AidMateLLM / Embedder /E5_Embeddedr.py
TahaFawzyElshrif
published first version
2ebf9ad
raw
history blame contribute delete
605 Bytes
from sentence_transformers import SentenceTransformer,util
from Embedder.Embedder import Embedder
class E5_Embeddedr(Embedder):
def __init__(self):
self.model_name = "intfloat/multilingual-e5-small"
self.model = SentenceTransformer(self.model_name)
self.embedding_size = 384 # Fixed fot this model
def embed(self,text):
'''
Embeds one text
Prefixed it with passage "passage" as e5 expect
'''
return self.model.encode(f"passage: {text}", normalize_embeddings=True)
#embed = E5_Embeddedr()
#embed.embed("مرحبا بك فى وى")