Spaces:
Sleeping
Sleeping
import tensorflow as tf | |
import tensorflow_io as tfio | |
import gradio as gr | |
import os | |
# Load your pre-trained model | |
model = tf.keras.models.load_model('capuchin_bird_audio.h5') | |
class_names = ['This Is Not A Capuchin bird','It is a capuchin Bird'] | |
# Function to preprocess input for the model | |
def test_preprocess_1(file_path): | |
file_contents = tf.io.read_file(file_path) | |
wav, sample_rate = tf.audio.decode_wav(file_contents, desired_channels=1) | |
wav = tf.squeeze(wav, axis=-1) | |
sample_rate = tf.cast(sample_rate, dtype=tf.int64) | |
wav = tfio.audio.resample(wav, rate_in=sample_rate, rate_out=16000) | |
wav = wav[:48000] | |
zero_padding = tf.zeros([48000] - tf.shape(wav), dtype=tf.float32) | |
wav = tf.concat([zero_padding, wav], 0) | |
spectrogram = tf.signal.stft(wav, frame_length=320, frame_step=32) | |
spectrogram = tf.abs(spectrogram) | |
spectrogram = tf.expand_dims(spectrogram, axis=2) | |
spectrogram = tf.expand_dims(spectrogram, axis=0) | |
return spectrogram | |
# Function to make predictions | |
def predict_audio(wav): | |
input_data = test_preprocess_1(wav) | |
prediction = model.predict(input_data) | |
# Threshold logic | |
if prediction > 0.5: | |
result = class_names[1] | |
else: | |
result = class_names[0] | |
return result | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=predict_audio, | |
title='Capuchin Bird Classification', | |
description='Upload an audio file to classify whether it is a Capuchin bird or not.', | |
inputs=gr.Audio(sources=['upload'],label="Input Audio",type="filepath"), | |
outputs='text', | |
) | |
# Launch the interface on localhost | |
iface.launch(share=True) |