_segment(audio_path, start_second, end_second):
if not audio_path or not Path(audio_path).exists():
print(f"Warning: Audio path '{audio_path}' not found or invalid for clipping.")
return None
try:
start_ms = int(start_second * 1000)
end_ms = int(end_second * 1000)
start_ms = max(0, start_ms)
if end_ms <= start_ms:
print(f"Warning: End time ({end_second}s) is not after start time ({start_second}s). Adjusting end time.")
end_ms = start_ms + 100
audio = AudioSegment.from_file(audio_path)
clipped_audio = audio[start_ms:end_ms]
samples = np.array(clipped_audio.get_array_of_samples())
if clipped_audio.channels == 2:
samples = samples.reshape((-1, 2)).mean(axis=1).astype(samples.dtype)
frame_rate = clipped_audio.frame_rate
if frame_rate <= 0:
print(f"Warning: Invalid frame rate ({frame_rate}) detected for clipped audio.")
frame_rate = audio.frame_rate
if samples.size == 0:
print(f"Warning: Clipped audio resulted in empty samples array ({start_second}s to {end_second}s).")
return None
return (frame_rate, samples)
except FileNotFoundError:
print(f"Error: Audio file not found at path: {audio_path}")
return None
except Exception as e:
print(f"Error clipping audio {audio_path} from {start_second}s to {end_second}s: {e}")
return None
def preprocess_audio(audio_path, session_dir):
"""
オーディオファイルの前処理(リサンプリング、モノラル変換)を行う。
Args:
audio_path (str): 入力オーディオファイルのパス。
session_dir (str): セッションディレクトリのパス。
Returns:
tuple: (processed_path, info_path_name, duration_sec) のタプル、または None(処理に失敗した場合)。
"""
try:
original_path_name = Path(audio_path).name
audio_name = Path(audio_path).stem
try:
gr.Info(f"Loading audio: {original_path_name}", duration=2)
audio = AudioSegment.from_file(audio_path)
duration_sec = audio.duration_seconds
except Exception as load_e:
gr.Error(f"Failed to load audio file {original_path_name}: {load_e}", duration=None)
return None, None, None
resampled = False
mono = False
target_sr = 16000
if audio.frame_rate != target_sr:
try:
audio = audio.set_frame_rate(target_sr)
resampled = True
except Exception as resample_e:
gr.Error(f"Failed to resample audio: {resample_e}", duration=None)
return None, None, None
if audio.channels == 2:
try:
audio = audio.set_channels(1)
mono = True
except Exception as mono_e:
gr.Error(f"Failed to convert audio to mono: {mono_e}", duration=None)
return None, None, None
elif audio.channels > 2:
gr.Error(f"Audio has {audio.channels} channels. Only mono (1) or stereo (2) supported.", duration=None)
return None, None, None
processed_audio_path = None
if resampled or mono:
try:
processed_audio_path = Path(session_dir, f"{audio_name}_resampled.wav")
audio.export(processed_audio_path, format="wav")
transcribe_path = processed_audio_path.as_posix()
info_path_name = f"{original_path_name} (processed)"
except Exception as export_e:
gr.Error(f"Failed to export processed audio: {export_e}", duration=None)
if processed_audio_path and os.path.exists(processed_audio_path):
os.remove(processed_audio_path)
return None, None, None
else:
transcribe_path = audio_path
info_path_name = original_path_name
return transcribe_path, info_path_name, duration_sec
except Exception as e:
gr.Error(f"Audio preprocessing failed: {e}", duration=None)
return None, None, None
def transcribe_audio(transcribe_path, model, duration_sec, device):
"""
オーディオファイルを文字起こしし、タイムスタンプを取得する。
Args:
transcribe_path (str): 入力オーディオファイルのパス。
model (ASRModel): 使用するASRモデル。
duration_sec (float): オーディオファイルの長さ(秒)。
device (str): 使用するデバイス('cuda' or 'cpu')。
Returns:
tuple: (vis_data, raw_times_data, word_vis_data) のタプル、または None(処理に失敗した場合)。
"""
long_audio_settings_applied = False
try:
# CUDA 使用前にメモリをクリアし、断片化を低減
if device == 'cuda':
torch.cuda.empty_cache()
gc.collect()
model.to(device)
model.to(torch.float32)
# メモリ状況をログ出力(デバッグ用)
if device == 'cuda':
print(f"CUDA Memory before transcription: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
gr.Info(f"Transcribing on {device}...", duration=2)
if duration_sec > 480:
try:
gr.Info("Audio longer than 8 minutes. Applying optimized settings for long transcription.", duration=3)
print("Applying long audio settings: Local Attention and Chunking.")
