Spaces:
Running
Running
File size: 10,207 Bytes
78bbe6d 208bdb2 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 208bdb2 fd8896a 208bdb2 fd8896a 208bdb2 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d 31d085e 78bbe6d da22f13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers.pipelines import pipeline
from sentence_transformers import SentenceTransformer, util
import numpy as np
import gradio.themes as grthemes
import random
import re
# ----------------------
# Paraphrasing Model Setup (Pegasus + T5)
# ----------------------
PEGASUS_MODEL_NAME = "tuner007/pegasus_paraphrase"
T5_MODEL_NAME = "Vamsi/T5_Paraphrase_Paws"
pegasus_tokenizer = AutoTokenizer.from_pretrained(PEGASUS_MODEL_NAME)
pegasus_model = AutoModelForSeq2SeqLM.from_pretrained(PEGASUS_MODEL_NAME)
t5_tokenizer = AutoTokenizer.from_pretrained(T5_MODEL_NAME)
t5_model = AutoModelForSeq2SeqLM.from_pretrained(T5_MODEL_NAME)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pegasus_model = pegasus_model.to(device)
t5_model = t5_model.to(device)
# ----------------------
# Semantic Similarity Model
# ----------------------
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
# ----------------------
# Local AI Detector (roberta-base-openai-detector)
# ----------------------
AI_DETECTOR_MODEL = "roberta-base-openai-detector"
ai_detector = pipeline("text-classification", model=AI_DETECTOR_MODEL, device=0 if torch.cuda.is_available() else -1)
# ----------------------
# Prompt Variations for Humanization
# ----------------------
PEGASUS_PROMPTS = [
"Paraphrase this naturally:",
"Rewrite as if explaining to a friend:",
"Make this sound like a real conversation:",
"Express this in a casual, human way:",
"Reword this with natural flow:",
"Make this sound less robotic:",
"Rewrite in a friendly, informal tone:",
"Paraphrase in a way a student would say it:",
]
T5_PROMPTS = [
"Paraphrase the following text in a formal, academic tone:",
"Paraphrase the following text in a casual, conversational tone:",
"Paraphrase the following text in a friendly, approachable tone:",
"Paraphrase the following text to bypass AI detectors and sound as human as possible:",
]
# ----------------------
# Sentence Splitter
# ----------------------
def split_sentences(text):
sentences = re.split(r'(?<=[.!?])\s+', text.strip())
return [s for s in sentences if s]
# ----------------------
# Aggressive Post-Processing
# ----------------------
def postprocess_text(text):
contractions = {
"do not": "don't", "cannot": "can't", "will not": "won't", "I am": "I'm",
"is not": "isn't", "are not": "aren't", "did not": "didn't", "it is": "it's",
"does not": "doesn't", "have not": "haven't", "has not": "hasn't"
}
for k, v in contractions.items():
text = re.sub(rf'\b{k}\b', v, text, flags=re.IGNORECASE)
idioms = [
"at the end of the day", "to be honest", "as a matter of fact", "for what it's worth",
"in a nutshell", "the bottom line is", "all things considered"
]
transitions = [
"Interestingly,", "In fact,", "To be clear,", "As a result,", "For example,", "On the other hand,", "In other words,"
]
if random.random() < 0.3:
text += " " + random.choice(idioms) + "."
if random.random() < 0.3:
text = random.choice(transitions) + " " + text
# Randomly lower-case a word to mimic human error
if random.random() < 0.2:
words = text.split()
if len(words) > 3:
idx = random.randint(1, len(words)-2)
words[idx] = words[idx].lower()
text = ' '.join(words)
return text
# ----------------------
# Multi-Model, Multi-Pass Paraphrasing
# ----------------------
def pegasus_paraphrase(sentence):
prompt = random.choice(PEGASUS_PROMPTS)
full_prompt = f"{prompt} {sentence}"
batch = pegasus_tokenizer([full_prompt], truncation=True, padding='longest', max_length=60, return_tensors="pt").to(device)
outputs = pegasus_model.generate(
**batch,
max_length=60,
num_beams=5,
num_return_sequences=1,
temperature=1.0
)
tgt_text = pegasus_tokenizer.batch_decode(outputs, skip_special_tokens=True)
return tgt_text[0] if tgt_text else sentence
def t5_paraphrase(sentence):
prompt = random.choice(T5_PROMPTS) + " " + sentence
input_ids = t5_tokenizer.encode(prompt, return_tensors="pt", max_length=256, truncation=True).to(device)
outputs = t5_model.generate(
input_ids,
do_sample=True,
top_k=120,
top_p=0.95,
temperature=0.7,
repetition_penalty=1.2,
max_length=256,
num_return_sequences=1
)
paraphrased = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
return paraphrased
# ----------------------
# Feedback Loop with AI Detector
# ----------------------
def check_ai_score(text):
try:
result = ai_detector(text)
