Spaces:
Running
Running
File size: 16,284 Bytes
4a79595 ff7a2f7 438882a 4a79595 438882a 5d07470 438882a 5d97e4f 6b29192 438882a 2256252 438882a 5f7d6bc 5d97e4f 4a79595 2256252 4a79595 2256252 6b29192 438882a 2256252 5f7d6bc 4a79595 5f7d6bc 2256252 438882a 2256252 438882a 2256252 5d97e4f 2256252 5d97e4f 2256252 5d97e4f 2256252 5d97e4f 2256252 b13593c 2256252 b13593c 2256252 b13593c 2256252 b13593c 2256252 b13593c 2256252 b13593c 2256252 b13593c 5f7d6bc 2256252 438882a 2256252 b13593c 438882a 2256252 5f7d6bc b13593c 2256252 b13593c 2256252 5f7d6bc 2256252 6b29192 5f7d6bc 6b29192 5f7d6bc 2256252 5f7d6bc 2256252 5f7d6bc 2256252 5f7d6bc 2256252 5f7d6bc 5d97e4f b13593c 2256252 5f7d6bc 4a79595 5f7d6bc 2256252 5f7d6bc 2256252 5f7d6bc 2256252 5f7d6bc 2256252 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# src/streamlit_app.py
import streamlit as st
import pandas as pd
from serpapi import Client
from prophet import Prophet
import plotly.express as px
import time
import google.generativeai as genai
import os
from matplotlib import pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose
# --- Page Configuration ---
st.set_page_config(page_title="Trend-AI Marketing Dashboard", page_icon="๐ง ", layout="wide")
# --- Caching & Data Fetching Functions ---
@st.cache_data(ttl=3600)
def fetch_data_from_serpapi(api_key, keywords, timeframe, geo):
"""
Fetches Interest Over Time and By Region from SerpApi for a live analysis.
"""
def _parse_date_string(date_str):
if 'โ' in date_str:
try:
parts = date_str.split('โ'); start_day_month = parts[0].strip(); year = parts[1].split(',')[-1].strip()
return pd.to_datetime(f"{start_day_month}, {year}")
except: return pd.to_datetime(date_str.split('โ')[0].strip())
else: return pd.to_datetime(date_str)
params = {"engine": "google_trends", "q": ", ".join(keywords), "date": timeframe, "geo": geo, "api_key": api_key}
try:
client = Client(); results = client.search(params)
all_data = {"interest_over_time": pd.DataFrame(), "interest_by_region": pd.DataFrame()}
if 'interest_over_time' in results:
timeline_data = results['interest_over_time']['timeline_data']
dates = [_parse_date_string(item['date']) for item in timeline_data]
data = {}
for i, keyword in enumerate(keywords): data[keyword] = [item['values'][i].get('value', 0) for item in timeline_data]
all_data["interest_over_time"] = pd.DataFrame(data, index=dates)
if 'interest_by_region' in results:
df_region = pd.DataFrame(results['interest_by_region']).set_index('geoName')
if keywords and len(keywords) > 0:
renamed_col = df_region.columns[0]
df_region = df_region.rename(columns={renamed_col: 'Interest'})
all_data["interest_by_region"] = df_region
return all_data
except Exception as e:
st.error(f"An error occurred with the SerpApi request: {e}"); return None
@st.cache_data
def load_all_offline_data(scenario_config):
"""
Loads Interest Over Time and By Region CSVs for a given offline scenario.
