Spaces:
Sleeping
Sleeping
File size: 11,152 Bytes
2645749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
# π TalentScout AI Hiring Assistant - Technical Documentation
## Overview
The TalentScout AI Hiring Assistant is a comprehensive Streamlit application designed to automate the initial stages of candidate screening and technical assessment. This document provides detailed technical information about the application's architecture, components, and functionality.
## ποΈ Architecture
### Core Components
1. **CandidateInfo**: Data structure for candidate information
2. **HiringAssistant**: Main application logic and conversation management
3. **Streamlit UI**: User interface and interaction layer
4. **Session State Management**: Persistent state across user interactions
### Application Flow
```
Start β Greeting β Data Collection β Technical Assessment β Completion
```
## π Detailed Code Documentation
### 1. CandidateInfo Class
```python
@dataclass
class CandidateInfo:
"""Data class to store candidate information"""
```
**Purpose**: Structured storage of candidate data with default values.
**Attributes**:
- `full_name`: Candidate's complete name
- `email`: Email address (validated)
- `phone`: Phone number (validated)
- `experience_years`: Years of professional experience
- `desired_positions`: Target job positions
- `current_location`: Geographic location
- `tech_stack`: Technical skills and technologies
- `session_start`: Session initiation timestamp
**Features**:
- Type hints for data validation
- Default empty values for initialization
- Automatic timestamp generation
### 2. HiringAssistant Class
The main application class handling all business logic.
#### 2.1 Initialization
```python
def __init__(self):
self.conversation_stages = {...}
self.tech_categories = {...}
self.exit_keywords = [...]
```
**Conversation Stages**:
- `greeting` (0): Initial welcome
- `name` (1): Name collection
- `email` (2): Email validation and collection
- `phone` (3): Phone validation and collection
- `experience` (4): Experience level assessment
- `position` (5): Position preferences
- `location` (6): Geographic information
- `tech_stack` (7): Technical skills collection
- `technical_questions` (8): Dynamic technical assessment
- `completed` (9): Process completion
**Tech Categories**:
- `programming_languages`: Core programming languages
- `web_frameworks`: Web development frameworks
- `databases`: Database technologies
- `cloud_platforms`: Cloud and DevOps tools
- `data_science`: Data science and ML libraries
- `mobile`: Mobile development platforms
#### 2.2 Session State Management
```python
def initialize_session_state(self):
"""Initialize session state variables"""
```
**Session Variables**:
- `candidate_info`: CandidateInfo instance
- `conversation_history`: Q&A storage
- `current_stage`: Current conversation stage
- `technical_questions`: Generated questions list
- `current_question_index`: Question progress tracker
- `conversation_ended`: Termination flag
#### 2.3 Input Validation
**Email Validation**:
```python
def validate_email(self, email: str) -> bool:
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
return re.match(pattern, email) is not None
```
**Phone Validation**:
```python
def validate_phone(self, phone: str) -> bool:
cleaned_phone = re.sub(r'[\s\-\(\)]', '', phone)
pattern = r'^\+?[1-9]\d{9,14}$'
return re.match(pattern, cleaned_phone) is not None
```
**Validation Features**:
- Email: Standard RFC-compliant email format
- Phone: International format support with cleaning
- Real-time validation feedback
- Error handling and user guidance
#### 2.4 Technical Question Generation
```python
def generate_technical_questions(self, tech_stack: str) -> List[str]:
"""Generate technical questions based on the candidate's tech stack"""
```
**Question Generation Logic**:
1. Parse tech stack string (comma, semicolon, newline separated)
2. Match technologies to question templates
3. Select 2 questions per identified technology
4. Maximum 5 questions total
5. Fallback to generic questions if no matches
**Question Templates**:
- Technology-specific questions
- Skill-level appropriate content
- Practical and theoretical balance
- Real-world application focus
**Example Question Categories**:
- **Python**: Decorators, data structures, exception handling
- **JavaScript**: Closures, promises, ES6 features
- **React**: Hooks, state management, virtual DOM
- **SQL**: Joins, optimization, indexing
- **AWS**: Services comparison, architecture patterns
#### 2.5 Input Processing
```python
def process_user_input(self, user_input: str) -> str:
"""Process user input based on current conversation stage"""
```
**Processing Flow**:
1. Check for exit intent
2. Validate input based on current stage
3. Update candidate information
4. Progress to next stage
5. Generate appropriate response
**Stage-Specific Processing**:
- **Name**: Length validation (minimum 2 characters)
- **Email**: Format validation using regex
- **Phone**: International format validation
- **Experience**: Free text with guidance
- **Position**: Role specification
- **Location**: Geographic information
- **Tech Stack**: Technology parsing and question generation
- **Technical Questions**: Answer storage and progression
#### 2.6 Response Generation
**Greeting Message**:
```python
