Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import numpy as np
|
|
4 |
from collections import defaultdict
|
5 |
from transformers import pipeline
|
6 |
|
7 |
-
# Initialize the model
|
8 |
detector = pipeline("object-detection", model="facebook/detr-resnet-101")
|
9 |
|
10 |
# Global counter
|
@@ -12,63 +12,34 @@ object_counter = defaultdict(int)
|
|
12 |
|
13 |
def process_video(video_path):
|
14 |
cap = cv2.VideoCapture(video_path)
|
15 |
-
|
16 |
while cap.isOpened():
|
17 |
ret, frame = cap.read()
|
18 |
if not ret:
|
19 |
break
|
20 |
|
21 |
-
# Convert frame to RGB
|
22 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
23 |
-
|
24 |
-
# Detect objects
|
25 |
results = detector(rgb_frame, threshold=0.7)
|
26 |
|
27 |
-
# Draw boxes and update counter
|
28 |
for obj in results:
|
29 |
label = obj["label"]
|
30 |
-
score = obj["score"]
|
31 |
-
box = obj["box"]
|
32 |
-
|
33 |
object_counter[label] += 1
|
34 |
-
|
35 |
xmin, ymin, xmax, ymax = int(box["xmin"]), int(box["ymin"]), int(box["xmax"]), int(box["ymax"])
|
36 |
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
|
37 |
-
cv2.putText(frame, f"{label}
|
38 |
|
39 |
-
# Display counter
|
40 |
counter_text = "\n".join([f"{k}: {v}" for k, v in object_counter.items()])
|
41 |
cv2.putText(frame, counter_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
|
42 |
-
|
43 |
yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
44 |
|
45 |
cap.release()
|
46 |
|
47 |
-
# Gradio UI with Reset Button
|
48 |
with gr.Blocks() as demo:
|
49 |
-
gr.Markdown("# 🎥 Video Object Detection
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
with gr.Row():
|
56 |
-
# Add the reset button here
|
57 |
-
reset_button = gr.Button("Reset Counter", variant="primary")
|
58 |
-
|
59 |
-
# Process video when uploaded
|
60 |
-
video_input.change(
|
61 |
-
fn=process_video,
|
62 |
-
inputs=video_input,
|
63 |
-
outputs=video_output
|
64 |
-
)
|
65 |
-
|
66 |
-
# Reset counter when button clicked
|
67 |
-
reset_button.click(
|
68 |
-
fn=lambda: object_counter.clear(),
|
69 |
-
inputs=None,
|
70 |
-
outputs=None,
|
71 |
-
queue=False # No need to wait in queue
|
72 |
-
)
|
73 |
|
74 |
demo.launch()
|
|
|
4 |
from collections import defaultdict
|
5 |
from transformers import pipeline
|
6 |
|
7 |
+
# Initialize the model (now works with timm installed)
|
8 |
detector = pipeline("object-detection", model="facebook/detr-resnet-101")
|
9 |
|
10 |
# Global counter
|
|
|
12 |
|
13 |
def process_video(video_path):
|
14 |
cap = cv2.VideoCapture(video_path)
|
|
|
15 |
while cap.isOpened():
|
16 |
ret, frame = cap.read()
|
17 |
if not ret:
|
18 |
break
|
19 |
|
|
|
20 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
|
21 |
results = detector(rgb_frame, threshold=0.7)
|
22 |
|
|
|
23 |
for obj in results:
|
24 |
label = obj["label"]
|
|
|
|
|
|
|
25 |
object_counter[label] += 1
|
26 |
+
box = obj["box"]
|
27 |
xmin, ymin, xmax, ymax = int(box["xmin"]), int(box["ymin"]), int(box["xmax"]), int(box["ymax"])
|
28 |
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
|
29 |
+
cv2.putText(frame, f"{label}", (xmin, ymin-10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
|
30 |
|
|
|
31 |
counter_text = "\n".join([f"{k}: {v}" for k, v in object_counter.items()])
|
32 |
cv2.putText(frame, counter_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
|
|
|
33 |
yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
34 |
|
35 |
cap.release()
|
36 |
|
|
|
37 |
with gr.Blocks() as demo:
|
38 |
+
gr.Markdown("# 🎥 Video Object Detection")
|
39 |
+
video_input = gr.Video(label="Upload Video")
|
40 |
+
video_output = gr.Image(label="Detections")
|
41 |
+
reset_button = gr.Button("Reset Counter")
|
42 |
+
video_input.change(process_video, video_input, video_output)
|
43 |
+
reset_button.click(lambda: object_counter.clear())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
demo.launch()
|