model.change_attention_model("rel_pos_local_attn", [256,256])
model.change_subsampling_conv_chunking_factor(1)
long_audio_settings_applied = True
except Exception as setting_e:
gr.Warning(f"Could not apply long audio settings: {setting_e}", duration=5)
print(f"Warning: Failed to apply long audio settings: {setting_e}")
model.to(torch.bfloat16)
output = model.transcribe([transcribe_path], timestamps=True)
if not output or not isinstance(output, list) or not output[0] or not hasattr(output[0], 'timestamp') or not output[0].timestamp or 'segment' not in output[0].timestamp:
gr.Error("Transcription failed or produced unexpected output format.", duration=None)
return None, None, None
segment_timestamps = output[0].timestamp['segment']
vis_data = [[f"{ts['start']:.2f}", f"{ts['end']:.2f}", ts['segment']] for ts in segment_timestamps]
raw_times_data = [[ts['start'], ts['end']] for ts in segment_timestamps]
word_timestamps_raw = output[0].timestamp.get("word", [])
word_vis_data = [
[f"{w['start']:.2f}", f"{w['end']:.2f}", w["word"]]
for w in word_timestamps_raw if isinstance(w, dict) and 'start' in w and 'end' in w and 'word' in w
]
gr.Info("Transcription complete.", duration=2)
return vis_data, raw_times_data, word_vis_data
except torch.cuda.OutOfMemoryError as e:
error_msg = 'CUDA out of memory. Please try a shorter audio or reduce GPU load.'
print(f"CUDA OutOfMemoryError: {e}")
gr.Error(error_msg, duration=None)
return None, None, None
except Exception as e:
error_msg = f"Transcription failed: {e}"
print(f"Error during transcription processing: {e}")
gr.Error(error_msg, duration=None)
return None, None, None
finally:
try:
if long_audio_settings_applied:
try:
print("Reverting long audio settings.")
model.change_attention_model("rel_pos")
model.change_subsampling_conv_chunking_factor(-1)
except Exception as revert_e:
print(f"Warning: Failed to revert long audio settings: {revert_e}")
gr.Warning(f"Issue reverting model settings after long transcription: {revert_e}", duration=5)
if device == 'cuda':
model.cpu()
gc.collect()
if device == 'cuda':
torch.cuda.empty_cache()
except Exception as cleanup_e:
print(f"Error during model cleanup: {cleanup_e}")
gr.Warning(f"Issue during model cleanup: {cleanup_e}", duration=5)
def save_transcripts(session_dir, audio_name, vis_data, word_vis_data):
"""
文字起こし結果を各種ファイル形式(CSV、SRT、VTT、JSON、LRC)で保存する。
Args:
session_dir (str): セッションディレクトリのパス。
audio_name (str): オーディオファイルの名前。
vis_data (list): 表示用の文字起こし結果のリスト。
word_vis_data (list): 単語レベルのタイムスタンプのリスト。
Returns:
tuple: 各ファイルのダウンロードボタンの更新情報を含むタプル。
"""
try:
csv_headers = ["Start (s)", "End (s)", "Segment"]
csv_file_path = Path(session_dir, f"transcription_{audio_name}.csv")
with open(csv_file_path, 'w', newline='', encoding='utf-8') as f:
writer = csv.writer(f)
writer.writerow(csv_headers)
writer.writerows(vis_data)
print(f"CSV transcript saved to temporary file: {csv_file_path}")
srt_file_path = Path(session_dir, f"transcription_{audio_name}.srt")
vtt_file_path = Path(session_dir, f"transcription_{audio_name}.vtt")
json_file_path = Path(session_dir, f"transcription_{audio_name}.json")
write_srt(vis_data, srt_file_path)
write_vtt(vis_data, word_vis_data, vtt_file_path)
