File size: 7,948 Bytes
15a1f73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import os
import subprocess
import uuid
import shutil
from flask import Flask, request, jsonify, render_template
from flask_executor import Executor
# Import modular functions
from video_processing import download_video, extract_audio
from accent_analysis import load_accent_model, detect_accent, HF_CACHE_DIR
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
# --- Flask Application Setup ---
app = Flask(__name__)
app.config['EXECUTOR_TYPE'] = 'thread' # Use threads for background tasks
app.config['EXECUTOR_MAX_WORKERS'] = 5 # Limit concurrent tasks
executor = Executor(app)
# --- Global Variables for Temporary Files ---
# Define a temporary directory within the current working directory
TEMP_DIR = os.path.join(os.getcwd(), 'temp_files')
os.makedirs(TEMP_DIR, exist_ok=True) # Create the directory if it doesn't exist
print(f"Temporary directory for media created/ensured at: {TEMP_DIR}")
# Ensure Hugging Face cache directory is created (this is handled by accent_analysis.py too, but good to ensure)
os.makedirs(HF_CACHE_DIR, exist_ok=True)
print(f"Hugging Face cache directory created/ensured at: {HF_CACHE_DIR}")
# --- Load the Accent Classification Model on App Startup ---
# This is crucial to load the model once and avoid repeated loading for each request.
with app.app_context():
load_accent_model()
ACCENT_MAP = {
"australia": "Australian",
"canada": "Canadian",
"england": "British",
"us": "American",
"philippines": "Filipino",
"africa": "South African",
"newzealand": "New Zealand",
"ireland": "Irish",
"scotland": "Scottish",
"wales": "Welsh",
"malaysia": "Malaysian",
"singapore": "Singaporean",
"bermuda": "Bermudian",
"hongkong": "Hong Kong",
"india": "Indian",
"southatlandtic": "South Atlantic"
}
# --- Helper Function to Clean Up Temporary Files ---
def cleanup_temp_files(file_path):
"""
Removes a file from the temporary directory.
Ensures that only files within TEMP_DIR are removed.
Does NOT remove entire directories.
"""
if file_path and os.path.exists(file_path):
try:
abs_temp_dir = os.path.abspath(TEMP_DIR)
abs_file_path = os.path.abspath(file_path)
if abs_file_path.startswith(abs_temp_dir):
if os.path.isfile(file_path):
os.remove(file_path)
app.logger.info(f"Cleaned up file: {file_path}")
else:
app.logger.warning(f"Skipping cleanup of non-file: {file_path}")
else:
app.logger.warning(f"Attempted to clean up file outside designated temp directory: {file_path}")
except Exception as e:
app.logger.error(f"Error cleaning up {file_path}: {e}")
# --- Core Logic for Video Processing and Accent Analysis (Background Task) ---
def process_video_and_analyze_accent(video_url, task_id):
"""
Downloads a video, extracts its audio, and classifies the English accent.
This function runs in a background thread managed by Flask-Executor.
"""
video_path = None
audio_path = None
try:
# 1. Download Video
app.logger.info(f"Task {task_id}: Starting video download for {video_url}")
video_path, download_error = download_video(video_url, task_id, TEMP_DIR)
if download_error:
return {"status": "error", "message": f"Video download failed: {download_error}"}
app.logger.info(f"Task {task_id}: Video downloaded to {video_path}")
# 2. Extract Audio
app.logger.info(f"Task {task_id}: Extracting audio from video...")
audio_path, extract_error = extract_audio(video_path, task_id, TEMP_DIR)
if extract_error:
return {"status": "error", "message": f"Audio extraction failed: {extract_error}"}
app.logger.info(f"Task {task_id}: Audio extracted to {audio_path}")
# --- IMPORTANT CHANGE: Convert absolute audio_path to relative path ---
# This is to work around potential issues where SpeechBrain might
# implicitly prepend the current working directory to the path.
relative_audio_path = os.path.relpath(audio_path, os.getcwd())
app.logger.info(f"Task {task_id}: Relative audio path for SpeechBrain: {relative_audio_path}")
# 3. Classify Accent
app.logger.info(f"Task {task_id}: Analyzing accent...")
# Pass the relative_audio_path to the detect_accent function
accent, confidence, summary, accent_error = detect_accent(relative_audio_path, task_id)
if accent_error:
return {"status": "error", "message": f"Accent analysis failed: {accent_error}"}
app.logger.info(f"Task {task_id}: Accent: {accent}, Confidence: {confidence:.2f}%")
predicted_accent = ACCENT_MAP.get(accent)
return {
"status": "completed",
"accent": predicted_accent,
"confidence": f"{confidence:.2f}%",
"summary": summary
}
except Exception as e:
error_message = f"An unexpected error occurred during processing: {e}"
app.logger.error(f"Task {task_id}: {error_message}", exc_info=True)
return {"status": "error", "message": error_message}
finally:
# Clean up temporary files regardless of success or failure
cleanup_temp_files(video_path)
cleanup_temp_files(audio_path)
# --- Flask Routes ---
@app.route('/')
def index():
"""Renders the main HTML page."""
return render_template('index.html')
@app.route('/analyze', methods=['POST'])
def analyze_video():
"""
Endpoint to receive video URL and initiate background accent analysis.
Returns a task ID to the client.
"""
data = request.get_json()
video_url = data.get('video_url')
app.logger.info(f"video url received: {video_url}")
if not video_url:
return jsonify({"status": "error", "message": "No video URL provided."}), 400
# Generate a unique task ID
task_id = str(uuid.uuid4())
# Submit the long-running task to the executor
executor.submit_stored(task_id, process_video_and_analyze_accent, video_url, task_id)
return jsonify({"status": "processing", "task_id": task_id, "message": "Analysis started."}), 202
@app.route('/status/<task_id>', methods=['GET'])
def task_status(task_id):
"""
Endpoint to check the status of a submitted task.
Returns progress or final results.
"""
if not executor.futures.done(task_id):
# Task is still running or pending
return jsonify({"status": "processing", "message": "Still processing..."}), 200
else:
# Task is completed (successfully or with error)
future = executor.futures.pop(task_id) # Get and remove the future from storage
try:
result = future.result() # Get the result of the task
return jsonify(result), 200
except Exception as e:
app.logger.error(f"Error retrieving result for task {task_id}: {e}", exc_info=True)
return jsonify({"status": "error", "message": f"Failed to retrieve task result: {e}"}), 500
# --- Application Shutdown Hook (Optional but Recommended for Cleanup) ---
# @app.teardown_appcontext
# def teardown(exception=None):
# """
# Application shutdown hook — does NOT delete the temp directories.
# Let background tasks finish safely without losing working directories.
# """
# print("App context is shutting down. Skipping deletion of TEMP_DIR and HF_CACHE_DIR to allow pending tasks to complete.")
# --- Main entry point for running the Flask app ---
if __name__ == '__main__':
# When running locally, use debug=True for development.
print(f"Starting Flask app from current working directory: {os.getcwd()}") # Added for debugging
app.run(debug=True, host='0.0.0.0', port=5000) |