import os import json import uuid import asyncio from typing import Dict, List, Any, Optional from dataclasses import dataclass, asdict from datetime import datetime import logging from pathlib import Path # Document processing imports import PyPDF2 import pandas as pd from docx import Document from pptx import Presentation import faiss import numpy as np from sentence_transformers import SentenceTransformer # Web framework import streamlit as st from streamlit.runtime.uploaded_file_manager import UploadedFile # LLM Integration (Placeholder for actual LLM client) try: import google.generativeai as genai # Configure your API key # genai.configure(api_key=os.environ.get("GOOGLE_API_KEY")) # Recommended: Load from environment variable LLM_AVAILABLE = True except ImportError: LLM_AVAILABLE = False logging.warning("Google Generative AI library not found. LLM responses will be simulated.") except Exception as e: LLM_AVAILABLE = False logging.error(f"Error configuring Google Generative AI: {e}. LLM responses will be simulated.") # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # --- MCP Message Protocol Classes (as provided in your code) --- @dataclass class MCPMessage: """Model Context Protocol message structure""" sender: str receiver: str type: str trace_id: str payload: Dict[str, Any] timestamp: str = None def __post_init__(self): if self.timestamp is None: self.timestamp = datetime.now().isoformat() def to_dict(self) -> Dict[str, Any]: return asdict(self) class MCPMessageBus: """In-memory message bus for MCP communication""" def __init__(self): self.messages: List[MCPMessage] = [] self.subscribers: Dict[str, List[callable]] = {} self.mcp_log_messages: List[Dict] = [] def subscribe(self, agent_name: str, callback: callable): """Subscribe an agent to receive messages""" if agent_name not in self.subscribers: self.subscribers[agent_name] = [] self.subscribers[agent_name].append(callback) async def publish(self, message: MCPMessage): """Publish a message to the bus and log for UI""" self.messages.append(message) logger.info(f"MCP Message: {message.sender} -> {message.receiver} ({message.type}) | Trace ID: {message.trace_id}") # Add to MCP log for UI display self.mcp_log_messages.append(message.to_dict()) MAX_MCP_LOG_MESSAGES = 20 if len(self.mcp_log_messages) > MAX_MCP_LOG_MESSAGES: self.mcp_log_messages = self.mcp_log_messages[-MAX_MCP_LOG_MESSAGES:] # Deliver to subscribers if message.receiver in self.subscribers: for callback in self.subscribers[message.receiver]: await callback(message) def get_trace_messages(self, trace_id: str) -> List[MCPMessage]: """Get all messages for a specific trace""" return [msg for msg in self.messages if msg.trace_id == trace_id] def get_mcp_log(self) -> List[Dict]: """Get the messages for MCP log display""" return self.mcp_log_messages # --- Document Processing Classes (as provided in your code) --- class DocumentProcessor: """Base class for document processing""" @staticmethod def process_pdf(file_content: bytes) -> str: """Extract text from PDF""" try: import io pdf_reader = PyPDF2.PdfReader(io.BytesIO(file_content)) text = "" for page in pdf_reader.pages: page_text = page.extract_text() if page_text: text += page_text + "\n" return text except Exception as e: logger.error(f"Error processing PDF: {e}") return "" @staticmethod def process_docx(file_content: bytes) -> str: """Extract text from DOCX""" try: import io doc = Document(io.BytesIO(file_content)) text = "" for paragraph in doc.paragraphs: text += paragraph.text + "\n" return text except Exception as e: logger.error(f"Error processing DOCX: {e}") return "" @staticmethod def process_pptx(file_content: bytes) -> str: """Extract text from PPTX""" try: import io prs = Presentation(io.BytesIO(file_content)) text = "" for slide_num, slide in enumerate(prs.slides, 1): text += f"Slide {slide_num}:\n" for shape in slide.shapes: if hasattr(shape, "text"): text += shape.text + "\n" text += "\n" return text except Exception as e: logger.error(f"Error processing PPTX: {e}") return "" @staticmethod def process_csv(file_content: bytes) -> str: """Extract text from CSV""" try: import io df = pd.read_csv(io.BytesIO(file_content)) text = f"CSV Data Summary:\n" text += f"Columns: {', '.join(df.columns.tolist())}\n" text += f"Rows: {len(df)}\n\n" text += "Sample Data:\n" text += df.head(10).to_string() text += "\n\nStatistical Summary:\n" text += df.describe().to_string() return text except