Spaces:
Sleeping
Sleeping
File size: 13,040 Bytes
3a8259f 09c6768 3a8259f 0cdbb5c 2e0bc05 3a8259f b88833e 3a8259f b7d1634 d98dad2 3a8259f b88833e 3a8259f 2e0bc05 594495c 2e0bc05 3a8259f 8f2ea38 3a8259f b88833e 3a8259f b88833e 3a8259f b88833e 3a8259f d98dad2 3a8259f b88833e 3a8259f ef803a6 3a8259f 0448449 b88833e 3a8259f 09c6768 4e5a960 3a8259f b7d1634 b88833e 3a8259f 7c58507 0448449 7c58507 b7d1634 7c58507 b88833e 2e0bc05 3a8259f 7c58507 b88833e 7c58507 b88833e 7c58507 b88833e 7c58507 b88833e 2e0bc05 7c58507 2e0bc05 3a8259f b7d1634 b88833e b7d1634 b88833e b7d1634 b88833e 3a8259f b88833e 3a8259f 7c58507 3a8259f b7d1634 7c58507 3a8259f b88833e 3a8259f 7c58507 2e0bc05 7c58507 3a8259f b7d1634 3a8259f 7c58507 c1f2553 7c58507 6e7d264 8f2ea38 d98dad2 3a8259f b88833e 3a8259f b7d1634 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import os
import logging
import threading
import http.server
import socketserver
from functools import lru_cache
from typing import Optional
import gradio as gr
from transformers.pipelines import pipeline
from transformers import AutoTokenizer
import torch
import importlib
import time
# ---------------- Configuration ----------------
MODEL_ID = os.getenv("MODEL_ID", "tasal9/ZamAI-mT5-Pashto")
CACHE_DIR = os.getenv("HF_HOME", None) # optional cache dir for transformers
HEALTH_PORT = int(os.getenv("HEALTH_PORT", "8080"))
GRADIO_HOST = os.getenv("GRADIO_HOST", "0.0.0.0")
GRADIO_PORT = int(os.getenv("GRADIO_PORT", "7860"))
DEFAULT_MAX_NEW_TOKENS = int(os.getenv("DEFAULT_MAX_NEW_TOKENS", "128"))
ECHO_MODE = os.getenv("ECHO_MODE", "off").lower() # default env; UI can override at runtime
OFFLINE_FLAG = os.getenv("OFFLINE", "0").lower() in {"1", "true", "yes"}
if OFFLINE_FLAG:
os.environ["HF_HUB_OFFLINE"] = "1"
def _log_cache_env():
try:
import huggingface_hub as _hub
hub_cache = getattr(_hub.constants, 'HF_HUB_CACHE', None)
except Exception:
hub_cache = None
logging.info(
"Cache config: HF_HOME=%s TRANSFORMERS_CACHE=%s HF_HUB_OFFLINE=%s hub_cache=%s",
os.getenv("HF_HOME"), os.getenv("TRANSFORMERS_CACHE"), os.getenv("HF_HUB_OFFLINE"), hub_cache
)
_log_cache_env()
# ---------------- Logging ----------------
LOG_LEVEL = os.getenv("LOG_LEVEL", "INFO").upper()
logging.basicConfig(level=LOG_LEVEL, format="%(asctime)s %(levelname)s %(message)s")
logger = logging.getLogger("zamai-app")
# Metrics storage for last real generation
LAST_METRICS: dict[str, float | int | str | None] = {
"latency_sec": None,
"input_tokens": None,
"output_tokens": None,
"num_sequences": None,
"mode": None,
}
# ---------------- Utilities ----------------
SAMPLE_INSTRUCTIONS = [
"په پښتو کې د خپل نوم او د عمر معلومات ولیکئ.",
"د هوا د حالت په اړه لنډ راپور ورکړئ.",
"په پښتو کې یوه لنډه کیسه ولیکئ چې د ښوونځي د ژوند په اړه وي.",
"د خپلو ملګرو لپاره د یوې کوچنۍ پیغام ولیکئ.",
"په پښتو کې د خپل خوښې خواړه تشریح کړئ او ووایاست ولې یې خوښوی.",
"د خپلې سیمې د تاریخي ځایونو په اړه لنډ معلومات ورکړئ.",
"یو ورځني کارنامه ولیکئ چې په کور کې څه کارونه ترسره کوئ."