write_json(vis_data, word_vis_data, json_file_path)
print(f"SRT, VTT, JSON transcript saved to temporary files: {srt_file_path}, {vtt_file_path}, {json_file_path}")
lrc_file_path = Path(session_dir, f"transcription_{audio_name}.lrc")
write_lrc(vis_data, lrc_file_path)
print(f"LRC transcript saved to temporary file: {lrc_file_path}")
return (
gr.DownloadButton(value=csv_file_path.as_posix(), visible=True),
gr.DownloadButton(value=srt_file_path.as_posix(), visible=True),
gr.DownloadButton(value=vtt_file_path.as_posix(), visible=True),
gr.DownloadButton(value=json_file_path.as_posix(), visible=True),
gr.DownloadButton(value=lrc_file_path.as_posix(), visible=True)
)
except Exception as e:
gr.Error(f"Failed to create transcript files: {e}", duration=None)
print(f"Error writing transcript files: {e}")
return tuple([gr.DownloadButton(visible=False)] * 5)
def split_audio_with_overlap(audio_path: str, session_dir: str, chunk_length_sec: int = 3600, overlap_sec: int = 30) -> List[str]:
"""
音声ファイルをchunk_length_secごとにoverlap_secのオーバーラップ付きで分割し、
分割ファイルのパスリストを返す。
"""
audio = AudioSegment.from_file(audio_path)
duration = audio.duration_seconds
chunk_paths = []
start = 0
chunk_idx = 0
while start < duration:
end = min(start + chunk_length_sec, duration)
# オーバーラップを考慮
chunk_start = max(0, start - (overlap_sec if start > 0 else 0))
chunk_end = min(end + (overlap_sec if end < duration else 0), duration)
chunk = audio[chunk_start * 1000:chunk_end * 1000]
chunk_path = Path(session_dir, f"chunk_{chunk_idx:03d}.wav").as_posix()
chunk.export(chunk_path, format="wav")
chunk_paths.append(chunk_path)
start += chunk_length_sec
chunk_idx += 1
return chunk_paths
@spaces.GPU
def get_transcripts_and_raw_times(audio_path, session_dir):
"""
オーディオファイルを処理し、文字起こし結果を生成する。
3時間を超える場合は60分ごとに分割し、オーバーラップ付きでASRを実行してマージする。
"""
if not audio_path:
gr.Error("No audio file path provided for transcription.", duration=None)
return [], [], [], None, gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False)
audio_name = Path(audio_path).stem
processed_audio_path = None
temp_chunk_paths = []
try:
# オーディオの前処理
transcribe_path, info_path_name, duration_sec = preprocess_audio(audio_path, session_dir)
if not transcribe_path or not duration_sec:
return [], [], [], audio_path, gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False)
processed_audio_path = transcribe_path if transcribe_path != audio_path else None
# 3時間超の場合は分割して逐次ASR
if duration_sec > 10800:
chunk_paths = split_audio_with_overlap(transcribe_path, session_dir, chunk_length_sec=3600, overlap_sec=30)
temp_chunk_paths = chunk_paths.copy()
all_vis_data = []
all_raw_times_data = []
all_word_vis_data = []
offset = 0.0
prev_end = 0.0
for i, chunk_path in enumerate(chunk_paths):
chunk_audio = AudioSegment.from_file(chunk_path)
chunk_duration = chunk_audio.duration_seconds
# ASR実行
result = transcribe_audio(chunk_path, model, chunk_duration, device)
if not result:
continue
vis_data, raw_times_data, word_vis_data = result
# タイムスタンプを全体のオフセットに合わせて補正
vis_data_offset = []
raw_times_data_offset = []
word_vis_data_offset = []
for row in vis_data:
s, e, seg = float(row[0]), float(row[1]), row[2]
vis_data_offset.append([f"{s+offset:.2f}", f"{e+offset:.2f}", seg])