Exception as e: logger.error(f"Error processing CSV: {e}") return "" @staticmethod def process_txt(file_content: bytes) -> str: """Extract text from TXT/Markdown""" try: return file_content.decode('utf-8') except Exception as e: logger.error(f"Error processing TXT: {e}") return "" # --- Agent Classes (as provided in your code, with minor corrections/additions) --- class IngestionAgent: """Agent responsible for document parsing and preprocessing""" def __init__(self, message_bus: MCPMessageBus): self.message_bus = message_bus self.message_bus.subscribe("IngestionAgent", self.handle_message) self.processor = DocumentProcessor() async def handle_message(self, message: MCPMessage): """Handle incoming MCP messages""" if message.type == "INGEST_DOCUMENT": await self.process_document(message) async def process_document(self, message: MCPMessage): """Process uploaded document""" filename = message.payload.get("filename", "unknown_file") try: file_info = message.payload file_content = file_info.get("content") file_type = file_info.get("type") text = "" if file_type == "application/pdf": text = self.processor.process_pdf(file_content) elif file_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": text = self.processor.process_docx(file_content) elif file_type == "application/vnd.openxmlformats-officedocument.presentationml.presentation": text = self.processor.process_pptx(file_content) elif file_type == "text/csv": text = self.processor.process_csv(file_content) elif file_type in ["text/plain", "text/markdown"]: text = self.processor.process_txt(file_content) else: text = "Unsupported file format" logger.info(f"IngestionAgent: Processed {filename}. Extracted text length: {len(text)}") if not text or len(text.strip()) < 50: logger.warning(f"IngestionAgent: Extracted text from {filename} appears to be empty or very short") error_message = MCPMessage( sender="IngestionAgent", receiver="CoordinatorAgent", type="ERROR", trace_id=message.trace_id, payload={"error": f"Failed to extract meaningful text from {filename}"} ) await self.message_bus.publish(error_message) return chunks = self.chunk_text(text) logger.info(f"IngestionAgent: Generated {len(chunks)} chunks for {filename}") if not chunks: logger.warning(f"IngestionAgent: No chunks generated for {filename}") error_message = MCPMessage( sender="IngestionAgent", receiver="CoordinatorAgent", type="ERROR", trace_id=message.trace_id, payload={"error": f"No chunks generated from {filename}"} ) await self.message_bus.publish(error_message) return response_message = MCPMessage( sender="IngestionAgent", receiver="RetrievalAgent", type="DOCUMENT_PROCESSED", trace_id=message.trace_id, payload={ "filename": filename, "chunks": chunks, "original_text_preview": text[:1000] + "..." if len(text) > 1000 else text } ) await self.message_bus.publish(response_message) except Exception as e: logger.error(f"Error in IngestionAgent processing document {filename}: {e}", exc_info=True) error_message = MCPMessage( sender="IngestionAgent", receiver="CoordinatorAgent", type="ERROR", trace_id=message.trace_id, payload={"error": f"Error processing {filename}: {str(e)}"} ) await self.message_bus.publish(error_message) def chunk_text(self, text: str, chunk_size: int = 250, overlap: int = 50) -> List[str]: """Split text into chunks for embedding with overlap.""" if not text: return [] words = text.split() chunks = [] i = 0 while i < len(words): chunk_end = min(i + chunk_size, len(words)) chunk = " ".join(words[i:chunk_end]) chunks.append(chunk) i += (chunk_size - overlap) if i >= len(words): break if chunk_end == len(words): break if not chunks and text.strip(): # Ensure at least one chunk if text exists chunks.append(text.strip()) return chunks class RetrievalAgent: """Agent responsible for embeddings and semantic retrieval""" def __init__(self, message_bus: MCPMessageBus): self.message_bus = message_bus self.message_bus.subscribe("RetrievalAgent", self.handle_message) # Explicitly set device to 'cpu' to avoid potential GPU memory issues self.embedder = SentenceTransformer('all-MiniLM-L6-v2', device='cpu') self.index = None self.chunks = [] # Stores original text chunks self.chunk_metadata = [] # Stores metadata including filename for each chunk async def handle_message(self, message: MCPMessage): """Handle incoming MCP messages""" if message.type == "DOCUMENT_PROCESSED": await self.embed_document(message) elif message.type == "RETRIEVE_CONTEXT": await self.retrieve_context(message) elif message.type == "CLEAR_INDEX": self.clear_index() await self.message_bus.publish(MCPMessage( sender="RetrievalAgent", receiver="CoordinatorAgent", type="INDEX_CLEARED", trace_id=message.trace_id, payload={"message": "RetrievalAgent index and data cleared successfully."