]
def _start_health_server(port: int):
"""Start a tiny HTTP server that responds 200 to /health on a background thread."""
class HealthHandler(http.server.SimpleHTTPRequestHandler):
def do_GET(self):
if self.path == "/health":
self.send_response(200)
self.send_header("Content-type", "text/plain")
self.end_headers()
self.wfile.write(b"ok")
else:
self.send_response(404)
self.end_headers()
def _serve():
try:
with socketserver.TCPServer(("", int(port)), HealthHandler) as httpd:
logger.info("Health endpoint listening on port %s", port)
httpd.serve_forever()
except Exception as e:
logger.exception("Health server failed: %s", e)
t = threading.Thread(target=_serve, daemon=True)
t.start()
def _detect_device() -> int:
# return device id for transformers pipeline: -1 for CPU or 0..N for CUDA
try:
if torch.cuda.is_available():
logger.info("CUDA available; using GPU device 0")
return 0
except Exception:
logger.debug("torch.cuda check failed; falling back to CPU")
return -1
# ---------------- Generator (cached) ----------------
@lru_cache(maxsize=1)
def get_generator(model_id: str = MODEL_ID, cache_dir: Optional[str] = CACHE_DIR):
device = _detect_device()
logger.info("Loading tokenizer and model: %s (device=%s)", model_id, device)
tokenizer = None
local_model_path = None
try:
hf = importlib.import_module("huggingface_hub")
snapshot_download = getattr(hf, "snapshot_download", None)
if snapshot_download:
try:
logger.info("Attempting to snapshot_download model %s to cache_dir=%s", model_id, cache_dir)
local_model_path = snapshot_download(repo_id=model_id, cache_dir=cache_dir, repo_type="model")
if local_model_path:
local_model_path = str(local_model_path)
logger.info("Model snapshot downloaded to %s", local_model_path)
except Exception as e:
logger.warning("snapshot_download failed for %s: %s", model_id, e)
local_model_path = None
except Exception:
logger.debug("huggingface_hub not available; falling back to AutoTokenizer.from_pretrained")
try:
if local_model_path:
tokenizer = AutoTokenizer.from_pretrained(local_model_path, use_fast=False, cache_dir=cache_dir)
else:
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False, cache_dir=cache_dir)
logger.info("Loaded tokenizer for %s", model_id)
except Exception as e2:
logger.exception("Failed to load tokenizer for %s: %s", model_id, e2)
raise
gen = pipeline(
"text2text-generation",
model=model_id,
tokenizer=tokenizer,
device=device,
)
return gen
def predict(instruction: str,
input_text: str,
max_new_tokens: int,
num_beams: int,
do_sample: bool,
temperature: float,
top_p: float,
num_return_sequences: int,
mode: str):
"""Generate text using the cached pipeline and return output or error message."""
if not instruction or not instruction.strip():
return "⚠️ مهرباني وکړئ یوه لارښوونه ولیکئ."
def build_prompt() -> str:
base = instruction.strip()
if input_text and input_text.strip():
return base + "\n" + input_text.strip()
return base
prompt = build_prompt()
active_mode = (mode or "").strip().lower() or ECHO_MODE
if active_mode in ("echo", "useless"):
if active_mode == "echo":
return f"### Prompt\n\n````\n{prompt}\n````\n\n### Output\n\n````\n{prompt}\n````"
return f"### Prompt\n\n````\n{prompt}\n````\n\n### Output\n\nThis is a useless placeholder response."
allowed_keys = {"max_new_tokens", "num_beams", "do_sample", "temperature", "top_p", "num_return_sequences"}
start = time.time()
try:
gen = get_generator()
raw_kwargs = {
"max_new_tokens": int(max_new_tokens),
"num_beams": int(num_beams) if not do_sample else 1,
"do_sample": bool(do_sample),
"temperature": float(temperature),
"top_p": float(top_p),
"num_return_sequences": max(1, int(num_return_sequences)),
}
gen_kwargs = {k: v for k, v in raw_kwargs.items() if k in allowed_keys}
outputs = gen(prompt, **gen_kwargs)
if not isinstance(outputs, list):
outputs = [outputs]
texts = []
for out in outputs:
if isinstance(out, dict):
text = out.get("generated_text", "").strip()
else:
text = str(out).strip()
if text:
texts.append(text)
if not texts:
LAST_METRICS.update({
"latency_sec": round(time.time() - start, 3),
"input_tokens": None,
"output_tokens": 0,
"num_sequences": 0,
"mode": active_mode,
})
return f"### Prompt\n\n````\n{prompt}\n````\n\n### Output\n\n⚠️ No response generated."
