File size: 13,607 Bytes
39209fe 9fadf1e 39209fe 9fadf1e 39209fe 9fadf1e 39209fe 9fadf1e 39209fe 597ae5c 1adac6e 597ae5c 39209fe 1adac6e 39209fe 50cc151 39209fe bdc9093 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import cv2
import numpy as np
from collections import defaultdict
from ultralytics import YOLO
import os
import gdown # Added for downloading from Google Drive
import tempfile # Added for temporary file handling
import torch # Added: Import torch for safe globals
import ultralytics.nn.tasks
# --- Configuration ---
# Model and video paths will be handled dynamically or by Hugging Face Space environment
# MODEL_PATH needs to be downloaded if not present.
MODEL_DOWNLOAD_ID = "1-5fOSHOSB9UXyP_enOoZNAMScrePVcMD" # Google Drive file ID
MODEL_NAME = "yolov11_model.pt"
MODEL_PATH = MODEL_NAME # Will be downloaded to the current working directory
# Thresholds for object detection and tracking
CONFIDENCE_THRESHOLD = 0.5
IOU_TRACKING_THRESHOLD = 0.3
FEATURE_SIMILARITY_THRESHOLD = 0.5
MAX_LOST_FRAMES = 15
# --- Global Variables for Tracking State ---
# These will be reset for each new video processed by Gradio's function call
_next_player_id = 0
_active_players = {}
_inactive_players = {}
class Player:
"""
Represents a single player being tracked, holding their current state and historical features.
"""
def __init__(self, player_id, bbox, frame_num, features=None):
self.player_id = player_id
self.bbox = bbox
self.last_seen_frame = frame_num
self.features = features
self.lost_frames_count = 0
def update_bbox(self, new_bbox, frame_num):
self.bbox = new_bbox
self.last_seen_frame = frame_num
self.lost_frames_count = 0
def __repr__(self):
return (f"Player(ID:{self.player_id}, Bbox:[{int(self.bbox[0])},{int(self.bbox[1])},"
f"{int(self.bbox[2])},{int(self.bbox[3])}], LastSeen:{self.last_seen_frame})")
def calculate_iou(boxA, boxB):
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
iou = interArea / float(boxAArea + boxBArea - interArea) if (boxAArea + boxBArea - interArea) > 0 else 0.0
return iou
def extract_features(image, bbox):
x1, y1, x2, y2 = map(int, bbox)
h, w, _ = image.shape
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(w, x2)
y2 = min(h, y2)
if x2 <= x1 or y2 <= y1:
return None
cropped_player = image[y1:y2, x1:x2]
if cropped_player.size == 0 or cropped_player.shape[0] == 0 or cropped_player.shape[1] == 0:
return None
try:
hsv_cropped = cv2.cvtColor(cropped_player, cv2.COLOR_BGR2HSV)
hist = cv2.calcHist([hsv_cropped], [0, 1, 2], None, [8, 8, 8],
[0, 180, 0, 256, 0, 256])
hist = cv2.normalize(hist, hist).flatten()
return hist
except cv2.error as e:
return None
def compare_features(features1, features2):
if features1 is None or features2 is None or len(features1) != len(features2):
return 0.0
return cv2.compareHist(features1, features2, cv2.HISTCMP_CORREL)
# Load model globally to avoid re-loading on every function call (efficiency for Gradio)
# Model will be downloaded if not found.
_yolo_model = None
_player_class_id = -1
_model_loaded = False
def _load_yolo_model():
"""Helper function to load the YOLO model once."""
global _yolo_model, _player_class_id, _model_loaded
if _model_loaded:
return True
print("Attempting to load YOLO model...")
if not os.path.exists(MODEL_PATH):
print(f"Model {MODEL_PATH} not found. Attempting to download from Google Drive...")