} )) def clear_index(self): """Clears the FAISS index and associated data.""" self.index = None self.chunks = [] self.chunk_metadata = [] logger.info("RetrievalAgent: FAISS index and all document data cleared.") async def embed_document(self, message: MCPMessage): """Create embeddings for document chunks""" filename = message.payload.get("filename", "unknown_file") try: chunks_to_embed = message.payload.get("chunks", []) if not chunks_to_embed: logger.warning(f"RetrievalAgent: Received no chunks for {filename}") error_message = MCPMessage( sender="RetrievalAgent", receiver="CoordinatorAgent", type="ERROR", trace_id=message.trace_id, payload={"error": f"No chunks provided for {filename}"} ) await self.message_bus.publish(error_message) return logger.info(f"RetrievalAgent: Embedding {len(chunks_to_embed)} chunks for {filename}") embeddings = self.embedder.encode(chunks_to_embed, convert_to_numpy=True) if self.index is None: dimension = embeddings.shape[1] self.index = faiss.IndexFlatL2(dimension) logger.info(f"RetrievalAgent: Initialized FAISS index with dimension {dimension}") start_idx = len(self.chunks) # Keep track of where new chunks start self.chunks.extend(chunks_to_embed) for i, chunk_text in enumerate(chunks_to_embed): self.chunk_metadata.append({ "filename": filename, "chunk_index": start_idx + i, # Global index in self.chunks "text": chunk_text }) self.index.add(embeddings.astype('float32')) logger.info(f"RetrievalAgent: Added {len(embeddings)} embeddings to FAISS index. Total: {self.index.ntotal}") success_message = MCPMessage( sender="RetrievalAgent", receiver="CoordinatorAgent", type="EMBEDDING_COMPLETE", trace_id=message.trace_id, payload={ "filename": filename, "chunks_processed": len(chunks_to_embed), "total_chunks_in_index": self.index.ntotal } ) await self.message_bus.publish(success_message) except Exception as e: logger.error(f"Error in RetrievalAgent embedding document {filename}: {e}", exc_info=True) error_message = MCPMessage( sender="RetrievalAgent", receiver="CoordinatorAgent", type="ERROR", trace_id=message.trace_id, payload={"error": f"Failed to embed document {filename}: {str(e)}"} ) await self.message_bus.publish(error_message) async def retrieve_context(self, message: MCPMessage): """Retrieve relevant context for a query""" query = message.payload.get("query", "") top_k = message.payload.get("top_k", 5) try: logger.info(f"RetrievalAgent: Retrieving context for query: '{query}'") if self.index is None or self.index.ntotal == 0: logger.warning("RetrievalAgent: No documents indexed yet") response_message = MCPMessage( sender="RetrievalAgent", receiver="LLMResponseAgent", type="CONTEXT_RESPONSE", trace_id=message.trace_id, payload={ "top_chunks": [], "query": query, "message": "No documents have been indexed yet." } ) await self.message_bus.publish(response_message) return query_embedding = self.embedder.encode([query], convert_to_numpy=True) actual_top_k = min(top_k, self.index.ntotal) distances, indices = self.index.search(query_embedding.astype('float32'), actual_top_k) top_chunks = [] for i, idx in enumerate(indices[0]): if 0 <= idx < len(self.chunk_metadata): metadata = self.chunk_metadata[idx] top_chunks.append({ "text": metadata["text"], "filename": metadata["filename"], "score": float(distances[0][i]) }) logger.info(f"RetrievalAgent: Retrieved {len(top_chunks)} chunks for query") response_message = MCPMessage( sender="RetrievalAgent", receiver="LLMResponseAgent", type="CONTEXT_RESPONSE", trace_id=message.trace_id, payload={ "top_chunks": top_chunks, "query": query } ) await self.message_bus.publish(response_message) except Exception as e: logger.error(f"Error in RetrievalAgent retrieval: {e}", exc_info=True) error_message = MCPMessage( sender="RetrievalAgent", receiver="CoordinatorAgent", type="ERROR", trace_id=message.trace_id, payload={"error": f"Failed to retrieve context: {str(e)}"} ) await self.message_bus.publish(error_message) class LLMResponseAgent: """Agent responsible for generating LLM responses""" def __init__(self, message_bus: MCPMessageBus): self.message_bus = message_bus self.message_bus.subscribe("LLMResponseAgent", self.handle_message) self.model = None if LLM_AVAILABLE: try: # Ensure you have GOOGLE_API_KEY set in your environment variables genai.configure(api_key=os.environ.get("GOOGLE_API_KEY")) self.model = genai.GenerativeModel('gemini-1.5-flash')# Or other suitable model logger.info("LLMResponseAgent: Google Generative AI model loaded.") except Exception as e: logger.error(f"Failed to load Google Generative AI model: {e}", exc_info=True) self.model = None else: logger.warning("LLMResponseAgent: LLM not available. Responses will be simulated.") async def handle_message(self, message: MCPMessage): """Handle incoming MCP messages""" if message.type == "CONTEXT_RESPONSE": await self.generate_response(message) async def generate_response(self, message: MCPMessage): """Generate response using retrieved context""" query = message.payload.get("query", "") trace_id = message.trace_id try: top_chunks = message.payload.get("top_chunks", []) logger.info(f"LLMResponseAgent: Generating response for query '{query}' with {len(top_chunks)} chunks") # Format context context = "" sources = [] if top_chunks: for chunk in top_chunks: if 'text' in chunk and 'filename' in chunk: context += f"Document: {chunk['filename']}\nContent: {chunk['text']}\n\n" sources.append(chunk['filename']) else: context = "No relevant context found in uploaded documents." # Generate response using LLM or fallback response_text = await self.generate_rag_response(query, context, top_chunks) final_message = MCPMessage( sender="LLMResponseAgent", receiver="CoordinatorAgent", type="FINAL_RESPONSE", trace_id=trace_id, payload={ "query": query, "response": response_text, "sources": list(set(sources)), # Unique sources "context_chunks_count": len(top_chunks) } ) await self.message_bus.publish(final_message) except Exception as e: logger.error(f"Error in LLMResponseAgent: {e}", exc_info=True) error_message = MCPMessage( sender="LLMResponseAgent", receiver="CoordinatorAgent", type="ERROR", trace_id=trace_id, payload={"error": f"Failed to generate response: {str(e)}"} ) await self.message_bus.publish(error_message) async def generate_rag_response(self, query: str, context: str, chunks: List[Dict]) -> str: """ Generate a comprehensive response using the retrieved context. This method integrates with an actual LLM. """ if not chunks: return f"I don't have any relevant information in the indexed documents to answer your question about '{query}'. Please upload and process relevant documents first." if self.model is None: # Fallback to rule-based or simple concatenation if LLM is not available logger.warning("LLM not available, synthesizing answer with rule-based approach.") return self.synthesize_answer(query, chunks, context) # Use the old rule-based method prompt = f"""You are an intelligent assistant. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't have enough information from the provided documents. Do not make up an answer. Context: {context} Question: {query} Answer: """ try: # Using asyncio.to_thread for blocking LLM calls in an async environment # If the LLM client supports async, use await self.model.generate_content(prompt) directly response = await asyncio.to_thread(self.model.generate_content, prompt) return response.text except Exception as e: logger.error(f"Error calling LLM for RAG response: {e}", exc_info=True) return f"An error occurred while trying to generate a response. Please try again. (LLM Error: {str(e)})" def synthesize_answer(self, query: str, chunks: List[Dict], combined_text: str) -> str: """ Synthesize a direct answer from the retrieved chunks. This is a rule-based approach that can be enhanced with actual LLM integration. Used as a fallback if LLM is not available. """ query_lower = query.lower() # Try to provide a direct answer based on query patterns if "requirements" in query_lower or "requirement" in query_lower: return self.extract_requirements(chunks, combined_text) elif "citation" in query_lower or "cite" in query_lower: return self.extract_citation_info(chunks, combined_text) elif "what is" in query_lower or "define" in query_lower: return self.extract_definition(query, chunks, combined_text) elif "how to" in query_lower or "how do" in query_lower: return self.extract_instructions(chunks, combined_text) elif "deadline" in query_lower or "due date" in query_lower: return self.extract_deadline_info(chunks, combined_text) else: return self.provide_general_answer(query, chunks, combined_text) def