joined = "\n\n---\n\n".join(texts)
# Basic token counting via whitespace split (approximate)
input_tokens = len(prompt.split())
output_tokens = sum(len(t.split()) for t in texts)
LAST_METRICS.update({
"latency_sec": round(time.time() - start, 3),
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"num_sequences": len(texts),
"mode": active_mode,
})
metrics_md = f"\n\n### Metrics\n- Latency: {LAST_METRICS['latency_sec']}s\n- Input tokens (approx): {input_tokens}\n- Output tokens (approx): {output_tokens}\n- Sequences: {len(texts)}"
return f"### Prompt\n\n````\n{prompt}\n````\n\n### Output\n\n{joined}{metrics_md}"
except Exception as e:
logger.exception("Generation failed: %s", e)
return f"⚠️ Generation failed: {e}"
def build_ui():
with gr.Blocks() as demo:
device_label = "GPU" if _detect_device() != -1 else "CPU"
gr.Markdown(
f"""
# ZamAI mT5 Pashto Demo
اپلیکیشن **ZamAI-mT5-Pashto** د پښتو لارښوونو لپاره.
**Device:** {device_label} | **Env Mode:** {ECHO_MODE} | **Offline:** {os.getenv('HF_HUB_OFFLINE','0')}
که د موډ بدلول غواړئ لاندې د Mode selector څخه استفاده وکړئ.
"""
)
with gr.Row():
with gr.Column(scale=2):
instruction_dropdown = gr.Dropdown(
choices=SAMPLE_INSTRUCTIONS,
label="نمونې لارښوونې",
value=SAMPLE_INSTRUCTIONS[0],
interactive=True,
)
instruction_textbox = gr.Textbox(
lines=3,
placeholder="دلته لارښوونه ولیکئ...",
label="لارښوونه",
)
input_text = gr.Textbox(lines=2, placeholder="اختیاري متن...", label="متن")
output = gr.Markdown(label="ځواب")
generate_btn = gr.Button("جوړول", variant="primary")
mode_selector = gr.Dropdown(
choices=["off", "echo", "useless"],
value=ECHO_MODE,
label="Mode (off=real, echo=return prompt, useless=fixed)",
interactive=True,
)
status_box = gr.Markdown(value="Loading status pending...", label="Status")
refresh_status = gr.Button("Refresh Status")
with gr.Column(scale=1):
gr.Markdown("### د تولید تنظیمات")
max_new_tokens = gr.Slider(16, 512, value=DEFAULT_MAX_NEW_TOKENS, step=1, label="اعظمي نوي ټوکنونه (max_new_tokens)")
num_beams = gr.Slider(1, 8, value=2, step=1, label="شمیر شعاعونه (num_beams)")
do_sample = gr.Checkbox(label="نمونې فعال کړئ (do_sample)", value=True)
temperature = gr.Slider(0.1, 2.0, value=1.0, step=0.05, label="تودوخه (temperature)")
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.01, label="Top-p")
num_return_sequences = gr.Slider(1, 4, value=1, step=1, label="د راګرځېدونکو تسلسلو شمېر")
instruction_dropdown.change(lambda x: x, inputs=instruction_dropdown, outputs=instruction_textbox)
def refresh():
base = f"**Device:** {'GPU' if _detect_device() != -1 else 'CPU'} | **Offline:** {os.getenv('HF_HUB_OFFLINE','0')} | **Env Mode:** {ECHO_MODE}"
if LAST_METRICS.get('latency_sec') is not None:
base += (f"<br>**Last Gen:** latency={LAST_METRICS['latency_sec']}s, "
f"in≈{LAST_METRICS['input_tokens']}, out≈{LAST_METRICS['output_tokens']}, seqs={LAST_METRICS['num_sequences']}")
return base
refresh_status.click(fn=refresh, inputs=None, outputs=status_box)
generate_btn.click(
fn=predict,
inputs=[instruction_textbox, input_text, max_new_tokens, num_beams, do_sample, temperature, top_p, num_return_sequences, mode_selector],
outputs=output,
)
# Model load banner shown after interface loads (async)
def _post_load():
return "✅ Model interface ready. If this is the first run and model wasn't cached, initial generation may still warm up."
demo.load(_post_load, inputs=None, outputs=status_box)
return demo
if __name__ == "__main__":
logger.info("Starting ZamAI mT5 Pashto Demo (model=%s)", MODEL_ID)
try:
_start_health_server(HEALTH_PORT)
except Exception:
logger.exception("Failed to start health server")
demo = build_ui()
demo.launch(server_name=GRADIO_HOST, server_port=GRADIO_PORT)
logging.info("HF_HOME=%s TRANSFORMERS_CACHE=%s", os.getenv("HF_HOME"), os.getenv("TRANSFORMERS_CACHE")) |