try:
gdown.download(id=MODEL_DOWNLOAD_ID, output=MODEL_PATH, quiet=False)
print(f"Model downloaded to {MODEL_PATH}")
except Exception as e:
print(f"Error downloading model: {e}")
return False
try:
# UPDATED: Allowlist custom classes AND common PyTorch modules for safe loading
torch.serialization.add_safe_globals([
ultralytics.nn.tasks.DetectionModel,
torch.nn.modules.container.Sequential, # ADD THIS LINE
# Add other Ultralytics model types here if they cause similar errors
# e.g., ultralytics.nn.tasks.SegmentationModel, ultralytics.nn.tasks.PoseModel etc.
])
_yolo_model = YOLO(MODEL_PATH)
if torch.cuda.is_available():
_yolo_model.to('cuda')
print("YOLO model moved to CUDA (GPU) device.")
else:
print("CUDA (GPU) is not available, YOLO model will run on CPU.")
# ADD THIS LINE: Convert model to half-precision (FP16) - do this AFTER moving to device
_yolo_model.half()
print("YOLO model set to half-precision (FP16).")
print("Model Class Names:", _yolo_model.names)
found_player_class = False
for class_id, class_name in _yolo_model.names.items():
if class_name.lower() == 'player':
_player_class_id = class_id
found_player_class = True
break
if not found_player_class:
print("Error: 'player' class not found in model's names. Check model training.")
return False
print(f"Detected 'player' class ID: {_player_class_id}")
_model_loaded = True
return True
except Exception as e:
print(f"Error loading YOLO model: {e}")
return False
# Main processing function to be called by Gradio
def process_reid_video(input_video_path):
"""
Processes an input video for player re-identification and returns the path to the output video.
"""
global _next_player_id, _active_players, _inactive_players
# Reset global tracking variables for each new video submission
_next_player_id = 0
_active_players = {}
_inactive_players = {}
# Ensure model is loaded
if not _model_loaded and not _load_yolo_model():
print("Failed to load YOLO model. Cannot process video.")
# Create a dummy video or raise an error for Gradio to display
dummy_output_path = os.path.join(tempfile.gettempdir(), "error_output.mp4")
dummy_writer = cv2.VideoWriter(dummy_output_path, cv2.VideoWriter_fourcc(*'mp4v'), 10, (640, 480))
if dummy_writer.isOpened():
blank_frame = np.zeros((480, 640, 3), dtype=np.uint8)
cv2.putText(blank_frame, "ERROR: Model Failed to Load!", (50, 240),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
for _ in range(30): # Write a few frames
dummy_writer.write(blank_frame)
dummy_writer.release()
return dummy_output_path
cap = cv2.VideoCapture(input_video_path)
if not cap.isOpened():
print(f"Error: Could not open input video {input_video_path}")
return None # Gradio will show an error if None is returned
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
# Create a temporary output file for Gradio
temp_output_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
OUTPUT_VIDEO_PATH = temp_output_file.name
temp_output_file.close() # Close the file handle as cv2.VideoWriter needs to open it
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(OUTPUT_VIDEO_PATH, fourcc, fps, (frame_width, frame_height))
if not out.isOpened():
print(f"Error: Could not open video writer for {OUTPUT_VIDEO_PATH}.")