for row in raw_times_data:
s, e = float(row[0]), float(row[1])
raw_times_data_offset.append([s+offset, e+offset])
for row in word_vis_data:
s, e, w = float(row[0]), float(row[1]), row[2]
word_vis_data_offset.append([f"{s+offset:.2f}", f"{e+offset:.2f}", w])
# オーバーラップ部分の重複除去(単純に前回のend以降のみ追加)
vis_data_offset = [row for row in vis_data_offset if float(row[0]) >= prev_end]
raw_times_data_offset = [row for row in raw_times_data_offset if row[0] >= prev_end]
word_vis_data_offset = [row for row in word_vis_data_offset if float(row[0]) >= prev_end]
if vis_data_offset:
prev_end = float(vis_data_offset[-1][1])
all_vis_data.extend(vis_data_offset)
all_raw_times_data.extend(raw_times_data_offset)
all_word_vis_data.extend(word_vis_data_offset)
offset += chunk_duration - (30 if i < len(chunk_paths)-1 else 0)
# ファイルの保存
button_updates = save_transcripts(session_dir, audio_name, all_vis_data, all_word_vis_data)
# 一時分割ファイル削除
for p in temp_chunk_paths:
try:
os.remove(p)
except Exception:
pass
return (
all_vis_data,
all_raw_times_data,
all_word_vis_data,
audio_path,
*button_updates
)
else:
# 3時間以内は従来通り
result = transcribe_audio(transcribe_path, model, duration_sec, device)
if not result:
return [], [], [], audio_path, gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False)
vis_data, raw_times_data, word_vis_data = result
button_updates = save_transcripts(session_dir, audio_name, vis_data, word_vis_data)
return (
vis_data,
raw_times_data,
word_vis_data,
audio_path,
*button_updates
)
finally:
if processed_audio_path and os.path.exists(processed_audio_path):
try:
os.remove(processed_audio_path)
print(f"Temporary audio file {processed_audio_path} removed.")
except Exception as e:
print(f"Error removing temporary audio file {processed_audio_path}: {e}")
# 分割ファイルの掃除
for p in temp_chunk_paths:
if os.path.exists(p):
try:
os.remove(p)
except Exception:
pass
def play_segment(evt: gr.SelectData, raw_ts_list, current_audio_path):
if not isinstance(raw_ts_list, list):
print(f"Warning: raw_ts_list is not a list ({type(raw_ts_list)}). Cannot play segment.")
return gr.Audio(value=None, label="Selected Segment")
if not current_audio_path:
print("No audio path available to play segment from.")
return gr.Audio(value=None, label="Selected Segment")
selected_index = evt.index[0]
if selected_index < 0 or selected_index >= len(raw_ts_list):
print(f"Invalid index {selected_index} selected for list of length {len(raw_ts_list)}.")
return gr.Audio(value=None, label="Selected Segment")
if not isinstance(raw_ts_list[selected_index], (list, tuple)) or len(raw_ts_list[selected_index]) != 2:
print(f"Warning: Data at index {selected_index} is not in the expected format [start, end].")
return gr.Audio(value=None, label="Selected Segment")
start_time_s, end_time_s = raw_ts_list[selected_index]
print(f"Attempting to play segment: {current_audio_path} from {start_time_s:.2f}s to {end_time_s:.2f}s")
segment_data = get_audio_segment(current_audio_path, start_time_s, end_time_s)
if segment_data:
print("Segment data retrieved successfully.")
return gr.Audio(value=segment_data, autoplay=True, label=f"Segment: {start_time_s:.2f}s - {end_time_s:.2f}s", interactive=False)
else:
print("Failed to get audio segment data.")
