Spaces:
Sleeping
Sleeping
from sentence_transformers import SentenceTransformer,util | |
from Embedder.Embedder import Embedder | |
class E5_Embeddedr(Embedder): | |
def __init__(self): | |
self.model_name = "intfloat/multilingual-e5-small" | |
self.model = SentenceTransformer(self.model_name) | |
self.embedding_size = 384 # Fixed fot this model | |
def embed(self,text): | |
''' | |
Embeds one text | |
Prefixed it with passage "passage" as e5 expect | |
''' | |
return self.model.encode(f"passage: {text}", normalize_embeddings=True) | |
#embed = E5_Embeddedr() | |
#embed.embed("مرحبا بك فى وى") |