cap.release()
return None
print(f"Processing video: {input_video_path}")
frame_num = 0
while True:
ret, frame = cap.read()
if not ret:
break
frame_num += 1
# print(f"Processing Frame: {frame_num}") # Keep this commented for cleaner Gradio logs
all_raw_detections = []
player_detections_for_tracking = []
results = _yolo_model(frame, verbose=False,half=True,imgsz=640)
for r in results:
# Ensure results.boxes.data is not empty
if r.boxes and r.boxes.data is not None:
for *xyxy, conf, cls in r.boxes.data:
bbox = xyxy
confidence = float(conf)
class_id = int(cls)
class_name = _yolo_model.names.get(class_id, "unknown")
all_raw_detections.append({
'bbox': bbox,
'confidence': confidence,
'class_id': class_id,
'class_name': class_name
})
if class_id == _player_class_id and confidence > CONFIDENCE_THRESHOLD:
player_detections_for_tracking.append(bbox)
current_frame_assigned_ids = []
matched_detections_indices = set()
# 2a. Short-term Tracking (IoU-based)
for i, det_bbox in enumerate(player_detections_for_tracking):
best_match_player_id = -1
max_iou = 0.0
for player_id, player in list(_active_players.items()):
iou = calculate_iou(player.bbox, det_bbox)
if iou > max_iou:
max_iou = iou
best_match_player_id = player_id
if max_iou >= IOU_TRACKING_THRESHOLD:
_active_players[best_match_player_id].update_bbox(det_bbox, frame_num)
current_frame_assigned_ids.append(best_match_player_id)
matched_detections_indices.add(i)
# 2b. Re-identification (Feature-based)
unmatched_detections = [det_bbox for i, det_bbox in enumerate(player_detections_for_tracking)
if i not in matched_detections_indices]
for det_bbox in unmatched_detections:
player_features = extract_features(frame, det_bbox)
if player_features is None:
continue
best_reid_match_id = -1
max_similarity = 0.0
for player_id, player in list(_inactive_players.items()):
similarity = compare_features(player_features, player.features)
if similarity > max_similarity:
max_similarity = similarity
best_reid_match_id = player_id
if max_similarity >= FEATURE_SIMILARITY_THRESHOLD:
reidentified_player = _inactive_players.pop(best_reid_match_id)
reidentified_player.update_bbox(det_bbox, frame_num)
reidentified_player.features = player_features
_active_players[best_reid_match_id] = reidentified_player
current_frame_assigned_ids.append(best_reid_match_id)
else:
new_player = Player(_next_player_id, det_bbox, frame_num, player_features)
_active_players[_next_player_id] = new_player
current_frame_assigned_ids.append(_next_player_id)
_next_player_id += 1
# 2c. Update Player Status
players_to_deactivate = []
for player_id, player in list(_active_players.items()):
if player_id not in current_frame_assigned_ids:
player.lost_frames_count += 1
if player.lost_frames_count > MAX_LOST_FRAMES:
players_to_deactivate.append(player_id)
for player_id in players_to_deactivate:
player = _active_players.pop(player_id)
_inactive_players[player_id] = player
# --- 3. Visualization ---
display_frame = frame.copy()
# Debug Visualization Layer (raw YOLO detections)
for det in all_raw_detections:
x1, y1, x2, y2 = map(int, det['bbox'])
class_name = det['class_name']
confidence = det['confidence']
color = (0, 0, 255) # Red for other/low confidence
if class_name.lower() == 'player':
if confidence > CONFIDENCE_THRESHOLD:
color = (0, 255, 0) # Green for players detected above threshold
else:
color = (0, 128, 0) # Darker green for players below threshold
elif class_name.lower() == 'ball':
color = (255, 255, 0) # Cyan
elif class_name.lower() == 'goalkeeper':
color = (0, 165, 255) # Orange
elif class_name.lower() == 'referee':
color = (255, 0, 255) # Magenta
cv2.rectangle(display_frame, (x1, y1), (x2, y2), color, 1)
cv2.putText(display_frame, f"{class_name}: {confidence:.2f}", (x1, y1 - 25),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, color, 1)
# Final Visualization Layer (TRACKED players with consistent IDs)
for player_id, player in _active_players.items():
x1, y1, x2, y2 = map(int, player.bbox)
cv2.rectangle(display_frame, (x1, y1), (x2, y2), (0, 255, 255), 3) # Thicker, yellow box
cv2.putText(display_frame, f"ID: {player.player_id}", (x1, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2)
out.write(display_frame)
cap.release()
out.release()
print(f"Processing finished. Output video saved to: {OUTPUT_VIDEO_PATH}")
return OUTPUT_VIDEO_PATH
# Call model loading function once when the module is imported
_load_yolo_model() |