"""
prefix = scenario_config["prefix"]
keywords = scenario_config["keywords"]
all_data = {"interest_over_time": pd.DataFrame(), "interest_by_region": pd.DataFrame()}
try:
ot_path = f"data/{prefix}_over_time.csv"
df_ot = pd.read_csv(ot_path, skiprows=2); df_ot.rename(columns={df_ot.columns[0]: 'Date'}, inplace=True)
original_columns = df_ot.columns[1:]
column_map = dict(zip(original_columns, keywords))
df_ot.rename(columns=column_map, inplace=True)
df_ot['Date'] = pd.to_datetime(df_ot['Date']); df_ot.set_index('Date', inplace=True)
for col in keywords:
if col in df_ot.columns: df_ot[col] = pd.to_numeric(df_ot[col], errors='coerce')
all_data['interest_over_time'] = df_ot
r_path = f"data/{prefix}_by_region.csv"
df_r = pd.read_csv(r_path, skiprows=1); df_r.rename(columns={df_r.columns[0]: 'Region', df_r.columns[1]: 'Interest'}, inplace=True); df_r['Interest'] = pd.to_numeric(df_r['Interest'], errors='coerce')
all_data['interest_by_region'] = df_r.set_index('Region')
return all_data
except FileNotFoundError as e:
st.error(f"Offline Data Error: Missing a primary CSV file: {e.filename}"); return None
except Exception as e:
st.error(f"Error loading offline data: {e}"); return None
# --- Main Application Logic ---
st.title("๐ Trend-AI: Marketing Intelligence Dashboard")
st.sidebar.header("Dashboard Controls")
# --- Final Sidebar UI using Session State and a Callback ---
scenarios = {
"Nike, Adidas, Puma, Asics, Under Armour": {"prefix": "athletic_brands", "keywords": ["Nike", "Adidas", "Puma", "Asics", "Under Armour"], "geo_code": "", "timeframe_key": "Past 5 Years"},
"Apple iPhone, Samsung Galaxy, Google Pixel": {"prefix": "smartphones", "keywords": ["Apple iPhone", "Samsung Galaxy", "Google Pixel"], "geo_code": "US", "timeframe_key": "Past 5 Years"},
"Mahindra Scorpio, Maruti Suzuki Brezza, Hyundai Creta": {"prefix": "indian_suvs", "keywords": ["Mahindra Scorpio", "Maruti Suzuki Brezza", "Hyundai Creta"], "geo_code": "IN", "timeframe_key": "Past 5 Years"}
}
scenario_options = [""] + list(scenarios.keys())
# Initialize session state for widgets. Default to the "Athletic Brands" scenario.
if 'keywords_input' not in st.session_state:
st.session_state.keywords_input = "Nike, Adidas, Puma, Asics, Under Armour"
st.session_state.geo_selection = ""
st.session_state.timeframe_selection = "Past 5 Years"
st.session_state.scenario_selector = "Nike, Adidas, Puma, Asics, Under Armour"
# Callback function to update other widgets when a scenario is chosen from the dropdown
def update_state_from_scenario():
scenario_key = st.session_state.scenario_selector
if scenario_key and scenario_key in scenarios:
config = scenarios[scenario_key]
st.session_state.keywords_input = scenario_key
st.session_state.geo_selection = config["geo_code"]
st.session_state.timeframe_selection = config["timeframe_key"]
# The UI widgets are linked via session state and the callback
keywords_input = st.sidebar.text_input("Enter Keywords", key="keywords_input")
st.sidebar.selectbox(
"Or, select a popular comparison",
options=scenario_options,
key='scenario_selector',
on_change=update_state_from_scenario,
help="Selecting an option will pre-fill the controls and use reliable offline data."
)
country_list = ['', 'US', 'GB', 'CA', 'AU', 'DE', 'FR', 'IN', 'JP', 'BR', 'ZA']; country_names = ['Worldwide', 'United States', 'United Kingdom', 'Canada', 'Australia', 'Germany', 'France', 'India', 'Japan', 'Brazil', 'South Africa']; country_dict = dict(zip(country_list, country_names)); geo_keys = list(country_dict.keys())
try: geo_default_index = geo_keys.index(st.session_state.geo_selection)
except ValueError: geo_default_index = 0
geo = st.sidebar.selectbox("Select Region", options=country_list, format_func=lambda x: country_dict[x], index=geo_default_index)
timeframe_options = {"Past Hour": "now 1-H", "Past 4 Hours": "now 4-H", "Past Day": "now 1-d", "Past 7 Days": "now 7-d", "Past 30 Days": "today 1-m", "Past 90 Days": "today 3-m", "Past 12 Months": "today 12-m", "Past 5 Years": "today 5-y", "All Time (Since 2004)": "all"}
timeframe_keys = list(timeframe_options.keys())
try: timeframe_default_index = timeframe_keys.index(st.session_state.timeframe_selection)
except ValueError: timeframe_default_index = 7
timeframe_key = st.sidebar.selectbox("Select Timeframe", options=timeframe_keys, index=timeframe_default_index)
timeframe = timeframe_options[timeframe_key]
# --- Main Dashboard ---
keywords_str = keywords_input
if keywords_str in scenarios:
keywords = scenarios[keywords_str]["keywords"]
else:
keywords = [k.strip() for k in keywords_str.split(',') if k.strip()][:5]
if not keywords:
st.info("โฌ
๏ธ Please enter keywords or select a popular comparison from the sidebar.")