return gr.Audio(value=None, label="Selected Segment")
def write_srt(segments, path):
def sec2srt(t):
h, rem = divmod(int(float(t)), 3600)
m, s = divmod(rem, 60)
ms = int((float(t) - int(float(t))) * 1000)
return f"{h:02}:{m:02}:{s:02},{ms:03}"
with open(path, "w", encoding="utf-8") as f:
for i, seg in enumerate(segments, 1):
f.write(f"{i}\n{sec2srt(seg[0])} --> {sec2srt(seg[1])}\n{seg[2]}\n\n")
def write_vtt(segments, words, path):
def sec2vtt(t):
h, rem = divmod(int(float(t)), 3600)
m, s = divmod(rem, 60)
ms = int((float(t) - int(float(t))) * 1000)
return f"{h:02}:{m:02}:{s:02}.{ms:03}"
with open(path, "w", encoding="utf-8") as f:
f.write("WEBVTT\n\n")
word_idx = 0
for seg in segments:
s_start = float(seg[0])
s_end = float(seg[1])
s_text = seg[2]
# このセグメントに含まれる単語を抽出
segment_words = []
while word_idx < len(words):
w = words[word_idx]
w_start = float(w[0])
w_end = float(w[1])
if w_start >= s_start and w_end <= s_end:
segment_words.append(w)
word_idx += 1
elif w_end < s_start:
word_idx += 1
else:
break
# 各単語ごとにタイムスタンプを生成
for i, w in enumerate(segment_words):
w_start = float(w[0])
w_end = float(w[1])
w_text = w[2]
# 現在の単語を強調表示し、他の単語は通常表示
colored_text = ""
for j, other_w in enumerate(segment_words):
if j == i:
colored_text += f"<c.yellow><b>{other_w[2]}</b></c> "
else:
colored_text += f"{other_w[2]} "
f.write(f"{sec2vtt(w_start)} --> {sec2vtt(w_end)}\n{colored_text.strip()}\n\n")
def write_json(segments, words, path):
result = {"segments": []}
word_idx = 0
for s in segments:
s_start = float(s[0])
s_end = float(s[1])
s_text = s[2]
word_list = []
while word_idx < len(words):
w = words[word_idx]
w_start = float(w[0])
w_end = float(w[1])
if w_start >= s_start and w_end <= s_end:
word_list.append({"start": w_start, "end": w_end, "word": w[2]})
word_idx += 1
elif w_end < s_start:
word_idx += 1
else:
break
result["segments"].append({
"start": s_start,
"end": s_end,
"text": s_text,
"words": word_list
})
with open(path, "w", encoding="utf-8") as f:
json.dump(result, f, ensure_ascii=False, indent=2)
def write_lrc(segments, path):
def sec2lrc(t):
m, s = divmod(float(t), 60)
return f"[{int(m):02}:{s:05.2f}]"
with open(path, "w", encoding="utf-8") as f:
for seg in segments:
f.write(f"{sec2lrc(seg[0])}{seg[2]}\n")
article = (
"<p style='font-size: 1.1em;'>"
"This demo showcases <code><a href='https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2'>parakeet-tdt-0.6b-v2</a></code>, a 600M-parameter model for high-quality English ASR.<br>"
"<em>Now optimised for long recordings (hours) with automatic chunking & memory control.</em>"
"</p>"
"<p><strong style='color: red; font-size: 1.2em;'>Key Features:</strong></p>"
"<ul style='font-size: 1.1em;'>"
" <li>Automatic punctuation and capitalization</li>"
" <li>Accurate word-level timestamps (click on a segment in the table below to play it!)</li>"
" <li>Character-level timestamps now available in the 'Character View' tab.</li>"
" <li>Efficiently transcribes long audio segments (<strong>updated to support upto 3 hours</strong>) <small>(For even longer audios, see <a href='https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_chunked_inference/rnnt/speech_to_text_buffered_infer_rnnt.py' target='_blank'>this script</a>)</small></li>"
" <li>Robust performance on spoken numbers, and song lyrics transcription </li>"
"</ul>"
"<p style='font-size: 1.1em;'>"
"This model is <strong>available for commercial and non-commercial use</strong>."
