#!/bin/bash # Copyright (c) 2025 NVIDIA (authors: Yuekai Zhang) export CUDA_VISIBLE_DEVICES=0 cosyvoice_path=/workspace/CosyVoice export PYTHONPATH=${cosyvoice_path}:$PYTHONPATH export PYTHONPATH=${cosyvoice_path}/third_party/Matcha-TTS:$PYTHONPATH stage=$1 stop_stage=$2 huggingface_model_local_dir=./cosyvoice2_llm model_scope_model_local_dir=./CosyVoice2-0.5B trt_dtype=bfloat16 trt_weights_dir=./trt_weights_${trt_dtype} trt_engines_dir=./trt_engines_${trt_dtype} model_repo=./model_repo_cosyvoice2 use_spk2info_cache=False if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then echo "Cloning CosyVoice" git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git $cosyvoice_path cd $cosyvoice_path git submodule update --init --recursive cd runtime/triton_trtllm fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then echo "Downloading CosyVoice2-0.5B" # see https://github.com/nvidia-china-sae/mair-hub/blob/main/rl-tutorial/cosyvoice_llm/pretrained_to_huggingface.py huggingface-cli download --local-dir $huggingface_model_local_dir yuekai/cosyvoice2_llm modelscope download --model iic/CosyVoice2-0.5B --local_dir $model_scope_model_local_dir # download spk2info.pt to directly use cached speech tokens, speech feats, and embeddings wget https://raw.githubusercontent.com/qi-hua/async_cosyvoice/main/CosyVoice2-0.5B/spk2info.pt -O $model_scope_model_local_dir/spk2info.pt fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then echo "Converting checkpoint to TensorRT weights" python3 scripts/convert_checkpoint.py --model_dir $huggingface_model_local_dir \ --output_dir $trt_weights_dir \ --dtype $trt_dtype || exit 1 echo "Building TensorRT engines" trtllm-build --checkpoint_dir $trt_weights_dir \ --output_dir $trt_engines_dir \ --max_batch_size 16 \ --max_num_tokens 32768 \ --gemm_plugin $trt_dtype || exit 1 echo "Testing TensorRT engines" python3 ./scripts/test_llm.py --input_text "你好,请问你叫什么?" \ --tokenizer_dir $huggingface_model_local_dir \ --top_k 50 --top_p 0.95 --temperature 0.8 \ --engine_dir=$trt_engines_dir || exit 1 fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then echo "Creating model repository" rm -rf $model_repo mkdir -p $model_repo cosyvoice2_dir="cosyvoice2" cp -r ./model_repo/${cosyvoice2_dir} $model_repo cp -r ./model_repo/tensorrt_llm $model_repo cp -r ./model_repo/token2wav $model_repo if [ $use_spk2info_cache == "False" ]; then cp -r ./model_repo/audio_tokenizer $model_repo cp -r ./model_repo/speaker_embedding $model_repo fi ENGINE_PATH=$trt_engines_dir MAX_QUEUE_DELAY_MICROSECONDS=0 MODEL_DIR=$model_scope_model_local_dir LLM_TOKENIZER_DIR=$huggingface_model_local_dir BLS_INSTANCE_NUM=4 TRITON_MAX_BATCH_SIZE=16 DECOUPLED_MODE=True # True for streaming, False for offline python3 scripts/fill_template.py -i ${model_repo}/token2wav/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} python3 scripts/fill_template.py -i ${model_repo}/${cosyvoice2_dir}/config.pbtxt model_dir:${MODEL_DIR},bls_instance_num:${BLS_INSTANCE_NUM},llm_tokenizer_dir:${LLM_TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} python3 scripts/fill_template.py -i ${model_repo}/tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_beam_width:1,engine_dir:${ENGINE_PATH},max_tokens_in_paged_kv_cache:2560,max_attention_window_size:2560,kv_cache_free_gpu_mem_fraction:0.5,exclude_input_in_output:True,enable_kv_cache_reuse:False,batching_strategy:inflight_fused_batching,max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS},encoder_input_features_data_type:TYPE_FP16,logits_datatype:TYPE_FP32 if [ $use_spk2info_cache == "False" ]; then python3 scripts/fill_template.py -i ${model_repo}/audio_tokenizer/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} python3 scripts/fill_template.py -i ${model_repo}/speaker_embedding/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS} fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then echo "Starting Triton server" tritonserver --model-repository $model_repo fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then echo "Single request test http, only work for offline TTS mode" python3 client_http.py \ --reference-audio ./assets/prompt_audio.wav \ --reference-text "吃燕窝就选燕之屋,本节目由26年专注高品质燕窝的燕之屋冠名播出。豆奶牛奶换着喝,营养更均衡,本节目由豆本豆豆奶特约播出。" \ --target-text "身临其境,换新体验。塑造开源语音合成新范式,让智能语音更自然。" \ --model-name cosyvoice2 fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then echo "Running benchmark client grpc" num_task=4 mode=streaming BLS_INSTANCE_NUM=4 python3 client_grpc.py \ --server-addr localhost \ --model-name cosyvoice2 \ --num-tasks $num_task \ --mode $mode \ --use-spk2info-cache $use_spk2info_cache \ --huggingface-dataset yuekai/seed_tts_cosy2 \ --log-dir ./log_concurrent_tasks_${num_task}_${mode}_bls_${BLS_INSTANCE_NUM}_spk_cache_${use_spk2info_cache} fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then echo "stage 6: Offline inference benchmark" n_gpus=1 datasets=(wenetspeech4tts) # wenetspeech4tts, test_zh, zero_shot_zh backend=trtllm # hf, trtllm, vllm batch_sizes=(16 8 4 2 1) token2wav_batch_size=1 for batch_size in ${batch_sizes[@]}; do for dataset in ${datasets[@]}; do output_dir=./${dataset}_${backend}_llm_batch_size_${batch_size}_token2wav_batch_size_${token2wav_batch_size} CUDA_VISIBLE_DEVICES=0 \ python3 offline_inference.py \ --output-dir $output_dir \ --llm-model-name-or-path $huggingface_model_local_dir \ --token2wav-path $model_scope_model_local_dir \ --backend $backend \ --batch-size $batch_size --token2wav-batch-size $token2wav_batch_size \ --engine-dir $trt_engines_dir \ --split-name ${dataset} || exit 1 done done fi