else:
st.header(f"Analysis for: {', '.join(keywords)}")
tab_names = ["๐ Trend Analysis", "๐ฎ Future Forecast", "๐ค AI Co-pilot"]
tab1, tab2, tab3 = st.tabs(tab_names)
trends_data = None
if keywords_str in scenarios:
with st.spinner(f"Loading pre-configured analysis for '{keywords_str}'..."):
trends_data = load_all_offline_data(scenarios[keywords_str])
else:
serpapi_key = os.environ.get("SERPAPI_API_KEY") # Use os.environ.get for deployment
if not serpapi_key:
# Fallback for local dev using secrets.toml
try:
serpapi_key = st.secrets.get("SERPAPI_API_KEY")
except:
serpapi_key = None
if not serpapi_key:
st.error("โ SerpApi API Key not found in secrets.")
else:
with st.spinner(f"Fetching live data for '{keywords_str}'..."):
trends_data = fetch_data_from_serpapi(serpapi_key, keywords, timeframe, geo)
if trends_data:
interest_df = trends_data.get("interest_over_time", pd.DataFrame())
if not interest_df.empty:
for col in interest_df.columns:
if col != 'Date': interest_df[col] = pd.to_numeric(interest_df[col], errors='coerce')
with tab1:
st.subheader("Search Interest Over Time")
if not interest_df.empty:
fig = px.line(interest_df, x=interest_df.index, y=interest_df.columns)
st.plotly_chart(fig, use_container_width=True)
st.subheader("๐ Overall Interest Share")
interest_sum = interest_df.sum().reset_index()
interest_sum.columns = ['keyword', 'total_interest']
fig_pie = px.pie(interest_sum, names='keyword', values='total_interest')
st.plotly_chart(fig_pie, use_container_width=True)
st.markdown("---")
st.subheader("๐ Interest by Region")
region_df = trends_data.get("interest_by_region")
if region_df is not None and not region_df.empty:
fig_map = px.choropleth(region_df, locations=region_df.index, locationmode='country names', color='Interest', hover_name=region_df.index, color_continuous_scale=px.colors.sequential.Plasma)
st.plotly_chart(fig_map, use_container_width=True)
st.dataframe(region_df.sort_values(by="Interest", ascending=False), use_container_width=True)
else: st.warning("No regional data available.")