"</p>"
"<p style='text-align: center;'>"
"<a href='https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2' target='_blank'>🎙️ Learn more about the Model</a> | "
"<a href='https://arxiv.org/abs/2305.05084' target='_blank'>📄 Fast Conformer paper</a> | "
"<a href='https://arxiv.org/abs/2304.06795' target='_blank'>📚 TDT paper</a> | "
"<a href='https://github.com/NVIDIA/NeMo' target='_blank'>🧑‍💻 NeMo Repository</a>"
"</p>"
)
examples = [
["data/example-yt_saTD1u8PorI.mp3"],
]
nvidia_theme = gr_themes.Default(
primary_hue=gr_themes.Color(
c50="#E6F1D9", c100="#CEE3B3", c200="#B5D58C", c300="#9CC766",
c400="#84B940", c500="#76B900", c600="#68A600", c700="#5A9200",
c800="#4C7E00", c900="#3E6A00", c950="#2F5600"
),
neutral_hue="gray",
font=[gr_themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
).set()
with gr.Blocks(theme=nvidia_theme) as demo:
model_display_name = MODEL_NAME.split('/')[-1] if '/' in MODEL_NAME else MODEL_NAME
gr.Markdown(f"<h1 style='text-align: center; margin: 0 auto;'>Speech Transcription&nbsp;with&nbsp;{model_display_name} <span style='font-size:0.6em;'>(Long-audio&nbsp;ready)</span></h1>")
gr.HTML(article)
current_audio_path_state = gr.State(None)
raw_timestamps_list_state = gr.State([])
session_dir_state = gr.State()
demo.load(start_session, outputs=[session_dir_state])
with gr.Tabs():
with gr.TabItem("Audio File"):
file_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio File")
gr.Examples(examples=examples, inputs=[file_input], label="Example Audio Files (Click to Load)")
file_transcribe_btn = gr.Button("Transcribe Uploaded File", variant="primary")
with gr.TabItem("Microphone"):
mic_input = gr.Audio(sources=["microphone"], type="filepath", label="Record Audio")
mic_transcribe_btn = gr.Button("Transcribe Microphone Input", variant="primary")
gr.Markdown("---")
gr.Markdown("<p><strong style='color: #FF0000; font-size: 1.2em;'>Transcription Results</strong></p>")
download_btn = gr.DownloadButton(label="Download Segment Transcript (CSV)", visible=False)
srt_btn = gr.DownloadButton(label="Download SRT", visible=False)
vtt_btn = gr.DownloadButton(label="Download VTT", visible=False)
json_btn = gr.DownloadButton(label="Download JSON", visible=False)
lrc_btn = gr.DownloadButton(label="Download LRC", visible=False)
with gr.Tabs():
with gr.TabItem("Segment View (Click row to play segment)"):
vis_timestamps_df = gr.DataFrame(
headers=["Start (s)", "End (s)", "Segment"],
datatype=["number", "number", "str"],
wrap=True,
)
selected_segment_player = gr.Audio(label="Selected Segment", interactive=False)
with gr.TabItem("Word View"):
word_vis_df = gr.DataFrame(
headers=["Start (s)", "End (s)", "Word"],
datatype=["number", "number", "str"],
wrap=False,
)
mic_transcribe_btn.click(
fn=get_transcripts_and_raw_times,
inputs=[mic_input, session_dir_state],
outputs=[vis_timestamps_df, raw_timestamps_list_state, word_vis_df, current_audio_path_state, download_btn, srt_btn, vtt_btn, json_btn, lrc_btn],
api_name="transcribe_mic"
)
file_transcribe_btn.click(
fn=get_transcripts_and_raw_times,
inputs=[file_input, session_dir_state],
outputs=[vis_timestamps_df, raw_timestamps_list_state, word_vis_df, current_audio_path_state, download_btn, srt_btn, vtt_btn, json_btn, lrc_btn],
api_name="transcribe_file"
)
vis_timestamps_df.select(
fn=play_segment,
inputs=[raw_timestamps_list_state, current_audio_path_state],
outputs=[selected_segment_player],
)
demo.unload(end_session)
if __name__ == "__main__":
print("Launching Gradio Demo...")
# タイムアウト対策としてキューサイズと同時実行数を抑制
demo.queue(
max_size=5,
default_concurrency_limit=1
)
demo.launch()