import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModelForCausalLM import os import spaces os.environ["TOKENIZERS_PARALLELISM"] = "false" class CustomDetector: def __init__(self, model_name="tiiuae/falcon-rw-1b", max_length=512): self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model_name = model_name self.max_length = max_length self.tokenizer = None self.model = None @spaces.GPU def load_model(self): """Load model and tokenizer on GPU when called.""" try: if self.tokenizer is None: self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) if self.model is None: self.model = AutoModelForCausalLM.from_pretrained(self.model_name, torch_dtype=torch.float16) self.model.to(self.device) self.model.eval() if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token except Exception as e: raise RuntimeError(f"Failed to load model {self.model_name}: {str(e)}") @spaces.GPU def my_detector(self, texts: list[str]) -> list[float]: if self.model is None or self.tokenizer is None: self.load_model() try: with torch.no_grad(): tokenized = self.tokenizer( texts, truncation=True, padding=True, max_length=self.max_length, return_tensors="pt", ) tokenized = {k: v.to(self.device) for k, v in tokenized.items()} input_ids = tokenized["input_ids"] attention_mask = tokenized["attention_mask"] outputs = self.model(**tokenized) logits = outputs.logits[:, :-1, :] labels = tokenized["input_ids"][:, 1:] log_probs = F.log_softmax(logits, dim=-1) ll_per_token = log_probs.gather(2, labels.unsqueeze(-1)).squeeze(-1) attention_mask = tokenized["attention_mask"][:, 1:] ll_per_sample = (ll_per_token * attention_mask).sum(dim=-1) / attention_mask.sum(dim=1).clamp(min=1) neg_entropy = (log_probs.exp() * log_probs) entropy_per_sample = -(neg_entropy.sum(dim=-1) * attention_mask).sum(-1) / attention_mask.sum(dim=1).clamp(min=1) scores = (abs(entropy_per_sample + ll_per_sample)).cpu().tolist() return scores except Exception as e: raise RuntimeError(f"Error computing score: {str(e)}")