st.markdown("---")
st.subheader("๐
Keyword Seasonality Analysis")
monthly_df = interest_df.resample('M').mean()
monthly_df['month'] = monthly_df.index.month
seasonal_df = monthly_df.groupby('month')[interest_df.columns].mean().reset_index()
for col in interest_df.columns:
if (seasonal_df[col].max() - seasonal_df[col].min()) != 0:
seasonal_df[col] = (seasonal_df[col] - seasonal_df[col].min()) / (seasonal_df[col].max() - seasonal_df[col].min()) * 100
else: seasonal_df[col] = 0
seasonal_df['month'] = seasonal_df['month'].apply(lambda x: pd.to_datetime(str(x), format='%m').strftime('%B'))
seasonal_df.set_index('month', inplace=True)
fig_heatmap = px.imshow(seasonal_df.T, labels=dict(x="Month", y="Keyword", color="Normalized Interest"), aspect="auto", color_continuous_scale="Viridis")
st.plotly_chart(fig_heatmap, use_container_width=True)
st.markdown("---")
st.subheader("๐ฌ Year-over-Year Growth Analysis")
keyword_for_yoy = st.selectbox("Select keyword for YoY analysis", options=keywords, key='yoy_select')
if keyword_for_yoy:
monthly_yoy_df = interest_df[[keyword_for_yoy]].resample('M').mean()
monthly_yoy_df['YoY Growth (%)'] = monthly_yoy_df[keyword_for_yoy].pct_change(12) * 100
st.dataframe(monthly_yoy_df.style.format({'YoY Growth (%)': "{:+.2f}%"}).applymap(lambda v: 'color: green;' if v > 0 else ('color: red;' if v < 0 else ''), subset=['YoY Growth (%)']), use_container_width=True)
st.markdown("---")
st.subheader("๐ Trend Decomposition")
keyword_to_decompose = st.selectbox("Select keyword to decompose", options=keywords, key='decomp_select')
if keyword_to_decompose:
monthly_decomp_df = interest_df[keyword_to_decompose].resample('M').mean()
if len(monthly_decomp_df.dropna()) >= 24:
decomposition = seasonal_decompose(monthly_decomp_df.dropna(), model='additive', period=12)
fig_decomp = decomposition.plot()
fig_decomp.set_size_inches(10, 8)
st.pyplot(fig_decomp)
else: st.error("โ Analysis Error: Decomposition requires at least 24 months of data.")
else:
st.warning("Could not fetch or load time-series data.")
with tab2:
st.subheader("Future Forecast with Prophet")
keyword_to_forecast = st.selectbox("Select a keyword to forecast", options=keywords)
if not interest_df.empty and keyword_to_forecast in interest_df.columns:
if st.button(f"Generate 12-Month Forecast for '{keyword_to_forecast}'"):
with st.spinner("Calculating future trends..."):
prophet_df = interest_df[[keyword_to_forecast]].reset_index()
prophet_df.columns = ['ds', 'y']
model = Prophet()
model.fit(prophet_df)
future = model.make_future_dataframe(periods=365)
forecast = model.predict(future)
st.success("Forecast generated!")
fig_forecast = model.plot(forecast)
st.pyplot(fig_forecast)
st.subheader("Forecast Data")
st.dataframe(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(12))
else: st.warning("Trend data must be loaded first.")
with tab3:
st.subheader("AI Marketing Co-pilot")
google_api_key = os.environ.get("GOOGLE_API_KEY")
if not google_api_key:
try: google_api_key = st.secrets.get("GOOGLE_API_KEY")
except: google_api_key = None
if not google_api_key: st.info("Please add your Google AI API key to your secrets.")
else:
genai.configure(api_key=google_api_key)
model = genai.GenerativeModel('gemini-1.5-flash-latest')
data_summary = ""
if trends_data:
if not trends_data.get("interest_over_time", pd.DataFrame()).empty: data_summary += "Time-series summary:\n" + trends_data["interest_over_time"].describe().to_string() + "\n\n"
if not trends_data.get("interest_by_region", pd.DataFrame()).empty: data_summary += "Top 5 regions:\n" + trends_data["interest_by_region"].head().to_string() + "\n\n"
if "messages" not in st.session_state: st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]): st.markdown(message["content"])
if prompt := st.chat_input("Ask about trends or request a marketing campaign..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"): st.markdown(prompt)
full_prompt = f"You are a marketing analyst AI. Based on this data summary:\n{data_summary}\n\nUser's Question: '{prompt}'"
with st.chat_message("assistant"):
message_placeholder = st.empty()
try:
response = model.generate_content(full_prompt, stream=True)
full_response_text = ""
for chunk in response:
full_response_text += chunk.text
message_placeholder.markdown(full_response_text + "โ")
message_placeholder.markdown(full_response_text)
st.session_state.messages.append({"role": "assistant", "content": full_response_text})
except Exception as e:
st.error(f"An error occurred with the AI model: {e}")
else:
st.error("Could not load or fetch data.") |