def generate_greeting(self) -> str:
"""Generate initial greeting message"""
```
**Completion Message**:
```python
def generate_completion_message(self) -> str:
"""Generate completion message"""
```
**Response Features**:
- Personalized messaging
- Clear next steps
- Professional tone
- Encouraging language
- Summary information
### 3. Streamlit UI Implementation
#### 3.1 Page Configuration
```python
st.set_page_config(
page_title="TalentScout - AI Hiring Assistant",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded"
)
```
#### 3.2 Custom Styling
**CSS Components**:
- `.main-header`: Gradient header with branding
- `.chat-message`: Message container styling
- `.user-message`: User input styling
- `.bot-message`: AI response styling
- `.sidebar-info`: Information panel styling
**Design Features**:
- Responsive layout
- Professional color scheme
- Clear visual hierarchy
- Accessibility considerations
#### 3.3 Sidebar Implementation
**Information Display**:
- Real-time candidate data
- Progress tracking
- Stage indicators
- Export functionality
**Progress Visualization**:
- Linear progress bar
- Stage names and numbers
- Completion percentage
- Visual feedback
#### 3.4 Chat Interface
**Message Display**:
- Conversation history
- User/bot message distinction
- Timestamp tracking
- Scrollable interface
**Input Handling**:
- Text input field
- Send button
- Keyboard shortcuts
- Input validation
### 4. Data Management
#### 4.1 Export Functionality
```python
def export_candidate_data(self) -> Dict:
"""Export candidate data for download"""
```
**Export Contents**:
- Complete candidate information
- Technical Q&A responses
- Session metadata
- Export timestamp
**Export Format**:
- JSON structure
- Human-readable format
- Structured data organization
- Easy integration support
#### 4.2 Session Management
**State Persistence**:
- Cross-interaction state maintenance
- Stage progression tracking
- Data integrity protection
- Error recovery mechanisms
## π§ Configuration Options
### Environment Variables
The application supports configuration through environment variables:
- `OPENAI_API_KEY`: OpenAI API key (if AI features are enabled)
- `DEBUG_MODE`: Enable debug logging
- `MAX_QUESTIONS`: Maximum technical questions per session
### Customization Points
1. **Question Templates**: Modify technical questions
2. **Validation Rules**: Adjust email/phone patterns
3. **UI Styling**: Update CSS styles
4. **Conversation Flow**: Modify stage progression
5. **Tech Categories**: Add new technology categories
## π Deployment Considerations
### Hugging Face Spaces
**Requirements**:
- `requirements.txt` with dependencies
- Main application file (`app.py`)
- Streamlit framework selection
- Public repository access
**Optimization**:
- Minimal dependencies
- Efficient memory usage
- Fast startup time
- Responsive UI
### Performance Optimization
**Best Practices**:
- Session state management
- Efficient data structures
- Minimal API calls
- Lazy loading strategies
## π Testing Strategies
### Unit Testing
**Test Coverage**:
- Input validation functions
- Question generation logic
- Data export functionality
- Stage progression logic
**Test Cases**:
- Valid/invalid email formats
- Phone number variations
- Tech stack parsing
- Edge cases and error conditions
### Integration Testing
**Test Scenarios**:
- Complete conversation flow
- Data persistence across stages
- Export functionality
- UI responsiveness
### User Acceptance Testing
**Test Criteria**:
- Conversation flow intuitiveness
- Technical question relevance
- Data accuracy and completeness
- Overall user experience
## π Security Considerations
### Data Protection
**Privacy Measures**:
- No permanent data storage
- Session-based data handling
- Local export options
- Minimal data collection
**Input Sanitization**:
- Regex validation for emails/phones
- Text input length limits
- Special character handling
- Injection prevention
### Session Security
**Best Practices**:
- Session state isolation
- Secure data transmission
- Input validation
- Error handling
## π Future Enhancements
### Potential Features
1. **AI-Powered Question Generation**: Dynamic question creation using LLMs
2. **Multi-language Support**: Internationalization capabilities
3. **Advanced Analytics**: Candidate scoring and ranking
4. **Integration APIs**: HR system connectivity
5. **Video Interview Scheduling**: Calendar integration
6. **Resume Parsing**: Automatic data extraction
7. **Skill Assessment**: Practical coding challenges
8. **Collaborative Filtering**: Question recommendation
### Technical Improvements
1. **Database Integration**: Persistent data storage
2. **Authentication System**: User management
3. **Advanced UI**: React-based frontend
4. **Real-time Updates**: WebSocket communication
5. **Mobile Optimization**: Progressive web app
6. **Performance Monitoring**: Analytics integration
## π References
- [Streamlit Documentation](https://docs.streamlit.io/)
- [Python Dataclasses](https://docs.python.org/3/library/dataclasses.html)
- [Regular Expressions](https://docs.python.org/3/library/re.html)
- [Hugging Face Spaces](https://huggingface.co/docs/hub/spaces)
---
This documentation provides comprehensive technical details for understanding, maintaining, and extending the TalentScout AI Hiring Assistant application. |