for r in result:
if r['label'] in ['LABEL_1', 'Fake']:
return r['score'], None
elif r['label'] in ['LABEL_0', 'Real']:
return 1.0 - r['score'], None
return 0.5, None
except Exception as e:
return None, f"AI detection error: {str(e)}"
# ----------------------
# Main Humanizer Pipeline
# ----------------------
def humanize_pipeline(text, tone, max_feedback_loops=2):
sentences = split_sentences(text)
paraphrased = []
for sent in sentences:
# First pass: Pegasus
peg = pegasus_paraphrase(sent)
# Second pass: T5
t5 = t5_paraphrase(peg)
paraphrased.append(t5)
joined = ' '.join(paraphrased)
processed = postprocess_text(joined)
# Feedback loop: if still flagged as AI, re-paraphrase flagged sentences
for _ in range(max_feedback_loops):
ai_prob, _ = check_ai_score(processed)
if ai_prob is not None and ai_prob < 0.5:
break # Considered human
# Re-paraphrase all sentences again
sentences = split_sentences(processed)
paraphrased = []
for sent in sentences:
peg = pegasus_paraphrase(sent)
t5 = t5_paraphrase(peg)
paraphrased.append(t5)
joined = ' '.join(paraphrased)
processed = postprocess_text(joined)
return processed
# ----------------------
# Semantic Similarity Function
# ----------------------
def semantic_similarity(text1, text2):
emb1 = similarity_model.encode(text1, convert_to_tensor=True)
emb2 = similarity_model.encode(text2, convert_to_tensor=True)
sim = util.pytorch_cos_sim(emb1, emb2).item()
return sim
# ----------------------
# Humanization Score & Rating
# ----------------------
def humanization_score(sim, ai_prob):
score = (1.0 - sim) * 0.5 + (1.0 - ai_prob) * 0.5
return score
def humanization_rating(score):
if score < 0.7:
return f"⚠️ Still AI-like ({score:.2f})"
elif score < 0.85:
return f"👍 Acceptable ({score:.2f})"
else:
return f"✅ Highly Humanized ({score:.2f})"
# ----------------------
# Main Processing Function
# ----------------------
def process(text, tone):
if not text.strip():
return "", "", 0.0, "", 0.0, ""
pre_ai_prob, pre_err = check_ai_score(text)
if pre_ai_prob is None:
return "", f"AI Detection Error: {pre_err}", 0.0, "", 0.0, ""
try:
# Generate 3 versions for user choice
outputs = [humanize_pipeline(text, tone) for _ in range(3)]
except Exception as e:
return f"[Paraphrasing error: {str(e)}]", "", 0.0, "", 0.0, ""
# Pick the most human-like version (lowest ai_prob)
best = None
best_score = -1
best_ai_prob = 1.0
for out in outputs:
post_ai_prob, _ = check_ai_score(out)
sim = semantic_similarity(text, out)
score = humanization_score(sim, post_ai_prob if post_ai_prob is not None else 1.0)
if post_ai_prob is not None and post_ai_prob < best_ai_prob:
best = out
best_score = score
best_ai_prob = post_ai_prob
if best is None:
best = outputs[0]
best_score = 0.0
best_ai_prob = 1.0
sim = semantic_similarity(text, best)
rating = humanization_rating(best_score)
ai_score_str = f"Pre: {100*(1-pre_ai_prob):.1f}% human | Post: {100*(1-best_ai_prob):.1f}% human"
return (
best,
ai_score_str,
sim,
rating,
best_score * 100,
""
)
# ----------------------
# Gradio UI
# ----------------------
custom_theme = grthemes.Base(
primary_hue="blue",
secondary_hue="blue",
neutral_hue="slate"
)
with gr.Blocks(theme=custom_theme, title="AI Humanizer - Made by Taha") as demo:
gr.Markdown("""
# 🧠 AI Humanizer
<div style='display:flex;justify-content:space-between;align-items:center;'>
<span style='font-size:1.2em;color:#7bb1ff;'>Rewrite AI text to sound 100% human</span>
<span style='font-weight:bold;color:#7bb1ff;'>Made by Taha</span>
</div>
""", elem_id="header")
with gr.Row():
with gr.Column():
text_in = gr.Textbox(label="Paste AI-generated text here", lines=8, placeholder="Paste your text...", elem_id="input-box")
tone = gr.Dropdown(["Academic", "Casual", "Friendly", "Stealth"], value="Stealth", label="Tone Selector")
btn = gr.Button("Humanize", elem_id="humanize-btn")
with gr.Column():
text_out = gr.Textbox(label="Humanized Output", lines=8, interactive=False, elem_id="output-box")
ai_scores = gr.Markdown("", elem_id="ai-scores")
sim_score = gr.Number(label="Similarity (0=very different, 1=very similar)", interactive=False)
rating = gr.Markdown("", elem_id="rating")
human_score = gr.Number(label="Humanization Score (%)", interactive=False)
btn.click(
process,
inputs=[text_in, tone],
outputs=[text_out, ai_scores, sim_score, rating, human_score, gr.Textbox(visible=False)],
api_name="humanize"
)
gr.Markdown("""
<div style='text-align:center;color:#7bb1ff;margin-top:2em;'>
<b>Made by Taha</b> | Free for unlimited use | Optimized for students and creators
</div>
""", elem_id="footer")
demo.launch() |