extract_requirements(self, chunks: List[Dict], combined_text: str) -> str: """Extract requirements from the document context""" requirements = [] lines = combined_text.split('\n') for line in lines: line = line.strip() if any(keyword in line.lower() for keyword in ['requirement', 'must', 'should', 'need to', 'required']): if line and not line.startswith('#'): requirements.append(line) if requirements: response = "Based on the documents, here are the requirements:\n\n" for i, req in enumerate(requirements[:10], 1): # Limit to 10 requirements response += f"{i}. {req}\n" return response else: # Fallback to showing relevant sections relevant_sections = [] for chunk in chunks: if any(keyword in chunk['text'].lower() for keyword in ['requirement', 'must', 'should', 'task']): relevant_sections.append(f"From {chunk['filename']}:\n{chunk['text'][:300]}...") if relevant_sections: response = "Here are the relevant sections about requirements:\n\n" response += "\n\n".join(relevant_sections[:3]) return response else: return "I found some relevant content, but couldn't identify specific requirements. Here's what I found:\n\n" + chunks[0]['text'][:500] + "..." def extract_citation_info(self, chunks: List[Dict], combined_text: str) -> str: """Extract citation information from the document context""" citation_info = [] lines = combined_text.split('\n') for line in lines: line = line.strip() if any(keyword in line.lower() for keyword in ['citation', 'cite', 'reference', 'bibliography', 'source']): if line and len(line) > 10: citation_info.append(line) if citation_info: response = "Based on the documents, here's information about citations:\n\n" for info in citation_info[:5]: response += f"• {info}\n" return response else: return "I found some relevant content about citations:\n\n" + chunks[0]['text'][:500] + "..." def extract_definition(self, query: str, chunks: List[Dict], combined_text: str) -> str: """Extract definition or explanation for a term""" # Try to find the term being defined if "what is" in query.lower(): term = query.lower().replace("what is", "").strip().rstrip("?") elif "define" in query.lower(): term = query.lower().replace("define", "").strip() else: term = query.lower() # Look for definitions in the text lines = combined_text.split('.') definitions = [] for line in lines: if term in line.lower() and any(keyword in line.lower() for keyword in ['is', 'means', 'refers to', 'defined as']): definitions.append(line.strip()) if definitions: response = f"Based on the documents, here's what I found about '{term}':\n\n" for definition in definitions[:3]: response += f"• {definition}\n" return response else: return f"Here's the most relevant information I found about '{term}':\n\n" + chunks[0]['text'][:500] + "..." def extract_instructions(self, chunks: List[Dict], combined_text: str) -> str: """Extract how-to instructions or procedures""" instructions = [] lines = combined_text.split('\n') for line in lines: line = line.strip() if any(keyword in line.lower() for keyword in ['step', 'first', 'then', 'next', 'follow', 'procedure']): if line and len(line) > 5: instructions.append(line) if instructions: response = "Here are the instructions I found:\n\n" for i, instruction in enumerate(instructions[:8], 1): response += f"{i}. {instruction}\n" return response else: return "Here's the relevant procedural information:\n\n" + chunks[0]['text'][:500] + "..." def extract_deadline_info(self, chunks: List[Dict], combined_text: str) -> str: """Extract deadline or date information""" deadline_info = [] lines = combined_text.split('\n') for line in lines: line = line.strip() if any(keyword in line.lower() for keyword in ['deadline', 'due', 'date', 'submit', 'submission']): if line and len(line) > 10: deadline_info.append(line) if deadline_info: response = "Here's the deadline information:\n\n" for info in deadline_info[:5]: response += f"• {info}\n" return response else: return "Here's the relevant information about deadlines:\n\n" + chunks[0]['text'][:500] + "..." def provide_general_answer(self, query: str, chunks: List[Dict], combined_text: str) -> str: """Provide a general answer when no specific pattern is matched""" # Try to find the most relevant chunk best_chunk = chunks[0] # Default to first chunk # Look for chunks that contain query terms query_terms = query.lower().split() best_score = 0 for chunk in chunks: score = sum(1 for term in query_terms if term in chunk['text'].lower()) if score > best_score: best_score = score best_chunk = chunk response = f"Based on your question '{query}', here's the most relevant information I found:\n\n" response += best_chunk['text'][:800] + ("..." if len(best_chunk['text']) > 800 else "") response += f"\n\n(Source: {best_chunk['filename']})" return response class CoordinatorAgent: """Main coordinator agent that orchestrates the workflow""" def __init__(self, message_bus: MCPMessageBus): self.message_bus = message_bus self.message_bus.subscribe("CoordinatorAgent", self.handle_message) self.active_traces = {} async def handle_message(self, message: MCPMessage): """Handle incoming MCP messages""" logger.info(f"CoordinatorAgent: Received {message.type} from {message.sender}") # Store message response in active_traces for UI retrieval self.active_traces[message.trace_id] = { "status": message.type, # Use message type as status for now "payload": message.payload } # You might want more granular status updates depending on your UI needs if message.type == "EMBEDDING_COMPLETE": st.session_state.indexed_document_names.add(message.payload.get("filename")) st.rerun() # Rerun to update the indexed documents list elif message.type == "FINAL_RESPONSE": st.session_state.chat_history.append({"role": "assistant", "content": message.payload["response"], "sources": message.payload["sources"]}) st.session_state.response_ready = True # Signal that a response is ready st.rerun() # Rerun to display the response elif message.type == "ERROR": st.error(f"Error in trace {message.trace_id}: {message.payload.get('error')}") st.session_state.response_ready = True # Allow UI to unblock st.rerun() # Rerun to display error elif message.type == "INDEX_CLEARED": st.session_state.indexed_document_names.clear() st.session_state.chat_history = [] st.success("All indexed data cleared!") st.rerun() async def process_document(self, uploaded_file: UploadedFile) -> str: """Process an uploaded document""" trace_id = str(uuid.uuid4()) file_content = uploaded_file.read() message = MCPMessage( sender="CoordinatorAgent", receiver="IngestionAgent", type="INGEST_DOCUMENT", trace_id=trace_id, payload={ "filename": uploaded_file.name, "type": uploaded_file.type, "content": file_content } ) await self.message_bus.publish(message) return trace_id async def process_query(self, query: str) -> str: """Process a user query""" trace_id = str(uuid.uuid4()) message = MCPMessage( sender="CoordinatorAgent", receiver="RetrievalAgent", type="RETRIEVE_CONTEXT", trace_id=trace_id, payload={"query": query, "top_k": 5} # Request top 5 chunks ) await self.message_bus.publish(message) return trace_id async def clear_all_data(self) -> str: """Initiate clearing of all indexed data.""" trace_id = str(uuid.uuid4()) message = MCPMessage( sender="CoordinatorAgent", receiver="RetrievalAgent", type="CLEAR_INDEX", trace_id=trace_id, payload={} ) await self.message_bus.publish(message) return trace_id # --- Streamlit UI Class --- class RAGSystemUI: def __init__(self): # Initialize message bus and agents, and store them in session_state # This prevents re-initialization on every rerun if "message_bus" not in st.session_state: st.session_state.message_bus = MCPMessageBus() st.session_state.ingestion_agent = IngestionAgent(st.session_state.message_bus) st.session_state.retrieval_agent = RetrievalAgent(st.session_state.message_bus) st.session_state.llm_response_agent = LLMResponseAgent(st.session_state.message_bus) st.session_state.coordinator_agent = CoordinatorAgent(st.session_state.message_bus) # Initialize chat history and indexed documents list st.session_state.chat_history = [] st.session_state.indexed_document_names = set() # Use a set for unique names st.session_state.response_ready = True # Flag to control query input self.message_bus = st.session_state.message_bus self.coordinator_agent = st.session_state.coordinator_agent self.retrieval_agent = st.session_state.retrieval_agent # Used to check for indexed docs async def run(self): st.set_page_config(layout="wide", page_title="Intelligent RAG Chatbot") st.title("Intelligent RAG System with Agentic Workflow") # --- Document Upload Section --- st.header("Document Upload") uploaded_file = st.file_uploader( "Upload PDF, DOCX, PPTX, CSV, or TXT files", type=["pdf", "docx", "pptx", "csv", "txt", "md"], accept_multiple_files=False, # Process one at a time for simplicity key="file_uploader" ) if uploaded_file: st.write(f"**Selected:** {uploaded_file.name} ({uploaded_file.size / 1024:.2f} KB)") # Check if this file is already in the indexed set if uploaded_file.name not in st.session_state.indexed_document_names: if st.button(f"Process {uploaded_file.name}", key="process_btn"): with st.spinner(f"Processing '{uploaded_file.name}'... This may take a moment."): try: trace_id = await self.coordinator_agent.process_document(uploaded_file) # Wait for the document processing to complete or error out # This loop needs to be robust, possibly with a timeout while trace_id not in self.coordinator_agent.active_traces or \ self.coordinator_agent.active_traces[trace_id]["status"] not in ["embedding_complete", "ERROR"]: await asyncio.sleep(0.1) # Short delay to prevent busy-waiting status_info = self.coordinator_agent.active_traces[trace_id] if status_info["status"] == "embedding_complete": st.success(f"'{uploaded_file.name}' processed and indexed successfully! Total chunks: {status_info['payload']['total_chunks_in_index']}") st.session_state.indexed_document_names.add(uploaded_file.name) # Add to displayed list else: st.error(f"Failed to process '{uploaded_file.name}': {status_info['payload'].get('error', 'Unknown error')}") except Exception as e: st.error(f"An unexpected error occurred during document processing: {e}") else: st.info(f"'{uploaded_file.name}' is already indexed.") # Display Indexed Documents st.subheader("Indexed Documents") if self.retrieval_agent.index and self.retrieval_agent.index.ntotal > 0: st.write(f"Total chunks in index: **{self.retrieval_agent.index.ntotal}**") for doc_name in sorted(list(st.session_state.indexed_document_names)): st.write(f"- {doc_name}") if st.button("Clear All Indexed Data", key="clear_index_btn"): with st.spinner("Clearing all indexed documents..."): trace_id = await self.coordinator_agent.clear_all_data() while trace_id not in self.coordinator_agent.active_traces or \ self.coordinator_agent.active_traces[trace_id]["status"] != "INDEX_CLEARED": await asyncio.sleep(0.1) # The coordinator's handle_message already updates session state and reruns else: st.write("No documents indexed yet.") st.markdown("---") # --- Chat Interface Section --- st.header("Chat with your Documents") # Display chat messages for message in st.session_state.chat_history: with st.chat_message(message["role"]): st.markdown(message["content"]) if "sources" in message and message["sources"]: st.caption(f"Sources: {', '.join(message['sources'])}") # Chat input user_query = st.chat_input( "Type your question here...", disabled=not st.session_state.response_ready # Disable input while processing ) if user_query: # Add user query to chat history st.session_state.chat_history.append({"role": "user", "content": user_query}) st.session_state.response_ready = False # Disable input # Display user message immediately with st.chat_message("user"): st.markdown(user_query) # Trigger RAG process with st.spinner("Searching and generating response..."): trace_id = await self.coordinator_agent.process_query(user_query) # Wait for the response to be ready while trace_id not in self.coordinator_agent.active_traces or \ self.coordinator_agent.active_traces[trace_id]["status"] not in ["FINAL_RESPONSE", "ERROR"]: await asyncio.sleep(0.1) # Short delay to prevent busy-waiting # The CoordinatorAgent's handle_message for FINAL_RESPONSE/ERROR # will update chat_history and set response_ready=True, triggering a rerun. st.markdown("---") # --- System Log (MCP Messages) Section --- st.subheader("System Log (MCP Messages)") if self.message_bus.get_mcp_log(): for msg in reversed(self.message_bus.get_mcp_log()): # Show latest first st.json(msg) else: st.info("No MCP messages yet.") # --- Main application entry point --- if __name__ == "__main__": # If GOOGLE_API_KEY is not set as an environment variable, prompt for it if not os.environ.get("GOOGLE_API_KEY") and LLM_AVAILABLE: api_key = st.sidebar.text_input("Enter your Google API Key:", type="password") if api_key: os.environ["GOOGLE_API_KEY"] = api_key st.sidebar.success("API Key set!") # Re-initialize LLM agent to pick up the new API key if "llm_response_agent" in st.session_state: st.session_state.llm_response_agent = LLMResponseAgent(st.session_state.message_bus) st.rerun() else: st.sidebar.warning("Please enter your Google API Key to enable LLM responses.") LLM_AVAILABLE = False # Temporarily disable if key not provided ui = RAGSystemUI() asyncio.run(ui.run())